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Abstract 

     Scheduling tasks is one of the core steps to effectively exploit the 
capabilities of distributed or parallel computing systems. In general, 
scheduling is an NP-hard problem.  Most existing approaches for 
scheduling deal with a single objective only. This paper presents a 
multi-objective scheduling algorithm based on particle swarm 
optimization (PSO). In this paper a non-dominated sorting particle 
swarm optimization (NSPSO) that combines the operations of NSGA 
–II is used to schedule tasks in a heterogeneous environment. The 
approach aims at developing optimal schedules thereby minimizing 
two objectives, makespan and flowtime simultaneously. The 
experimental results indicate that NSPSO obtains good solutions on 
benchmark instances in comparison with a multi-objective particle 
swarm optimizer using a weighted approach (W-MOPSO )which is 
also implemented in this paper for effective comparisons. 

     Keywords: Heterogeneous system, Non-dominated Sorting, Particle swarm 

Optimization.  
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1      Introduction 

Distributed computing systems have emerged as a powerful platform to perform 

different computationally intensive applications that have various computational 

requirements. The problem of scheduling independent computational jobs in a 

distributed computing environment is important to exploit the different 

capabilities of a set of heterogeneous resources and satisfy users with high 

expectations for their applications. A static task scheduling algorithm [1] can be 

used in such a heterogeneous system which provides a variety of architectural 

capabilities, orchestrated to perform on application problems whose tasks have 

diverse execution requirements. Static scheduling may be useful for analysis of 

heterogeneous computing systems, to work out the effect of resource failures. 

Schedulers can be implemented using complex algorithmic methods that utilize 

the known properties of a given application and the available environment. 

However, finding optimal schedules in such a system has been shown, in general, 

to be NP-hard [2] and therefore the use of heuristics is one of the suitable 

approaches. 

Different criteria can be used for evaluating the performance of scheduling 

algorithms and the most important of which are makespan and flowtime.  

Makespan is the time when grid finishes the latest job and flowtime is the sum of 

finalization times of all the jobs. An optimal schedule will be the one that 

optimizes the flowtime and makespan [3]. The conceptually obvious rule to 

minimize flowtime is to schedule Shortest Job on the Fastest Resource (SJFR). 

Minimizing makespan is to schedule the Longest Job on the Fastest Resource 

(LJFR). Minimizing flowtime asks the average job finishes quickly, at the 

expense of the largest job taking a long time, whereas minimizing makespan asks 

that no job takes too long, at the expense of most jobs taking a long time. 

Minimization of makespan thus results in maximization of flowtime. This requires 

the problem to be formulated as a multi-objective optimization problem as it deals 

with conflicting objectives. 

PSO is a collaborative population-based search model [4–6]. This has been 

applied successfully to a number of problems and its use is rapidly increasing. A 

PSO algorithm contains a swarm of particles, each particle representing a 

potential solution. The particles fly through a multidimensional search space in 

which the position of each particle is adjusted according to its own experience and 

the experience of its neighbors. PSO has a flexible and well-balanced mechanism 

to enhance and adapt to the global and local exploration and exploitation abilities 

within a short calculation time.  These characteristics make PSO highly viable to 

be used for solving also multi-objective optimization problems.  

The non-dominated sorting PSO (NSPSO) of Li [7] is used in this paper due to its 

performances obtained against a set of well known difficult test functions. NSPSO 

combines the fast ranking of non-dominated solutions, crowding distance ranking 

and an elitist strategy of combining parent population and offspring population. 
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The performance of NSPSO has been tested using the benchmark of Braun et al. 

[8], which is known to be the most difficult benchmark for static instances of the 

problem. It consists of instances that try to capture the high degree of 

heterogeneity of resources and workload of tasks. 

The remainder of the paper is organized as follows: Section 2 reviews related 

algorithms for task scheduling problem. Section 3 presents a brief introduction of 

multi-objective optimization problems. The problem formulation is given in 

Section 4.  Section 5 describes the scheduling method through W-MOPSO and 

NSPSO. Experimental results are reported in Section 6. Finally, Section 7 

concludes the paper. 

 

2 Related Work 

Optimal mapping of independent computational tasks to available machines in a 

distributed computing system  is a NP- hard problem as stated earlier and as such, 

it is a subject to various heuristic and meta-heuristic algorithms. The heuristics 

applied to the task scheduling problem include Sufferage [9], min-min, max-min 

[10], LJFR-SJFR [11], min-max [12], etc. The most popular of meta-heuristic 

algorithms are genetic algorithm [13], simulated annealing [15], ant colony 

optimization [14] and particle swarm optimization [16] . Braun et al. [8] described 

eleven heuristics and compared them on different types of HC environments 

which illustrates that the GA scheduler can obtain better results in comparison 

with others.  The above referred heuristics and meta-heuristics aimed at 

minimizing a single criteria, the makespan of the schedule. 

Different criteria can be used for evaluating the efficacy of scheduling algorithms. 

Few attempts have been made to optimize multiple criteria. [12] investigates the 

efficacy of five popular heuristics for minimizing makespan and flowtime on HC 

environments with various characteristics of both machines and tasks. However 

the objectives are evaluated separately here. Xhafa et al. [17] used Genetic 

Algorithm-based schedulers for computational grids and most of GA operators are 

implemented and compared to find the best GA scheduler for this problem. 

Abraham et al. [18] illustrated the usage of several nature inspired meta-heuristics 

(SA, GA, PSO, and ACO) for scheduling jobs in computational grids using single 

and multi-objective optimization approaches. Abraham et al. [19] used a fuzzy 

particle swarm optimization and Izakian et al. [20] used a discrete version of 

particle swarm optimization for scheduling problem. These methods combine the 

multiple objectives into a scalar cost function, ultimately making the problem 

single-objective prior to optimization. In practice, it can be very difficult to 

precisely and accurately select these weights as small perturbations in the weights 

can lead to very different solutions.  

Hence, in this paper NSPSO that adapts the approach of determining an entire 

Pareto optimal solution set or a representative subset is implemented for the 
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problem. Pareto optimal solution sets are often preferred to single solutions when 

considering real-life problems, since the final solution of the decision maker is 

always a trade-off between crucial parameters [21]. 

 

3 Multi-Objective Optimization 

Many optimization problems in the world involve the optimization of several 

objectives at the same time.  Generally, these functions are non-commensurable 

and often conflicting objectives. Multi-objective optimization with such 

conflicting objective functions gives rise to a set of optimal solutions, instead of 

one optimal solution. The reason for the optimality of many solutions is that no 

one can be considered to be better than any other with respect to all objective 

functions. These optimal solutions are known as Pareto-optimal solutions. In 

general, the multi-objective minimization problem can be formulated as 

             Minimize z = (f1(x), f2(x) ..…. fm(x))     subject to x  X                      (1) 

where x = [x1, x2,…., xn] is the vector of decision variables, fi :  , i = 1, 

2,….m , are the objective functions and X   is the feasible region in the 

decision space. A solution x  X is said to dominate another solution y X 

(denoted as x  y) if the following two conditions are satisfied: 

                  
{1,2,...... }, ( ) ( )

{1,2,...... }, ( ) ( )

i i

i i

i m f x f y

i m f x f y

  

  
                                                            (2)                       

If there is no solution which dominates x  X, x is said to be a Pareto Optimal 

Solution. The set of all elements of the search space that are not dominated by any 

other element is called the Pareto Optimal Front of the multi-objective problem 

which represents the best possible solution with respect to the contradictory 

objectives. A multi-objective optimization problem is solved, when its complete 

Pareto Optimal Solution is found. 

 

4 Problem Formulation 

A distributed computing system is composed of computing resources where these 

resources can be a single PC, a cluster of workstations or a supercomputer. Let T 

= {T1, T2,…., Tn} denote the set of tasks that are  independent of each other to be 

scheduled on m processors P = {P1, P2 ,...,Pm}. It is also assumed that the tasks are 

non pre-emptive. As the scheduling is performed statically the time required to 

perform each task can be estimated. The required time for executing a task in a 

processor is contained in an  Expected Time to Compute (ETC) matrix. An ETC 

matrix is a n x m matrix, where each position ETC[n][m] indicates the expected 

time to compute task n in processor m. One row of the ETC matrix contains the 
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estimated execution time for a given task on each machine. Similarly one column 

of the ETC matrix consists of the estimated execution time of a given machine for 

each task. 

An optimal schedule is one that optimizes flowtime and makespan that is defined 

as 

 

 

 

where Sched is the set of all possible schedules, Jobs stands for the set of all tasks 

and Fj represents the time in which job j finalizes. To formulate the objective, 

Ci,j(i {1, 2, .…, n}, j  {1, 2,…,m}) is defined  as the completion time for 

finishing the task Ti on processor Pj and Wi (i  1, 2, . . .,m) is the previous 

workload of Pi, then ∑(Ci +Wi) is the time required for processor Pi to complete 

the tasks assigned to it. Hence makespan and flowtime can be evaluated as 

 

 

Minimizing makespan aims to execute the whole meta-task as fast as possible 

while minimizing flowtime aims to utilize the computing environment efficiently. 

Conceptually minimizing flowtime is to schedule Shortest Job on the Fastest 

Resource (SJFR) and minimizing makespan is to schedule the Longest Job on the 

Fastest Resource (LJFR). Minimization of makespan thus results in maximization 

of flowtime, thus making the problem multi-objective.  

 

5 Multi–Objective Particle Swarm Optimization for 
Task Scheduling  

PSO is relatively a recent stochastic heuristic introduced by Eberhart and 

Kennedy [4].  it is based on the analogy of swarm of bird and school of fish [4]. A 

swarm consisting of a population of birds/fishes flocks synchronously,   changes 

direction suddenly, scatters and regroups iteratively, and finally perches on a 

target, in order to escape from enemies or search for food. The PSO mimics the 

interesting behavior and serves as a function optimizer. It keeps a population of 

individuals which are potential solutions to the optimization problem. By taking 

advantage of individual cognition and social interaction, the swarm improves the 

solutions iteratively and eventually converges to the optimal solution. 
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As stated earlier, there are two approaches to solve the MOP. One approach is the 

classical weighted-sum approach where the objective function is formulated as a 

weighted sum of the objectives. But the problem lies in the correct selection of the 

weights or utility functions to characterize the decision-makers preferences. The 

second approach called Pareto-optimal solution have no unique or perfect solution, 

but a set of non-dominated, alternative solutions, known as the Pareto-optimal set. 

The two methods of solving the task scheduling problem are described below. 

 

5.1  Weighted Multi-objective Particle Swarm Optimization 

          (W-MOPSO) 

5.1.1 Particle Representation 

One of the key issues in designing a successful PSO algorithm is the 

representation step, i.e. finding a suitable mapping between problem solution and 

PSO particle. The representation of the particle vector should be compact and 

simple For the considered problem, the i
th

 particle is represented as  Pi = (pi1, 

pi2, . . . ,pir)
T
 where pi,j indicates the index of the allocated processor for the jth 

module.  The PSO swarm consists of N particles and the initial swarm is 

generated at random. The swarm particles iteratively improve their solution 

quality based on personal cognition and social interaction by the particle 

movement formula. 

 

5.1.2 Particle Evaluation 

The fitness function measures to what extent the particle solution S satisfies the 

objective of the optimization problem. The function   fit(S) is a sum of two 

objectives, the makespan of schedule S and mean flowtime of schedule S as given 

by Equation (5) and (6). The mean flowtime of the schedule is the flowtime  

divided by number of processors p. The mean flowtime is taken in order to keep 

both the objectives in approximately the same magnitude. The influence of 

makespan and flowtime in fit(S) is parameterized by the weights, where weights 

w1 and w2 are chosen such that  w2=1-w1 and w1+w2=1. Hence particle evaluation 

is done as given by Equation (7) 

                         fit (S) =  w1. makespan + w2 . mean flowtime                             (7) 

                                             

5.1.3 Particle Movement 

The particle position is updated during each iteration based on two types of 

experiences: personal best and global best experiences. This is a positive feedback 

process which increases the probability for targeting the optimal solution. The 

personal best experience, denoted by pbesti, is the experienced position by particle 



  

 

 

7                                                      Non Dominated Particle Swarm Optimization 

Pi which receives the highest fitness value during flying. gbest represents the best 

particle found in the entire population each generation. At each iteration, the 

particle Pi modifies its velocity vij and position pij through each dimension j by 

referring to pbesti and the swarm‟s best experience gbest using Equation (8) and 

(9) 

 

          Vij = WVij + c1rand1( ) ( pbesti - pij )+ c2rand2( ) (gbest-  pij )                  (8) 

          Pij = Pij + Vij                                                 (9)  

 

where c1 and c2 are the cognitive and interaction coefficients, rand1 and rand2 are 

random real numbers drawn from U(0, 1). The inertia weight, W is a user-

specified parameter that controls the momentum of the particle. A larger inertia 

weight pressures towards global exploration  while a smaller inertia weight 

pressures toward fine-tuning the current search area. The following weighting 

function is usually utilized: 

                                      
max min

max

max

*
w w

w w iter
iter


                                           (10) 

 where,  

 wmax: initial weight, 

 wmin: final weight, 

 itermax : maximum iteration number, 

 iter: current iteration number. 

 

At each iteration, the PSO flies each particle through the solution space using 

Equations (8) and (9). The particles learn through the personal cognition (pbesti) 

and the social interaction (gbest) .They explore new areas  with  the random 

multipliers (rand1 and rand2) to escape from the barrier of the local optimality. 

When the algorithm is terminated with a given maximum number of iterations, the 

best experienced position by the entire swarm is reported as the final solution. The 

pseudo code of PSO algorithm for task scheduling in grid computing system is 

given as follows, 

begin  

           Initialize population randomly; 

           Initialize each particle position vector and velocity vector; 

           Initialize parameters; 

           Evaluate each particle using combined fitness and find the personal best     
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           and the global best; 

           repeat      

                  for each particle i=1,…,N do  

                        Update each particle‟s velocity and position; 

                        Evaluate each particle and update the personal best and the global                                                  

                         best; 

                   end 

          until termination  

  end  

 

5.2 Non-dominated Sorting Particle Swarm Optimization        

(NSPSO) 

NSPSO extends the basic form of PSO by making a better use of particles‟ 

personal bests and offspring for effective non-domination comparisons. The 

problem with the basic form PSO is that dominance comparisons are not fully 

utilized in the process of updating the personal best of each particle. To overcome 

this problem and increase the sharing level between particles in the swarm, 

NSPSO combine the entire population of N pbest and N of these particles‟ 

offspring to form a temporary population of 2N particles. Then, domination 

comparisons among all the 2N individuals are carried out. By comparing the 

combined 2N particles for non-domination relationships, the entire population is 

sorted into different non-domination fronts as used in NSGA II. Each individual 

in each front is assigned a rank based on front in which they belong to. Individuals 

in the first front are given a fitness value of 1 and individuals in second are 

assigned a rank of 2 and so on. In addition to the rank, a new parameter called 

crowding distance is calculated for each individual to ensure the best distribution 

of the non-dominated solutions. The crowding distance is a measure of how close 

an individual is to its neighbors.  The global best gbesti for the i
th

 particle Pi is 

selected randomly from the top part of the first front. N particles are selected 

based on fitness and the crowding distance to play the role of pbest.  Equation (8) 

uses the above information to calculate the new updated velocity for each particle 

in the next iteration step. Equation (9) updates  each  particle‟s position in the 

search space. 

The steps of basic NSPSO algorithm is summarized below 

1. Initialize the population P t .  Each particle in the swarm is initialized randomly 

within the specified limits. The  initial velocity for each particle is set to zero. The 

personal best position Pbesti, is set to Xi  .  
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2. Evaluate each particle in the population, 

3. Apply non-dominated sorting on the particles. 

4. Calculate crowding distance of each particle. 

5. Sort the solutions based on crowding distance. 

6.  Select randomly gbest for each particle from a specified top part (e.g. top 5%) 

of the first front F1; 

7. Calculate the new velocity Vt+1 based on Equation (8) and new position Pt+1 

from Equation (9) using the  determined gbest and pbest. 

8. Create a new population of size 2N by combining the new position and their 

pbest, Pt+1 ∪ Pbestt.. 

9. Apply non-dominated sorting on 2N particles and calculate the crowding 

distance for each particle.  

10. Generate a new set of N solutions by selecting solutions from non-dominated 

fronts F1, F2 and so on  using the crowding distance.  The N solutions form the 

pbest for the next iteration. 

11.  Go to step 6 till the termination criteria is met. 

 

6 Experimental Results And Discussion  

In this section, the proposed NSPSO algorithm based on Pareto-optimal approach 

is implemented. To assess the performance W-MOPSO algorithm that uses a 

weighted approach is also implemented. Both the algorithms were implemented in 

Linux using C to analyze their comparative performances. The experimental 

parameter settings of the competing algorithms are set as follows. 

 

Table 1:Parameters for W-MOPSO and  NSPSO 

 Population 

size  

Number of 

generation 
Wmax Wminwmi c1         c2 

100 1000 0.9 0.4 2 2 

 

In addition to the above parameters W-MOPSO uses weights w1 and w2 in 

Equation (7) set to 0.5 and 0.5 respectively. 

This setting considers both objectives equally important. 
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Since both the algorithms are stochastic based, each independent run of the same 

algorithm on a particular problem instance may yield a different result. To make a 

fair comparison of the algorithms each experiment was repeated 10 times with 

different random seeds and the average of the results are reported in the case of 

W-MOPSO and the best solutions are considered with respect to NSPSO. 

 

6.1 Simulation  Model 
 

To assess the comparative performances of the algorithms, the simulation model 

in [10]  based on expected time to compute (ETC) matrix for 512 tasks and 16 

processors is used. To realistically simulate possible heterogeneous environments, 

different types of  ETC matrix according to three metrics: task heterogeneity, 

machine heterogeneity and consistency are simulated.. The task heterogeneity is 

defined as the amount of variance possible among the execution times of the jobs 

with two possible values low and high. Machine heterogeneity is the variation of 

the running time of a particular job across all the processors, which can be  high 

and low. To capture other possible features of real scheduling  problems, three 

different ETC consistencies namely consistent, inconsistent and semi-consistent 

are used. An ETC matrix is considered consistent if a processor Pi executes task t 

faster than processor Pj , then Pi  executes all the jobs faster than Pj . Inconsistency 

means that a processor is faster for some jobs and slower for some others. An 

ETC matrix is considered semi-consistent if it contains a consistent sub-matrix.  A 

semi consistent ETC matrix is characterized by an inconsistent matrix which has a 

consistent sub-matrix of a predefined size. 

Thus 12 distinct types of ETC matrix can be generated considering the different 

combinations. The matrices used here a randomly generated as described. Initially 

a  m × 1 baseline column vector B is generated by repeatedly selecting m uniform 

random floating point values between 1 and b, the upper bound on values in B. 

Then the ETC matrix is constructed by taking each value B(i) in B and 

multiplying it by a uniform random number xr
i,k

 which has an upper bound of  r.  

Each row in the ETC matrix is then given by B(i) × xr
i,k

.  The vector B is not used 

in the actual matrix. This process is repeated for each row until the m × n matrix is 

full.  Therefore, any given value in the ETC matrix is within the range (1, b , r ). 

Different task and machine heterogeneities described above are modeled by using 

different baseline values. High task heterogeneity was represented by b =3000 

and low task heterogeneity used b=100. High machine heterogeneity was 

represented by r=1000 and low machine heterogeneity was modeled using r =10. 

To model a consistent matrix each row in the matrix was sorted independently, 

with processor P1 always being the fastest, and Pm being the slowest. Inconsistent 

matrices are left in the random state in which they are generated. Semi-consistent 

matrices are generated by extracting the row elements {0, 2, 4 . . .} of each row i, 

sorting them and then replacing in order, while the elements {1, 3, 5, . . .} are left 
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in their original order, this means that the even columns are consistent while the 

odd columns are inconsistent. 

 

 

6.2 Comparative Performances 
 

Both W-MOPSO and NSPSO algorithms are applied on all 12 problem instances 

and the results plotted in Fig 1- 4. The plots show the non-dominated solutions  in 

Rank1 using  NSPSO  and  the optimal solution  in  the case of W-MOPSO. Both 

makespan and mean flowtime are measured in same time units and scaled to ten 

thousands of units in the plotted results.  In the results the different problem 

instances are identified according to the following scheme: u- x- yy-zz, where    

u means uniform distribution  

 x denotes the type of consistency (c–consistent, i–inconsistent and s means semi-

consistent). 

yy indicates the heterogeneity of the jobs (hi–high, and lo–low). 

zz indicates the heterogeneity of the resources (hi–high, and lo–low). 

 

 
Fig.1: Performance comparison of NSPSO and W-MOPSO for low task, low 

machine heterogeneity 
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 Fig. 2: Performance comparison of NSPSO and W-MOPSO for low task, 

high machine heterogeneity 

 
Fig. 3: Performance comparison of NSPSO and W-MOPSO for high task, low 

machine heterogeneity 
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Fig.4: Performance comparison of NSPSO and W-MOPSO for high task, high 

machine heterogeneity 

 

From the plots it is observed that the schedules obtained by NSPSO algorithm 

results in minimal makespan and minimal flowtime when compared with the best 

schedule obtained through W-MOPSO for the same number of iterations.  This 

proves that the Pareto-optimal approach of finding solutions to multi-objective 

task scheduling problem is more effective and produces better solutions.  As the 

problem tested comprises of 512 tasks, each particle has 512 positions and 

requires more number of iterations to generate the optimal solutions. It is seen 

from the results plotted that only a maximum of 15 solutions were found to be 

non-dominating among the initial population of 100 solutions even after 1000 

generations. To obtain more number of solutions in the non-dominated set of 

rank1 it is required to run the algorithm still few thousand generations. It is found 

that the optimal solution obtained for all types of heterogeneous systems obtained 

by W-MOPSO lie away from the non-dominated solutions. In inconsistent cases, 

it is seen that the solution obtained by W-MOPSO is comparatively closer than 

the other two types.  

 

6.3 Best Compromise Solution 

The Pareto optimal set   obtained by applying NSPSO comprises of solutions that 

satisfy different goals to some extent [22]. Hence for effective comparison it is 

practical to choose one solution from the obtained Pareto set. A Fuzzy-based 

approach is applied to select the best compromise solution from the obtained 

Pareto set. This is due to the fuzzy or imprecise nature goals of each objective 

function [23]. Hence, the membership functions are introduced to represents the 

goals of each objective function. In this , a simple linear membership function was 
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considered for each of the objective functions. The membership function is 

defined as follows [23]  

min

max
min max

max min

max

1,

,

0,

k

k k
k k k k

k k

k

f f

f f
f f f

f f

f f



  
 

 
    

 
   

                                      (10) 

where max

kf and min

kf  are the maximum and minimum values of the k-th objective 

function, among all nondominated solutions respectively.  

For each non-dominated solution i, the normalized membership function i  is 

calculated   

                          
1

1 1

i

n i
kk

m n i
ki k

 

 







 

                                                                   (11) 

 

where n is the number of objectives functions and m is the number of non-

dominated  solutions. The function µ
i
  can be considered as a membership 

function of non-dominated solutions in a fuzzy set, where the solution having the 

maximum membership in the fuzzy set is considered as the best compromise 

solution.  

Table 2 compares the results of the best solution obtained by NSPSO using fuzzy 

based approach with W-MOPSO. The tabulated results verify that NSPSO 

exhibits better performance for all heterogeneous systems resulting in good 

schedules with minimum values of both makespan and flowtime. 
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Table 2: Makespan and mean flow time values for the best solution obtained by 

NSPSO in comparison with W-MOPSO 

 
Problem 

Instance 
W-MOPSO 

Best compromise solution with 

NSPSO 

 Make span Mean Flow time Make span Mean Flow time 

u_c_lolo 13147.8146 138927.7324 8664.8048 117821.7894 

u_c_lohi 1306429.9203 11539135.76835 800174.51875 9590558.19116 

u_c_hilo 402567.68741 4127891.428444 277143.87913 3512357.84960 

u_c_hihi 39642454.101 357292914.4200 23572329.554 284455898.971 

     

u_s_lolo 13183.350319 140097.056526 10181.234019 133332.872718 

u_s_lohi 1401040.7629 12185136.86652 929886.22269 11646285.2373 

u_s_hilo 394100.64126 4151139.102559 301078.13824 4017087.20455 

u_s_hihi 38206507.901 370121079.5219 29851120.200 344021357.343 

     

u_i_lolo 14310.789926 141295.647419 10722.189847 136339.872525 

u_i_lohi 1223733.8337 13077839.61080 941143.95154 12098941.5217 

u_i_hilo 357708.37182 4222794.014857 307548.62870 3976545.55130 

u_i_hihi 33067834.545 385235242.3981 26921663.456 363928422.755 
 

 

7 Conclusion 

In distributed computing systems, qualified assignment of tasks among processors 

is an important step for efficient utilization of resources and execution of the tasks. 

In this paper, the application of multi-objective Non-dominated Sorting Particle 

Swarm Optimizer (NSPSO) intends to find schedules for independent tasks 

minimizing the makespan and flowtime simultaneously. The study also reveals 

the quality of schedules in comparison to a weighted PSO that simultaneously 

minimizes both the objectives for several benchmark problems. It is found that 

solving multi-objective task scheduling using a  Pareto-optimal approach is more 

effective in determining optimal solutions. However, further work could be 

carried out with the NSPSO algorithm investigating different methods of updating 

position and velocities of the particle. Investigations also can be extended to 

considering several forms of HC scheduling, such as scheduling jobs with 

precedence constraints or in dynamic environments. 
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