
Int. J. Advance. Soft Comput. Appl., Vol. 3, No. 1, March 2011

ISSN 2074-8523; Copyright © ICSRS Publication, 2011

www.i-csrs.org

Non Dominated Particle Swarm Optimization

 For Scheduling Independent Tasks On

Heterogeneous Distributed Environments

G. Subashini, M.C. Bhuvaneswari

Department of Information Technology, PSG College of Technology, India

e-mail: suba@ity.psgtech.ac.in

Department of Electrical and Electronics Engineering,

PSG College of Technology, India

e-mail: mcb@eee.psgtech.ac.in

Abstract

 Scheduling tasks is one of the core steps to effectively exploit the
capabilities of distributed or parallel computing systems. In general,
scheduling is an NP-hard problem. Most existing approaches for
scheduling deal with a single objective only. This paper presents a
multi-objective scheduling algorithm based on particle swarm
optimization (PSO). In this paper a non-dominated sorting particle
swarm optimization (NSPSO) that combines the operations of NSGA
–II is used to schedule tasks in a heterogeneous environment. The
approach aims at developing optimal schedules thereby minimizing
two objectives, makespan and flowtime simultaneously. The
experimental results indicate that NSPSO obtains good solutions on
benchmark instances in comparison with a multi-objective particle
swarm optimizer using a weighted approach (W-MOPSO)which is
also implemented in this paper for effective comparisons.

 Keywords: Heterogeneous system, Non-dominated Sorting, Particle swarm

Optimization.

G. Subashini et al. 2

1 Introduction

Distributed computing systems have emerged as a powerful platform to perform

different computationally intensive applications that have various computational

requirements. The problem of scheduling independent computational jobs in a

distributed computing environment is important to exploit the different

capabilities of a set of heterogeneous resources and satisfy users with high

expectations for their applications. A static task scheduling algorithm [1] can be

used in such a heterogeneous system which provides a variety of architectural

capabilities, orchestrated to perform on application problems whose tasks have

diverse execution requirements. Static scheduling may be useful for analysis of

heterogeneous computing systems, to work out the effect of resource failures.

Schedulers can be implemented using complex algorithmic methods that utilize

the known properties of a given application and the available environment.

However, finding optimal schedules in such a system has been shown, in general,

to be NP-hard [2] and therefore the use of heuristics is one of the suitable

approaches.

Different criteria can be used for evaluating the performance of scheduling

algorithms and the most important of which are makespan and flowtime.

Makespan is the time when grid finishes the latest job and flowtime is the sum of

finalization times of all the jobs. An optimal schedule will be the one that

optimizes the flowtime and makespan [3]. The conceptually obvious rule to

minimize flowtime is to schedule Shortest Job on the Fastest Resource (SJFR).

Minimizing makespan is to schedule the Longest Job on the Fastest Resource

(LJFR). Minimizing flowtime asks the average job finishes quickly, at the

expense of the largest job taking a long time, whereas minimizing makespan asks

that no job takes too long, at the expense of most jobs taking a long time.

Minimization of makespan thus results in maximization of flowtime. This requires

the problem to be formulated as a multi-objective optimization problem as it deals

with conflicting objectives.

PSO is a collaborative population-based search model [4–6]. This has been

applied successfully to a number of problems and its use is rapidly increasing. A

PSO algorithm contains a swarm of particles, each particle representing a

potential solution. The particles fly through a multidimensional search space in

which the position of each particle is adjusted according to its own experience and

the experience of its neighbors. PSO has a flexible and well-balanced mechanism

to enhance and adapt to the global and local exploration and exploitation abilities

within a short calculation time. These characteristics make PSO highly viable to

be used for solving also multi-objective optimization problems.

The non-dominated sorting PSO (NSPSO) of Li [7] is used in this paper due to its

performances obtained against a set of well known difficult test functions. NSPSO

combines the fast ranking of non-dominated solutions, crowding distance ranking

and an elitist strategy of combining parent population and offspring population.

3 Non Dominated Particle Swarm Optimization

The performance of NSPSO has been tested using the benchmark of Braun et al.

[8], which is known to be the most difficult benchmark for static instances of the

problem. It consists of instances that try to capture the high degree of

heterogeneity of resources and workload of tasks.

The remainder of the paper is organized as follows: Section 2 reviews related

algorithms for task scheduling problem. Section 3 presents a brief introduction of

multi-objective optimization problems. The problem formulation is given in

Section 4. Section 5 describes the scheduling method through W-MOPSO and

NSPSO. Experimental results are reported in Section 6. Finally, Section 7

concludes the paper.

2 Related Work

Optimal mapping of independent computational tasks to available machines in a

distributed computing system is a NP- hard problem as stated earlier and as such,

it is a subject to various heuristic and meta-heuristic algorithms. The heuristics

applied to the task scheduling problem include Sufferage [9], min-min, max-min

[10], LJFR-SJFR [11], min-max [12], etc. The most popular of meta-heuristic

algorithms are genetic algorithm [13], simulated annealing [15], ant colony

optimization [14] and particle swarm optimization [16] . Braun et al. [8] described

eleven heuristics and compared them on different types of HC environments

which illustrates that the GA scheduler can obtain better results in comparison

with others. The above referred heuristics and meta-heuristics aimed at

minimizing a single criteria, the makespan of the schedule.

Different criteria can be used for evaluating the efficacy of scheduling algorithms.

Few attempts have been made to optimize multiple criteria. [12] investigates the

efficacy of five popular heuristics for minimizing makespan and flowtime on HC

environments with various characteristics of both machines and tasks. However

the objectives are evaluated separately here. Xhafa et al. [17] used Genetic

Algorithm-based schedulers for computational grids and most of GA operators are

implemented and compared to find the best GA scheduler for this problem.

Abraham et al. [18] illustrated the usage of several nature inspired meta-heuristics

(SA, GA, PSO, and ACO) for scheduling jobs in computational grids using single

and multi-objective optimization approaches. Abraham et al. [19] used a fuzzy

particle swarm optimization and Izakian et al. [20] used a discrete version of

particle swarm optimization for scheduling problem. These methods combine the

multiple objectives into a scalar cost function, ultimately making the problem

single-objective prior to optimization. In practice, it can be very difficult to

precisely and accurately select these weights as small perturbations in the weights

can lead to very different solutions.

Hence, in this paper NSPSO that adapts the approach of determining an entire

Pareto optimal solution set or a representative subset is implemented for the

G. Subashini et al. 4

problem. Pareto optimal solution sets are often preferred to single solutions when

considering real-life problems, since the final solution of the decision maker is

always a trade-off between crucial parameters [21].

3 Multi-Objective Optimization

Many optimization problems in the world involve the optimization of several

objectives at the same time. Generally, these functions are non-commensurable

and often conflicting objectives. Multi-objective optimization with such

conflicting objective functions gives rise to a set of optimal solutions, instead of

one optimal solution. The reason for the optimality of many solutions is that no

one can be considered to be better than any other with respect to all objective

functions. These optimal solutions are known as Pareto-optimal solutions. In

general, the multi-objective minimization problem can be formulated as

 Minimize z = (f1(x), f2(x) ..…. fm(x)) subject to x X (1)

where x = [x1, x2,…., xn] is the vector of decision variables, fi : , i = 1,

2,….m , are the objective functions and X is the feasible region in the

decision space. A solution x X is said to dominate another solution y X

(denoted as x y) if the following two conditions are satisfied:

{1,2,...... }, () ()

{1,2,...... }, () ()

i i

i i

i m f x f y

i m f x f y

 (2)

If there is no solution which dominates x X, x is said to be a Pareto Optimal

Solution. The set of all elements of the search space that are not dominated by any

other element is called the Pareto Optimal Front of the multi-objective problem

which represents the best possible solution with respect to the contradictory

objectives. A multi-objective optimization problem is solved, when its complete

Pareto Optimal Solution is found.

4 Problem Formulation

A distributed computing system is composed of computing resources where these

resources can be a single PC, a cluster of workstations or a supercomputer. Let T

= {T1, T2,…., Tn} denote the set of tasks that are independent of each other to be

scheduled on m processors P = {P1, P2 ,...,Pm}. It is also assumed that the tasks are

non pre-emptive. As the scheduling is performed statically the time required to

perform each task can be estimated. The required time for executing a task in a

processor is contained in an Expected Time to Compute (ETC) matrix. An ETC

matrix is a n x m matrix, where each position ETC[n][m] indicates the expected

time to compute task n in processor m. One row of the ETC matrix contains the

5 Non Dominated Particle Swarm Optimization

estimated execution time for a given task on each machine. Similarly one column

of the ETC matrix consists of the estimated execution time of a given machine for

each task.

An optimal schedule is one that optimizes flowtime and makespan that is defined

as

where Sched is the set of all possible schedules, Jobs stands for the set of all tasks

and Fj represents the time in which job j finalizes. To formulate the objective,

Ci,j(i {1, 2, .…, n}, j {1, 2,…,m}) is defined as the completion time for

finishing the task Ti on processor Pj and Wi (i 1, 2, . . .,m) is the previous

workload of Pi, then ∑(Ci +Wi) is the time required for processor Pi to complete

the tasks assigned to it. Hence makespan and flowtime can be evaluated as

Minimizing makespan aims to execute the whole meta-task as fast as possible

while minimizing flowtime aims to utilize the computing environment efficiently.

Conceptually minimizing flowtime is to schedule Shortest Job on the Fastest

Resource (SJFR) and minimizing makespan is to schedule the Longest Job on the

Fastest Resource (LJFR). Minimization of makespan thus results in maximization

of flowtime, thus making the problem multi-objective.

5 Multi–Objective Particle Swarm Optimization for
Task Scheduling

PSO is relatively a recent stochastic heuristic introduced by Eberhart and

Kennedy [4]. it is based on the analogy of swarm of bird and school of fish [4]. A

swarm consisting of a population of birds/fishes flocks synchronously, changes

direction suddenly, scatters and regroups iteratively, and finally perches on a

target, in order to escape from enemies or search for food. The PSO mimics the

interesting behavior and serves as a function optimizer. It keeps a population of

individuals which are potential solutions to the optimization problem. By taking

advantage of individual cognition and social interaction, the swarm improves the

solutions iteratively and eventually converges to the optimal solution.

G. Subashini et al. 6

As stated earlier, there are two approaches to solve the MOP. One approach is the

classical weighted-sum approach where the objective function is formulated as a

weighted sum of the objectives. But the problem lies in the correct selection of the

weights or utility functions to characterize the decision-makers preferences. The

second approach called Pareto-optimal solution have no unique or perfect solution,

but a set of non-dominated, alternative solutions, known as the Pareto-optimal set.

The two methods of solving the task scheduling problem are described below.

5.1 Weighted Multi-objective Particle Swarm Optimization

 (W-MOPSO)

5.1.1 Particle Representation

One of the key issues in designing a successful PSO algorithm is the

representation step, i.e. finding a suitable mapping between problem solution and

PSO particle. The representation of the particle vector should be compact and

simple For the considered problem, the i
th

 particle is represented as Pi = (pi1,

pi2, . . . ,pir)
T
 where pi,j indicates the index of the allocated processor for the jth

module. The PSO swarm consists of N particles and the initial swarm is

generated at random. The swarm particles iteratively improve their solution

quality based on personal cognition and social interaction by the particle

movement formula.

5.1.2 Particle Evaluation

The fitness function measures to what extent the particle solution S satisfies the

objective of the optimization problem. The function fit(S) is a sum of two

objectives, the makespan of schedule S and mean flowtime of schedule S as given

by Equation (5) and (6). The mean flowtime of the schedule is the flowtime

divided by number of processors p. The mean flowtime is taken in order to keep

both the objectives in approximately the same magnitude. The influence of

makespan and flowtime in fit(S) is parameterized by the weights, where weights

w1 and w2 are chosen such that w2=1-w1 and w1+w2=1. Hence particle evaluation

is done as given by Equation (7)

 fit (S) = w1. makespan + w2 . mean flowtime (7)

5.1.3 Particle Movement

The particle position is updated during each iteration based on two types of

experiences: personal best and global best experiences. This is a positive feedback

process which increases the probability for targeting the optimal solution. The

personal best experience, denoted by pbesti, is the experienced position by particle

7 Non Dominated Particle Swarm Optimization

Pi which receives the highest fitness value during flying. gbest represents the best

particle found in the entire population each generation. At each iteration, the

particle Pi modifies its velocity vij and position pij through each dimension j by

referring to pbesti and the swarm‟s best experience gbest using Equation (8) and

(9)

 Vij = WVij + c1rand1() (pbesti - pij)+ c2rand2() (gbest- pij) (8)

 Pij = Pij + Vij (9)

where c1 and c2 are the cognitive and interaction coefficients, rand1 and rand2 are

random real numbers drawn from U(0, 1). The inertia weight, W is a user-

specified parameter that controls the momentum of the particle. A larger inertia

weight pressures towards global exploration while a smaller inertia weight

pressures toward fine-tuning the current search area. The following weighting

function is usually utilized:

max min

max

max

*
w w

w w iter
iter

 (10)

 where,

 wmax: initial weight,

 wmin: final weight,

 itermax : maximum iteration number,

 iter: current iteration number.

At each iteration, the PSO flies each particle through the solution space using

Equations (8) and (9). The particles learn through the personal cognition (pbesti)

and the social interaction (gbest) .They explore new areas with the random

multipliers (rand1 and rand2) to escape from the barrier of the local optimality.

When the algorithm is terminated with a given maximum number of iterations, the

best experienced position by the entire swarm is reported as the final solution. The

pseudo code of PSO algorithm for task scheduling in grid computing system is

given as follows,

begin

 Initialize population randomly;

 Initialize each particle position vector and velocity vector;

 Initialize parameters;

 Evaluate each particle using combined fitness and find the personal best

G. Subashini et al. 8

 and the global best;

 repeat

 for each particle i=1,…,N do

 Update each particle‟s velocity and position;

 Evaluate each particle and update the personal best and the global

 best;

 end

 until termination

 end

5.2 Non-dominated Sorting Particle Swarm Optimization

(NSPSO)

NSPSO extends the basic form of PSO by making a better use of particles‟

personal bests and offspring for effective non-domination comparisons. The

problem with the basic form PSO is that dominance comparisons are not fully

utilized in the process of updating the personal best of each particle. To overcome

this problem and increase the sharing level between particles in the swarm,

NSPSO combine the entire population of N pbest and N of these particles‟

offspring to form a temporary population of 2N particles. Then, domination

comparisons among all the 2N individuals are carried out. By comparing the

combined 2N particles for non-domination relationships, the entire population is

sorted into different non-domination fronts as used in NSGA II. Each individual

in each front is assigned a rank based on front in which they belong to. Individuals

in the first front are given a fitness value of 1 and individuals in second are

assigned a rank of 2 and so on. In addition to the rank, a new parameter called

crowding distance is calculated for each individual to ensure the best distribution

of the non-dominated solutions. The crowding distance is a measure of how close

an individual is to its neighbors. The global best gbesti for the i
th

 particle Pi is

selected randomly from the top part of the first front. N particles are selected

based on fitness and the crowding distance to play the role of pbest. Equation (8)

uses the above information to calculate the new updated velocity for each particle

in the next iteration step. Equation (9) updates each particle‟s position in the

search space.

The steps of basic NSPSO algorithm is summarized below

1. Initialize the population P t . Each particle in the swarm is initialized randomly

within the specified limits. The initial velocity for each particle is set to zero. The

personal best position Pbesti, is set to Xi .

9 Non Dominated Particle Swarm Optimization

2. Evaluate each particle in the population,

3. Apply non-dominated sorting on the particles.

4. Calculate crowding distance of each particle.

5. Sort the solutions based on crowding distance.

6. Select randomly gbest for each particle from a specified top part (e.g. top 5%)

of the first front F1;

7. Calculate the new velocity Vt+1 based on Equation (8) and new position Pt+1

from Equation (9) using the determined gbest and pbest.

8. Create a new population of size 2N by combining the new position and their

pbest, Pt+1 ∪ Pbestt..

9. Apply non-dominated sorting on 2N particles and calculate the crowding

distance for each particle.

10. Generate a new set of N solutions by selecting solutions from non-dominated

fronts F1, F2 and so on using the crowding distance. The N solutions form the

pbest for the next iteration.

11. Go to step 6 till the termination criteria is met.

6 Experimental Results And Discussion

In this section, the proposed NSPSO algorithm based on Pareto-optimal approach

is implemented. To assess the performance W-MOPSO algorithm that uses a

weighted approach is also implemented. Both the algorithms were implemented in

Linux using C to analyze their comparative performances. The experimental

parameter settings of the competing algorithms are set as follows.

Table 1:Parameters for W-MOPSO and NSPSO

 Population

size

Number of

generation
Wmax Wminwmi c1 c2

100 1000 0.9 0.4 2 2

In addition to the above parameters W-MOPSO uses weights w1 and w2 in

Equation (7) set to 0.5 and 0.5 respectively.

This setting considers both objectives equally important.

G. Subashini et al. 10

Since both the algorithms are stochastic based, each independent run of the same

algorithm on a particular problem instance may yield a different result. To make a

fair comparison of the algorithms each experiment was repeated 10 times with

different random seeds and the average of the results are reported in the case of

W-MOPSO and the best solutions are considered with respect to NSPSO.

6.1 Simulation Model

To assess the comparative performances of the algorithms, the simulation model

in [10] based on expected time to compute (ETC) matrix for 512 tasks and 16

processors is used. To realistically simulate possible heterogeneous environments,

different types of ETC matrix according to three metrics: task heterogeneity,

machine heterogeneity and consistency are simulated.. The task heterogeneity is

defined as the amount of variance possible among the execution times of the jobs

with two possible values low and high. Machine heterogeneity is the variation of

the running time of a particular job across all the processors, which can be high

and low. To capture other possible features of real scheduling problems, three

different ETC consistencies namely consistent, inconsistent and semi-consistent

are used. An ETC matrix is considered consistent if a processor Pi executes task t

faster than processor Pj , then Pi executes all the jobs faster than Pj . Inconsistency

means that a processor is faster for some jobs and slower for some others. An

ETC matrix is considered semi-consistent if it contains a consistent sub-matrix. A

semi consistent ETC matrix is characterized by an inconsistent matrix which has a

consistent sub-matrix of a predefined size.

Thus 12 distinct types of ETC matrix can be generated considering the different

combinations. The matrices used here a randomly generated as described. Initially

a m × 1 baseline column vector B is generated by repeatedly selecting m uniform

random floating point values between 1 and b, the upper bound on values in B.

Then the ETC matrix is constructed by taking each value B(i) in B and

multiplying it by a uniform random number xr
i,k

 which has an upper bound of r.

Each row in the ETC matrix is then given by B(i) × xr
i,k

. The vector B is not used

in the actual matrix. This process is repeated for each row until the m × n matrix is

full. Therefore, any given value in the ETC matrix is within the range (1, b , r).

Different task and machine heterogeneities described above are modeled by using

different baseline values. High task heterogeneity was represented by b =3000

and low task heterogeneity used b=100. High machine heterogeneity was

represented by r=1000 and low machine heterogeneity was modeled using r =10.

To model a consistent matrix each row in the matrix was sorted independently,

with processor P1 always being the fastest, and Pm being the slowest. Inconsistent

matrices are left in the random state in which they are generated. Semi-consistent

matrices are generated by extracting the row elements {0, 2, 4 . . .} of each row i,

sorting them and then replacing in order, while the elements {1, 3, 5, . . .} are left

11 Non Dominated Particle Swarm Optimization

in their original order, this means that the even columns are consistent while the

odd columns are inconsistent.

6.2 Comparative Performances

Both W-MOPSO and NSPSO algorithms are applied on all 12 problem instances

and the results plotted in Fig 1- 4. The plots show the non-dominated solutions in

Rank1 using NSPSO and the optimal solution in the case of W-MOPSO. Both

makespan and mean flowtime are measured in same time units and scaled to ten

thousands of units in the plotted results. In the results the different problem

instances are identified according to the following scheme: u- x- yy-zz, where

u means uniform distribution

 x denotes the type of consistency (c–consistent, i–inconsistent and s means semi-

consistent).

yy indicates the heterogeneity of the jobs (hi–high, and lo–low).

zz indicates the heterogeneity of the resources (hi–high, and lo–low).

Fig.1: Performance comparison of NSPSO and W-MOPSO for low task, low

machine heterogeneity

G. Subashini et al. 12

 Fig. 2: Performance comparison of NSPSO and W-MOPSO for low task,

high machine heterogeneity

Fig. 3: Performance comparison of NSPSO and W-MOPSO for high task, low

machine heterogeneity

13 Non Dominated Particle Swarm Optimization

Fig.4: Performance comparison of NSPSO and W-MOPSO for high task, high

machine heterogeneity

From the plots it is observed that the schedules obtained by NSPSO algorithm

results in minimal makespan and minimal flowtime when compared with the best

schedule obtained through W-MOPSO for the same number of iterations. This

proves that the Pareto-optimal approach of finding solutions to multi-objective

task scheduling problem is more effective and produces better solutions. As the

problem tested comprises of 512 tasks, each particle has 512 positions and

requires more number of iterations to generate the optimal solutions. It is seen

from the results plotted that only a maximum of 15 solutions were found to be

non-dominating among the initial population of 100 solutions even after 1000

generations. To obtain more number of solutions in the non-dominated set of

rank1 it is required to run the algorithm still few thousand generations. It is found

that the optimal solution obtained for all types of heterogeneous systems obtained

by W-MOPSO lie away from the non-dominated solutions. In inconsistent cases,

it is seen that the solution obtained by W-MOPSO is comparatively closer than

the other two types.

6.3 Best Compromise Solution

The Pareto optimal set obtained by applying NSPSO comprises of solutions that

satisfy different goals to some extent [22]. Hence for effective comparison it is

practical to choose one solution from the obtained Pareto set. A Fuzzy-based

approach is applied to select the best compromise solution from the obtained

Pareto set. This is due to the fuzzy or imprecise nature goals of each objective

function [23]. Hence, the membership functions are introduced to represents the

goals of each objective function. In this , a simple linear membership function was

G. Subashini et al. 14

considered for each of the objective functions. The membership function is

defined as follows [23]

min

max
min max

max min

max

1,

,

0,

k

k k
k k k k

k k

k

f f

f f
f f f

f f

f f

 (10)

where max

kf and min

kf are the maximum and minimum values of the k-th objective

function, among all nondominated solutions respectively.

For each non-dominated solution i, the normalized membership function i is

calculated

1

1 1

i

n i
kk

m n i
ki k

 (11)

where n is the number of objectives functions and m is the number of non-

dominated solutions. The function µ
i
 can be considered as a membership

function of non-dominated solutions in a fuzzy set, where the solution having the

maximum membership in the fuzzy set is considered as the best compromise

solution.

Table 2 compares the results of the best solution obtained by NSPSO using fuzzy

based approach with W-MOPSO. The tabulated results verify that NSPSO

exhibits better performance for all heterogeneous systems resulting in good

schedules with minimum values of both makespan and flowtime.

15 Non Dominated Particle Swarm Optimization

Table 2: Makespan and mean flow time values for the best solution obtained by

NSPSO in comparison with W-MOPSO

Problem

Instance
W-MOPSO

Best compromise solution with

NSPSO

 Make span Mean Flow time Make span Mean Flow time

u_c_lolo 13147.8146 138927.7324 8664.8048 117821.7894

u_c_lohi 1306429.9203 11539135.76835 800174.51875 9590558.19116

u_c_hilo 402567.68741 4127891.428444 277143.87913 3512357.84960

u_c_hihi 39642454.101 357292914.4200 23572329.554 284455898.971

u_s_lolo 13183.350319 140097.056526 10181.234019 133332.872718

u_s_lohi 1401040.7629 12185136.86652 929886.22269 11646285.2373

u_s_hilo 394100.64126 4151139.102559 301078.13824 4017087.20455

u_s_hihi 38206507.901 370121079.5219 29851120.200 344021357.343

u_i_lolo 14310.789926 141295.647419 10722.189847 136339.872525

u_i_lohi 1223733.8337 13077839.61080 941143.95154 12098941.5217

u_i_hilo 357708.37182 4222794.014857 307548.62870 3976545.55130

u_i_hihi 33067834.545 385235242.3981 26921663.456 363928422.755

7 Conclusion

In distributed computing systems, qualified assignment of tasks among processors

is an important step for efficient utilization of resources and execution of the tasks.

In this paper, the application of multi-objective Non-dominated Sorting Particle

Swarm Optimizer (NSPSO) intends to find schedules for independent tasks

minimizing the makespan and flowtime simultaneously. The study also reveals

the quality of schedules in comparison to a weighted PSO that simultaneously

minimizes both the objectives for several benchmark problems. It is found that

solving multi-objective task scheduling using a Pareto-optimal approach is more

effective in determining optimal solutions. However, further work could be

carried out with the NSPSO algorithm investigating different methods of updating

position and velocities of the particle. Investigations also can be extended to

considering several forms of HC scheduling, such as scheduling jobs with

precedence constraints or in dynamic environments.

G. Subashini et al. 16

References

[1] A. Abdelmageed Elsadek, B. Earl Wells,”A Heuristic model for task

 allocation in heterogeneous distributed computing systems”, International

 Journal of Computers and Their Applications, Vol. 6, No. 1, (1999).

[2] M.R. Garey and D. Johnson ,” Computers and Intractability: A Guide to the

 theory of NP-Completeness”, Freeman and Company, San Francisco, (1979).

[3] A. Abraham, H. Liu, W. Zhang, T.G. Chang, “Scheduling Jobs on

 Computational Grids Using Fuzzy Particle Swarm Algorithm”, Springer-

 Verlag Berlin Heidelberg , (2006), pp. 500-507.

[4] James Kennedy, Russell Eberhart, “Particle Swarm Optimization”, Proc. IEEE

 International Conference on Neural Networks, Vol.4, (1995), pp.1942-1948.

[5] J. Kennedy and Russell C. Eberhart, „Swarm Intelligence”, Morgan-Kaufmann,

(2000), pp 337-342

[6] Y. Shi, and R. Eberhart , “Parameter Selection in Particle Swarm Optimization,

 Evolutionary Programming VII”, Proceedings of Evolutionary Programming,

 (1998), pp. 591-600

[7] X. Li, “A Non-dominated Sorting Particle Swarm Optimizer for Multi-

 objective Optimization”, in Proceeding of Genetic and Evolutionary

 Computation Conference 2003 (GECCO'03), Chicago, USA, (2003).

[8] H.J. Braun et al, “A comparison of eleven static heuristics for mapping a class

 of independent tasks onto heterogeneous distributed computing systems”

 Journal of Parallel and Distributed Computing, Vol 61,No.6, (2001).

[9] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund. “Dynamic

 mapping of a class of independent tasks onto heterogeneous computing

 systems”, Journal of Parallel and Distributed Computing, Vol.59, No.2,

 (1999), pp.107–131.

[10] R.F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D.

 Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B.

 Rust, and H. J. Siegel, “Scheduling resources in multiuser, heterogeneous,

 computing environments with SmartNet”, in 7th IEEE Heterogeneous

 Computing Workshop (HCW '98), (1998), pp. 184-199.

[11] A. Abraham, R. Buyya, and B. Nath,” Nature‟s heuristics for scheduling jobs

 on computational grids”, In The 8th IEEE International Conference on

 Advanced Computing and Communications (ADCOM 2000), India, (2000).

[12] H.Izakian , A. Abraham and V. Snasel, “Comparison of Heuristics for

 Scheduling Independent Tasks on Heterogeneous Distributed Environments”,

 Proceedings of International Joint Conference on Computational Sciences

 and Optimization, (2009), pp.8-12.

[13] J. Page and J. Naughton,”Framework for task scheduling in heterogeneous

 distributed computing using genetic algorithms”, Artificial Intelligence

 Review, (2005), Vol. 24, pp.415–429.

[14] G. Ritchie and J. Levine, ”A fast, effective local search for scheduling

 independent jobs in heterogeneous computing environments”, Technical

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(izakian%20%20h.%3cIN%3eau)&valnm=Izakian%2C+H.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20abraham%20%20a.%3cIN%3eau)&valnm=+Abraham%2C+A.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20snasel%20%20v.%3cIN%3eau)&valnm=+Snasel%2C+V.&reqloc%20=others&history=yes

17 Non Dominated Particle Swarm Optimization

 report, Centre for Intelligent Systems and their Applications, School of

 Informatics, University of Edinburgh, (2003).

[15] A. Yarkhan , J. Dongarra , “Experiments with scheduling using simulated

 annealing in a grid environment”, In Proceedings of the 3rd International

 Workshop on Grid Computing (GRID2002), Baltimore, MD, USA, November

 18, (2002), pp. 232–242.

[16] I. Salman, I, S. Ahmad, Al-Madani, “Particle swarm optimization for task

 assignment problem”, Microprocessors and Microsystems Vol. 26,(2002),

pp.363-371.

[17] Javier Carretero, Fatos Xhafa and Ajith Abraham, “Genetic Algorithm Based

 Schedulers for Grid Computing Systems”, International Journal of Innovative

 Computing, Information and Control, Vol. 3, No. 6, (2007).

[18] A. Abraham, H . Liu, C. Grosan, F. Xhafa, “ Nature inspired meta-heuristics

 for grid scheduling: single and multi-objective optimization approaches”,

 Studies in Computational Intelligence, Springer Verlag: Heidelberg, Germany,

 (2008), pp. 247–272.

[19] A. Abraham, H. Liu, W. Zhang and T.G. Chang, “Job Scheduling on

 Computational Grids Using Fuzzy Particle Swarm Algorithm”, 10
th

 International Conference on Knowledge-Based and Intelligent Information

 and Engineering Systems, B. Gabrys et al. (Eds.): Part II, Lecture Notes on

 Artificial Intelligence ,Springer, 4252, (2006), pp.500-507.

[20] H. Izakian, B. Tork Ladani, K. Zamanifar, A. Abraham , “A novel particle

 swarm optimization approach for grid job scheduling”, In Proceedings of the

 Third International Conference on Information Systems, Technology and

 Management, Springer: Heidelberg, Germany, (2009); pp. 100–110.

[21] V. Chankong, Y.Haimes,” Multi-objective Decision Making Theory and

 Methodology, North-Holland, New York, (1983).

[22] T. Niimura, T. Nakashima, “Multi-objective tradeoff analysis of deregulated

 electricity transactions”, International Journal of Electrical Power & Energy

 Systems ,25,(2003), pp. 179–185.

[23] J.S. Dhillon, S.C. Parti, D.P. Kothari, “Stochastic economic emission load

 dispatch”, Electric Power Systems Research ,26,(1993) pp. 179–186.

