
Int. J. Open Problems Complex Analysis, Vol. 10, No. 1, March 2018
ISSN 2074-2827; Copyright c©ICSRS Publication, 2018
www.i-csrs.org

Some Rational Contractions for Coupled Coincidence

and Common Coupled fixed point

theorems in Complex-valued metric spaces

A. Gupta1, N. Kaur2, B. Sood3, S. Manro4 and R. Rani5
1H.No. 93/654, Ward No. 2, Gandhi Chowk Pachmarhi - 461881

, Dist. Hoshangabad (M.P.), India
2Department of Mathematics, Desh Bhagat University,

Mandi Gobindgarh, Punjab, India
3Department of Mathematics, Desh Bhagat University,

Mandi Gobindgarh, Punjab, India
4,∗ Department of Mathematics,

Thapar University, Patiala, Punjab, India
5 Department of Mathematics,

A.S. College for Women, Khanna, Punjab, India
email:saurabh.manro@thapar.edu

Received 1 October 2017; Accepted 12 December 2017

Abstract

The aim of this paper is to obtain a coupled coincidence point
theorem and a common coupled fixed point theorem of contractive
type mappings involving rational expressions in the framework of
a complex-valued metric spaces. We also improve the result ob-
tain by Jhade and Khan ”Some Coupled Coincidence and Com-
mon Fixed Point Theorems in Complex-valued Metric spaces, Ser.
Math. Inform. 29, (4) (2014), 385-395”. The results of this
paper generalize and extend the results of Kang etal. ”Coupled
Fixed Point Theorems in Complex Valued Metric Spaces, Int. J.
of Math. Analysis, 7(46) (2013) , 2269 - 2277”, in complex-valued
metric spaces..
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1 Introduction and Preliminaries

In 2011, Azam et al. [2] introduced the notion of complex valued metric
space which is a generalization of the classical metric space. They established
some fixed point results for mappings satisfying a rational inequality. The
idea of complex valued metric spaces can be exploited to define complex val-
ued normed spaces and complex valued Hilbert spaces; additionally, it offers
numerous research activities in mathematical analysis.

Let C be the set of complex numbers and z1, z2 ∈ C, we define a partial
order � on C as follows:

z1 � z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2).

It follows that z1 � z2 if one of the following conditions is satisfied:

(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2);

(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2);

(C3) Re(z1) = Re(z2) and Im(z1) < Im(z2);

(C4) Re(z1) < Re(z2) and Im(z1) < Im(z2).

In particular, we will write z1 ≺ z2 if z1 6= z2 and one of (C2), (C3) and (C4)
is satisfied and we will write z1 ≺ z2 if only (C4) is satisfied.

Remark 1.1 We obtained that the following statements hold:

1. If a, b ∈ R with a ≤ b, then az ≺ bz for all z ∈ C.

2. If 0 � z1 ≺ z2, then |z1| < |z2|.

3. If z1 � z2 and z2 ≺ z3, then z1 ≺ z3.

Consistent with Azam et al. [2], we state some definitions and results about
the complex-valued metric space to prove our main results.

Definition 1.2 Let X be a nonempty set. Suppose that the mapping d :
X ×X → C satisfies the following conditions:

(d1) 0 � d(x, y) for all x, y ∈ X;

(d2) d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(d3) d(x, y) = d(y, x) for all x, y ∈ X;

(d4) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.
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Then d is called a complex-valued metric on X and (X, d) is called a complex-
valued metric space.

Example 1.3 Example 1.3. Let X = C. Define the mapping d : X ×X →
C by d(z1, z2) = 2i|z1 − z2| for all z1, z2 ∈ X. Then (X, d) is a complex valued
metric space.

Definition 1.4 Let (X, d) be a complex-valued metric space.

I. Apoint x ∈ X is called interior point of a set B ⊆ X whenever there
exists 0 < r ∈ C such that

N(x, r) := {y ∈ X : d(x, y) < r} ⊆ B.

II. A point x ∈ X is called limit point of a set B ⊆ X whenever there exists
0 < r ∈ C such thatN(x, r) ∩ (B{x}) 6= φ.

III. A subset B ⊆ X is called open whenever each element of B is an interior
point of B.

IV. A subset B ⊆ X is called closed whenever each limit point of B belongs
to B.

V. The family F = {N(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a topology
on X. We denote this complex topology by τc. Indeed, the topology τc is
Hausdorff.

Definition 1.5 Let (X, d) be a complex-valued metric space, and let {xn}
be a sequence in X and x ∈ X.

I. If for every c ∈ C with 0 < c there is N ∈ N such that for all n > N ,
d(xn, x) < c then {xn} is said to be convergent, if {xn} converges to x
and x is the limit point of {xn}. We denote this by xn → x as n → ∞
or limn→∞ xn = x.

II. If for every c ∈ C with 0 < c there is N ∈ N such that for all n,m > N ,
d(xn, xm) < c then {xn} is said is said to be Cauchy sequence.

III. If every Cauchy sequence in X is convergent, then (X, d) is said to be a
complete complex-valued metric space.

Lemma 1.6 Let (X, d) be a complex-valued metric space, and let {xn} be
a sequence in X. Then {xn} converges to x if and only if |d(xn, x)| → 0 as
n→∞.



COMMON COUPLED FIXED POINT THEOREMS 13

Lemma 1.7 Let (X, d) be a complex-valued metric space, and let {xn} be a
sequence in X. Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0
as n→∞.

In 2006, Bhaskar et al. [1] introduced the notion of coupled fixed point
and proved some fixed point results in this context. Similarly, Kang etal. [3]
introduce the notion of coupled fixed point for a mapping in complex valued
metric spaces as follows.

Definition 1.8 Let (X, d) be a complex-valued metric space, an element
(x, y) ∈ X×X is said to be a coupled fixed point of the mapping F : X×X → X
if F (x, y) = x and F (y, x) = y.

Definition 1.9 Let (X, d) be a complex valued metric space. An element
(x, y) ∈ X ×X is said to be

I. A coupled coincidence point of mappings F : X × X → X and g :
X → X if g(x) = F (x, y) and g(y) = F (y, x), and (gx, gy) is called
a coupled point of coincidence if there exists (u, v) ∈ X × X such that
x = gu = F (u, v) and y = gv = F (v, u).

II. A common coupled fixed point of mappings F : X×X → X and g : X →
X if x = gx = F (x, y) and y = gy = F (y, x).

Definition 1.10 Let (X, d) be a complex-valued metric space. The map-
pings F : X ×X → X and g : X → X are called w-compatible if g(F (x, y)) =
F (gx, gy), whenever gx = F (x, y) and gy = F (y, x).

Kang et al [3] prove following result,

Theorem 1.11 ([3], Theorem-2.1) Let (X, d) be a complex valued metric
space. Suppose that the mapping F : X ×X → X satisfies

d(F (x, y), F (u, v)) ≤ hd(x, u) + kd(y, v) (1)

for all x, y, u, v ∈ X, where h and k are non-negative constants with h+k < 1.
Then F has a unique coupled fixed point.

In [4], Jhade and Khan prove following result,

Theorem 1.12 ([4], Theorem 3.1) Let (X, d) be a complex-valued metric
space. Let F : X × X → X and g : X → X be two mappings. Suppose that



14 Gupta, Kaur, Sood, Manro and Rani

there exist nonnegative constants ai ∈ [0, 1), i = 1, 2, . . . , 6 such that Σ6
i=1ai < 1

and for all x, y, u, v ∈ X

d(F (x, y), F (u, v)) � a1d(gx, gu) + a2(gy, gv)

+a3
d(gx, F (x, y))d(gu, F (u, v))

d(gx, gu)

+a4
d(gx, F (u, v))d(gu, F (x, y))

d(gx, gu)

+a5
d(gy, F (y, x))d(gv, F (v, u))

d(gy, gv)

+a6
d(gy, F (v, u))d(gv, F (y, x))

d(gy, gv)
. (2)

Suppose F (X × X) ⊆ g(X) and g(X) is a complete subspace of X. Then F
and g have a coupled coincidence point (x∗, y∗) ∈ X ×X.

Remark 1.13 It should be noted that Theorem 1.12 is not true for x = u
and y = v, i.e., 2 is not valid for x = u and y = v and we can not obtain
coupled fixed point.

2 Main Results

First we improve the Theorem 1.12 and prove a coupled coincidence point
theorem which state is as follows,

Theorem 2.1 Let (X, d) be a complex-valued metric space. Let F : X ×
X → X and g : X → X be two mappings. Suppose that there exist nonnegative
constants ai ∈ [0, 1), i = 1, 2, . . . , 6 such that Σ6

i=1ai < 1 and for all x, y, u, v ∈
X

d(F (x, y), F (u, v)) � a1d(gx, gu) + a2d(gy, gv)

+a3
[1 + d(gx, F (x, y))]d(gu, F (u, v))

d(gx, gu) + 1

+a4
[1 + d(gx, F (u, v))]d(gu, F (x, y))

d(gx, gu) + 1

+a5
[1 + d(gy, F (y, x))]d(gv, F (v, u))

d(gy, gv) + 1

+a6
[1 + d(gy, F (v, u))]d(gv, F (y, x))

d(gy, gv) + 1
. (3)

Suppose F (X × X) ⊆ g(X) and g(X) is a complete subspace of X. Then F
and g have a coupled coincidence point (x∗, y∗) ∈ X ×X.
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Proof 2.2 Let x0, y0 ∈ X are arbitrary. Set gx1 = F (x0, y0) and gy1 =
F (y0, x0), this can be done because F (X × X) ⊆ g(X). Continuing the pro-
cess, we obtain two sequences {xn} and {yn} such that gxn+1 = F (xn, yn) and
gyn+1 = F (yn, xn) for all n ≥ 0. Then we have

d(gxn, gxn+1) = d(F (xn−1, yn−1), F (xn, yn))

� a1d(gxn−1, gxn) + a2d(gyn−1, gyn)

+a3
[1 + d(gxn−1, F (xn−1, yn−1))]d(gxn, F (xn, yn))

d(gxn−1, gxn) + 1

+a4
[1 + d(gxn−1, F (xn, yn))]d(gxn, F (xn−1, yn−1))

d(gxn−1, gxn) + 1

+a5
[1 + d(gyn−1, F (yn−1, xn−1))]d(gyn, F (yn, xn))

d(gyn−1, gyn) + 1

+a6
[1 + d(gyn−1, F (yn, xn))]d(gyn, F (yn−1, xn−1))

d(gyn−1, gyn) + 1

d(gxn, gxn+1) � a1d(gxn−1, gxn) + a2d(gyn−1, gyn)

+a3
[1 + d(gxn−1, gxn)]d(gxn, gxn+1)

d(gxn−1, gxn) + 1

+a4
[1 + d(gxn−1, gxn+1)]d(gxn, gxn)

d(gxn−1, gxn) + 1

+a5
[1 + d(gyn−1, gyn)]d(gyn, gyn+1)

d(gyn−1, gyn) + 1

+a6
[1 + d(gyn−1, d(gyn−1, gyn))]d(gyn, gyn)

d(gyn−1, gyn) + 1

which implies

|d(gxn, gxn+1)| � a1|d(gxn−1, gxn)|+ a2|d(gyn−1, gyn)|
+a3|d(gxn, gxn+1)|+ a5|d(gyn, gyn+1)| (4)

Similarly we have

|d(gyn, gyn+1)| � a1|d(gyn−1, gyn)|+ a2|d(gxn−1, gxn)|
+a3|d(gyn, gyn+1)|+ a5|d(gxn, gxn+1)|. (5)

Suppose that
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dn = ‖d(gxn, gxn+1‖+ ‖d(gyn, gyn+1‖.

Adding inequalities 4 and 5, we obtain

dn ≤ (a1 + a2)dn−1 + (a3 + a5)dn (6)

that is

dn ≤ hdn−1

where

h =
a1 + a2

1− (a3 + a5)
< 1.

Thus, we have

dn ≤ hdn−1 ≤ h2dn−2 ≤ h3dn−3 ≤ h4dn−4 ≤ · · · ≤ hnd0. (7)

We shall show that {xn} and {yn} are Cauchy sequences. If m > n, then
we have

|d(gxn, gxm|+ |d(gyn, gym| ≤ |d(gxn, gxn+1|+ |d(gyn, gyn+1|
+|d(gxn+1, gxn+2|+ |d(gyn+1, gyn+2|
+|d(gxn+2, gxn+3|+ |d(gyn+2, gyn+3|
+ · · ·+ |d(gxm−1, gxm|+ |d(gym−1, gym|

≤ hnd0 + hn+1d0 + hn+2d0 + hn+3d0 + · · ·+ hm−1d0

≤ hn

1− h
d0 → 0 as n→∞.

Hence {xn} and {yn} are Cauchy sequences in g(X). Since g(X) is com-
plete, there exists x∗ and y∗ such that gxn → x∗ and gyn → y∗ as n→∞.

On the other hand, we have from 3,

d(F (x∗, y∗), gx∗) � d(F (x∗, y∗), gxn+1) + d(gxn+1, gx
∗)

= d(F (x∗, y∗), F (xn, yn)) + d(gxn+1, gx
∗)
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d(F (x∗, y∗), gx∗) � a1d(gx∗, gxn) + a2d(gy∗, gyn)

+a3
[1 + d(gx∗, F (x∗, y∗))]d(gxn, F (xn, yn))

d(gx∗, gxn) + 1

+a4
[1 + d(gx∗, F (xn, yn))]d(gxn, F (x∗, y∗))

d(gx∗, gxn) + 1

+a5
[1 + d(gy∗, F (y∗, x∗))]d(gyn, F (yn, xn))

d(gy∗, gyn) + 1

+a6
[1 + d(gy∗, F (yn, xn))]d(gyn, F (y∗, x∗))

d(gy∗, gyn) + 1

+|d(gxn+1, gx
∗)|

d(F (x∗, y∗), gx∗) � a1d(gx∗, gxn) + a2d(gy∗, gyn)

+a3
[1 + d(gx∗, F (x∗, y∗))]d(gxn, gxn+1)

d(gx∗, gxn) + 1

+a4
[1 + d(gx∗, gxn+1)]d(gxn, F (x∗, y∗))

d(gx∗, gxn) + 1

+a5
[1 + d(gy∗, F (y∗, x∗))]d(gyn, gyn+1)

d(gy∗, gyn) + 1

+a6
[1 + d(gy∗, gyn+1)]d(gyn, F (y∗, x∗))

d(gy∗, gyn) + 1

+|d(gxn+1, gx
∗)|

|d(F (x∗, y∗), gx∗)| � a1|d(gx∗, gxn)|+ a2|d(gy∗, gyn)|

+a3
[1 + |d(gx∗, F (x∗, y∗))|](|d(gxn, gx

∗)|+ |d(gx∗, gxn+1)|)
|d(gx∗, gxn)|+ 1

+a4
[1 + |d(gx∗, gxn+1)|]|d(gxn, F (x∗, y∗))|

|d(gx∗, gxn)|+ 1

+a5
[1 + |d(gy∗, F (y∗, x∗))|](|d(gyn, gy

∗)|+ |d(gy∗, gyn+1)|)
|d(gy∗, gyn)|+ 1

+a6
[1 + |d(gy∗, gyn+1)|]|d(gyn, F (y∗, x∗))|

|d(gy∗, gyn)|+ 1

+|d(gxn+1, gx
∗)|.

Since gxn → gx∗ and gyn → gy∗ as n → ∞, we have |d(F (x∗, y∗), gx∗)| ≤ 0.
That is, F (x∗, y∗) = gx∗.

Similarly one can show that F (y∗, x∗) = gy∗.
Hence (x∗, y∗) is a coupled coincidence point of F and g.

For common coupled fixed point for the mappings F and g, the condition of
Theorem 2.1 are not enough. So by applying the condition of w-compatibility
on F and g, we obtain the following common coupled fixed point theorem.
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Theorem 2.3 In addition to the hypotheses of Theorem 2.1 are not enough
to prove the existence of a common coupled fixed point for the mappings F and
g. By applying the condition of w-compatibility on F and g, we obtain the
following common coupled fixed point theorem, if F and g are w-compatible,
then F and g have a unique common coupled fixed point. Moreover, a common
coupled fixed point of F and g is of the form (u, v) for some u, v ∈ X.

Proof 2.4 The existence of coupled coincidence point (x∗, y∗) of F and g
follows from Theorem 2.1. Then (gx∗, gy∗) is a coupled point of coincidence of
F, g and so gx∗ = F (x∗, y∗) and gy∗ = F (y∗, x∗).

First we will show that this coupled point of coincidence is unique.
For this, suppose that F and g have another coupled point of coincidence

(gu, gv), that is, gu = F (u, v) and gv = F (v, u) where (u, v) ∈ X ×X. Then
we have

d(F (x∗, y∗), F (u, v)) � a1d(gx∗, gu) + a2d(gy∗, gv)

+a3
[1 + d(gx∗, F (x∗, y∗))]d(gu, F (u, v))

d(gx∗, gu) + 1

+a4
[1 + d(gx∗, F (u, v))]d(gu, F (x∗, y∗))

d(gx∗, gu) + 1

+a5
[1 + d(gy∗, F (y∗, x∗))]d(gv, F (v, u))

d(gy∗, gv) + 1

+a6
[1 + d(gy∗, F (v, u))]d(gv, F (y∗, x∗))

d(gy∗, gv) + 1
.

Hence

|d(gx∗, gu)| � a1|d(gx∗, gu)|+ a2|d(gy∗, gv)|
+a4|d(gx∗, gu)|+ a6|d(gy∗, gv)|. (8)

Similarly we obtain

|d(gy∗, gv)| � a1|d(gy∗, gv)|+ a2|d(gx∗, gu)|
+a4|d(gy∗, gv)|+ a6|d(gx∗, gu)|. (9)

Adding 8 and 9 we obtain

|d(gx∗, gu)|+ |d(gy∗, gv)| ≤ (a1 + a2 + a4 + a6)[|d(gx∗, gu)|+ |d(gy∗, gv)|].

Since (a1 + a2 + a4 + a6) < 1. Therefore,

|d(gx∗, gu)|+ |d(gy∗, gv)| ≤ 0
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which contradiction. Hence d(gx∗, gu) = 0 and d(gy∗, gv) = 0, i.e., gx∗ =
gu and gy∗ = gv.

Thus (gx∗, gy∗) = (u, v) is the unique coupled point of coincidence of F and
g. Now if F and g are w-compatible, then gu = g(F (x∗, y∗)) = F (gx∗, gy∗) =
F (u, v) = w(say). Similarly, we obtain gv = g(F (y∗, x∗)) = F (gy∗, gx∗) =
F (v, u) = z(say). So, (w, z) is another coupled point of coincidence of F and
g. By uniqueness, we have (u, v) = (w, z), that is, gu = F (u, v) = u and
gv = F (v, u) = v. Thus (u, v) is the unique common coupled fixed point of F
and g.

Example 2.5 Let X = {ix : x ∈ [0, 1]} and consider a complex valued
metric d : X ×X → X defined by

d(x, y) = i|x− y|

for all x, y ∈ X. Then (X, d) is a complex valued metric space.
Define the mappings F : X × X → X and g : X → X by F (x, y) =

i
(

x
10

+ y
15

)
and g(x) = x

5
i for all x, y ∈ [0, 1]. Then we have

d(F (x, y), F (u, v)) = i|i
( x

10
+

y

15

)
− i

( u
10

+
v

15

)
|

= i|i
( x

10
− u

10

)
− i

( y

15
− v

15

)
|

≤ 5

10
i|i

(x
5
− u

5

)
|+ 5

15
i|i

(y
5
− v

5

)
|

≤ 1

2
d(gx, gu) +

1

3
d(gy, gv)

where a1 = 1
2
, a2 = 1

3
, ai = 0, i = 3, 4, 5, 6. Note that a1 + a2 = 5

6
+ 5

6
< 1,

F (X×X) ⊆ g(X) and g(X) is a complete subspace of X. Hence the condition
of Theorem 2.1 are satisfied, that is, F and g have a coupled coincidence point
(0,0). Furthermore, since F and g are w-compatible, hence, Theorem 2.3 shows
that (0,0) is the unique common coupled fixed point of F and g.

Remark 2.6 It should be noted that Example 2.5 is valid for Theorem 2.1
as well as for Theorem 1.12 . In fact Theorem 2.1 is more general the Theorem
1.12 .

Remark 2.7 If we take ai = 0 for i = 3, 4, 5, 6 and g = IX (identity
mapping over X) in Theorem 2.1 then we get result of Kang et al [3] .

Corollary 2.8 ([3], Corollary-2.2) Let (X, d) be a complete complex valued
metric space. Suppose that the mapping F : X ×X → X satisfies

d(F (x, y), F (u, v)) ≤ h[(d(x, u) + d(y, v))]

for all x, y, u, v ∈ X, where h is a non-negative constant with h < 1
2
. Then F

has a unique coupled fixed point.
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Proof 2.9 If we take a1 = a2 = h, ai = 0 for i = 3, 4, 5, 6 and g = IX
(identity mapping over X) in Theorem 2.1, then we get required result.

Example 2.10 Let X = {ix : x ∈ [0, 1]} and consider a complex valued
metric d : X ×X → X defined by

d(x, y) = i|x− y|

for all x, y ∈ X. Then (X, d) is a complex valued metric space.
Define the mappings F : X × X → X by F (x, y) = i

(
x+y
3

)
for all x, y ∈

[0, 1]. Then we have h = 1
3
< 1

2
. So all condition of Corollary 2.8 are satisfied

and we get (0,0) is a coupled fixed of F .
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