Int. J. Open Problems Complex Analysis, Vol. 10, No. 1, March 2018 ISSN 2074-2827; Copyright ©ICSRS Publication, 2018 www.i-csrs.org

Some Rational Contractions for Coupled Coincidence

and Common Coupled fixed point

theorems in Complex-valued metric spaces

A. Gupta¹, N. Kaur², B. Sood³, S. Manro⁴ and R. Rani⁵

¹H.No. 93/654, Ward No. 2, Gandhi Chowk Pachmarhi - 461881 Dist. Hoshangabad (M.P.), India
²Department of Mathematics, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
³Department of Mathematics, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
^{4,*} Department of Mathematics, Thapar University, Patiala, Punjab, India
⁵ Department of Mathematics, A.S. College for Women, Khanna, Punjab, India email:saurabh.manro@thapar.edu
Received 1 October 2017; Accepted 12 December 2017

Abstract

The aim of this paper is to obtain a coupled coincidence point theorem and a common coupled fixed point theorem of contractive type mappings involving rational expressions in the framework of a complex-valued metric spaces. We also improve the result obtain by Jhade and Khan "Some Coupled Coincidence and Common Fixed Point Theorems in Complex-valued Metric spaces, Ser. Math. Inform. 29, (4) (2014), 385-395". The results of this paper generalize and extend the results of Kang etal. "Coupled Fixed Point Theorems in Complex Valued Metric Spaces, Int. J. of Math. Analysis, 7(46) (2013), 2269 - 2277", in complex-valued metric spaces..

Keywords: Coupled fixed point theorem, contractive type mapping, complex valued metric space.

2010 Mathematical Subject Classification: 15A24, 15A29, 47H10.

1 Introduction and Preliminaries

In 2011, Azam et al. [2] introduced the notion of complex valued metric space which is a generalization of the classical metric space. They established some fixed point results for mappings satisfying a rational inequality. The idea of complex valued metric spaces can be exploited to define complex valued normed spaces and complex valued Hilbert spaces; additionally, it offers numerous research activities in mathematical analysis.

Let \mathbb{C} be the set of complex numbers and $z_1, z_2 \in \mathbb{C}$, we define a partial order \leq on \mathbb{C} as follows:

 $z_1 \leq z_2$ if and only if $Re(z_1) \leq Re(z_2)$ and $Im(z_1) \leq Im(z_2)$.

It follows that $z_1 \leq z_2$ if one of the following conditions is satisfied:

- (C1) $Re(z_1) = Re(z_2)$ and $Im(z_1) = Im(z_2)$;
- (C2) $Re(z_1) < Re(z_2)$ and $Im(z_1) = Im(z_2)$;
- (C3) $Re(z_1) = Re(z_2)$ and $Im(z_1) < Im(z_2)$;
- (C4) $Re(z_1) < Re(z_2)$ and $Im(z_1) < Im(z_2)$.

In particular, we will write $z_1 \prec z_2$ if $z_1 \neq z_2$ and one of (C2), (C3) and (C4) is satisfied and we will write $z_1 \prec z_2$ if only (C4) is satisfied.

Remark 1.1 We obtained that the following statements hold:

- 1. If $a, b \in \mathbb{R}$ with $a \leq b$, then $az \prec bz$ for all $z \in \mathbb{C}$.
- 2. If $0 \leq z_1 < z_2$, then $|z_1| < |z_2|$.
- 3. If $z_1 \leq z_2$ and $z_2 \prec z_3$, then $z_1 \prec z_3$.

Consistent with Azam et al. [2], we state some definitions and results about the complex-valued metric space to prove our main results.

Definition 1.2 Let X be a nonempty set. Suppose that the mapping $d : X \times X \to \mathbb{C}$ satisfies the following conditions:

(d1) $0 \leq d(x, y)$ for all $x, y \in X$; (d2) d(x, y) = 0 if and only if x = y for all $x, y \in X$; (d3) d(x, y) = d(y, x) for all $x, y \in X$; (d4) $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$. Then d is called a complex-valued metric on X and (X, d) is called a complexvalued metric space.

Example 1.3 Example 1.3. Let $X = \mathbb{C}$. Define the mapping $d : X \times X \rightarrow \mathbb{C}$ by $d(z_1, z_2) = 2i|z_1 - z_2|$ for all $z_1, z_2 \in X$. Then (X, d) is a complex valued metric space.

Definition 1.4 Let (X, d) be a complex-valued metric space.

I. Apoint $x \in X$ is called interior point of a set $B \subseteq X$ whenever there exists $0 < r \in \mathbb{C}$ such that

$$N(x,r) := \{ y \in X : d(x,y) < r \} \subseteq B.$$

- II. A point $x \in X$ is called limit point of a set $B \subseteq X$ whenever there exists $0 < r \in \mathbb{C}$ such that $N(x, r) \cap (B\{x\}) \neq \phi$.
- III. A subset $B \subseteq X$ is called open whenever each element of B is an interior point of B.
- IV. A subset $B \subseteq X$ is called closed whenever each limit point of B belongs to B.
- V. The family $F = \{N(x,r) : x \in X, 0 \prec r\}$ is a sub-basis for a topology on X. We denote this complex topology by τ_c . Indeed, the topology τ_c is Hausdorff.

Definition 1.5 Let (X, d) be a complex-valued metric space, and let $\{x_n\}$ be a sequence in X and $x \in X$.

- I. If for every $c \in \mathbb{C}$ with 0 < c there is $N \in \mathbb{N}$ such that for all n > N, $d(x_n, x) < c$ then $\{x_n\}$ is said to be convergent, if $\{x_n\}$ converges to xand x is the limit point of $\{x_n\}$. We denote this by $x_n \to x$ as $n \to \infty$ or $\lim_{n\to\infty} x_n = x$.
- II. If for every $c \in \mathbb{C}$ with 0 < c there is $N \in \mathbb{N}$ such that for all n, m > N, $d(x_n, x_m) < c$ then $\{x_n\}$ is said is said to be Cauchy sequence.
- III. If every Cauchy sequence in X is convergent, then (X,d) is said to be a complete complex-valued metric space.

Lemma 1.6 Let (X, d) be a complex-valued metric space, and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ converges to x if and only if $|d(x_n, x)| \to 0$ as $n \to \infty$. **Lemma 1.7** Let (X, d) be a complex-valued metric space, and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is a Cauchy sequence if and only if $|d(x_n, x_{n+m})| \to 0$ as $n \to \infty$.

In 2006, Bhaskar et al. [1] introduced the notion of coupled fixed point and proved some fixed point results in this context. Similarly, Kang etal. [3] introduce the notion of coupled fixed point for a mapping in complex valued metric spaces as follows.

Definition 1.8 Let (X, d) be a complex-valued metric space, an element $(x, y) \in X \times X$ is said to be a coupled fixed point of the mapping $F : X \times X \to X$ if F(x, y) = x and F(y, x) = y.

Definition 1.9 Let (X, d) be a complex valued metric space. An element $(x, y) \in X \times X$ is said to be

- I. A coupled coincidence point of mappings $F : X \times X \to X$ and $g : X \to X$ if g(x) = F(x, y) and g(y) = F(y, x), and (gx, gy) is called a coupled point of coincidence if there exists $(u, v) \in X \times X$ such that x = gu = F(u, v) and y = gv = F(v, u).
- II. A common coupled fixed point of mappings $F : X \times X \to X$ and $g : X \to X$ if x = gx = F(x, y) and y = gy = F(y, x).

Definition 1.10 Let (X, d) be a complex-valued metric space. The mappings $F : X \times X \to X$ and $g : X \to X$ are called w-compatible if g(F(x, y)) = F(gx, gy), whenever gx = F(x, y) and gy = F(y, x).

Kang et al [3] prove following result,

Theorem 1.11 ([3], Theorem-2.1) Let (X,d) be a complex valued metric space. Suppose that the mapping $F: X \times X \to X$ satisfies

$$d(F(x,y),F(u,v)) \le hd(x,u) + kd(y,v) \tag{1}$$

for all $x, y, u, v \in X$, where h and k are non-negative constants with h+k < 1. Then F has a unique coupled fixed point.

In [4], Jhade and Khan prove following result,

Theorem 1.12 ([4], Theorem 3.1) Let (X, d) be a complex-valued metric space. Let $F : X \times X \to X$ and $g : X \to X$ be two mappings. Suppose that

there exist nonnegative constants $a_i \in [0, 1), i = 1, 2, ..., 6$ such that $\sum_{i=1}^6 a_i < 1$ and for all $x, y, u, v \in X$

$$d(F(x,y),F(u,v)) \preceq a_1 d(gx,gu) + a_2(gy,gv) + a_3 \frac{d(gx,F(x,y))d(gu,F(u,v))}{d(gx,gu)} + a_4 \frac{d(gx,F(u,v))d(gu,F(x,y))}{d(gx,gu)} + a_5 \frac{d(gy,F(y,x))d(gv,F(v,u))}{d(gy,gv)} + a_6 \frac{d(gy,F(v,u))d(gv,F(y,x))}{d(gy,gv)}.$$
(2)

Suppose $F(X \times X) \subseteq g(X)$ and g(X) is a complete subspace of X. Then F and g have a coupled coincidence point $(x^*, y^*) \in X \times X$.

Remark 1.13 It should be noted that Theorem 1.12 is not true for x = u and y = v, i.e., 2 is not valid for x = u and y = v and we can not obtain coupled fixed point.

2 Main Results

First we improve the Theorem 1.12 and prove a coupled coincidence point theorem which state is as follows,

Theorem 2.1 Let (X, d) be a complex-valued metric space. Let $F : X \times X \to X$ and $g : X \to X$ be two mappings. Suppose that there exist nonnegative constants $a_i \in [0, 1), i = 1, 2, ..., 6$ such that $\sum_{i=1}^6 a_i < 1$ and for all $x, y, u, v \in X$

$$d(F(x,y),F(u,v)) \leq a_{1}d(gx,gu) + a_{2}d(gy,gv) \\ +a_{3}\frac{[1+d(gx,F(x,y))]d(gu,F(u,v))}{d(gx,gu)+1} \\ +a_{4}\frac{[1+d(gx,F(u,v))]d(gu,F(x,y))}{d(gx,gu)+1} \\ +a_{5}\frac{[1+d(gy,F(y,x))]d(gv,F(v,u))}{d(gy,gv)+1} \\ +a_{6}\frac{[1+d(gy,F(v,u))]d(gv,F(y,x))}{d(gy,gv)+1}.$$
(3)

Suppose $F(X \times X) \subseteq g(X)$ and g(X) is a complete subspace of X. Then F and g have a coupled coincidence point $(x^*, y^*) \in X \times X$.

Proof 2.2 Let $x_0, y_0 \in X$ are arbitrary. Set $gx_1 = F(x_0, y_0)$ and $gy_1 = F(y_0, x_0)$, this can be done because $F(X \times X) \subseteq g(X)$. Continuing the process, we obtain two sequences $\{x_n\}$ and $\{y_n\}$ such that $gx_{n+1} = F(x_n, y_n)$ and $gy_{n+1} = F(y_n, x_n)$ for all $n \ge 0$. Then we have

$$\begin{array}{lcl} d(gx_n,gx_{n+1}) &=& d(F(x_{n-1},y_{n-1}),F(x_n,y_n)) \\ &\preceq & a_1d(gx_{n-1},gx_n) + a_2d(gy_{n-1},gy_n) \\ && +a_3 \frac{[1+d(gx_{n-1},F(x_{n-1},y_{n-1}))]d(gx_n,F(x_n,y_n))}{d(gx_{n-1},gx_n) + 1} \\ && +a_4 \frac{[1+d(gx_{n-1},F(x_n,y_n))]d(gx_n,F(x_{n-1},y_{n-1}))}{d(gx_{n-1},gx_n) + 1} \\ && +a_5 \frac{[1+d(gy_{n-1},F(y_{n-1},x_{n-1}))]d(gy_n,F(y_n,x_n))}{d(gy_{n-1},gy_n) + 1} \\ && +a_6 \frac{[1+d(gy_{n-1},F(y_n,x_n))]d(gy_n,F(y_{n-1},x_{n-1}))}{d(gy_{n-1},gy_n) + 1} \end{array}$$

$$\begin{array}{rcl} d(gx_n,gx_{n+1}) & \preceq & a_1d(gx_{n-1},gx_n) + a_2d(gy_{n-1},gy_n) \\ & & +a_3\frac{[1+d(gx_{n-1},gx_n)]d(gx_n,gx_{n+1})}{d(gx_{n-1},gx_n) + 1} \\ & & +a_4\frac{[1+d(gx_{n-1},gx_{n+1})]d(gx_n,gx_n)}{d(gx_{n-1},gx_n) + 1} \\ & & +a_5\frac{[1+d(gy_{n-1},gy_n)]d(gy_n,gy_{n+1})}{d(gy_{n-1},gy_n) + 1} \\ & & +a_6\frac{[1+d(gy_{n-1},d(gy_{n-1},gy_n))]d(gy_n,gy_n)}{d(gy_{n-1},gy_n) + 1} \end{array}$$

which implies

$$\begin{aligned} |d(gx_n, gx_{n+1})| &\preceq a_1 |d(gx_{n-1}, gx_n)| + a_2 |d(gy_{n-1}, gy_n)| \\ &+ a_3 |d(gx_n, gx_{n+1})| + a_5 |d(gy_n, gy_{n+1})| \end{aligned}$$
(4)

Similarly we have

$$\begin{aligned} |d(gy_n, gy_{n+1})| &\preceq a_1 |d(gy_{n-1}, gy_n)| + a_2 |d(gx_{n-1}, gx_n)| \\ &+ a_3 |d(gy_n, gy_{n+1})| + a_5 |d(gx_n, gx_{n+1})|. \end{aligned}$$
(5)

 $Suppose \ that$

$$d_n = \|d(gx_n, gx_{n+1}\| + \|d(gy_n, gy_{n+1}\|).$$

Adding inequalities 4 and 5, we obtain

$$d_n \le (a_1 + a_2)d_{n-1} + (a_3 + a_5)d_n \tag{6}$$

that is

$$d_n \le h d_{n-1}$$

where

$$h = \frac{a_1 + a_2}{1 - (a_3 + a_5)} < 1.$$

Thus, we have

$$d_n \le h d_{n-1} \le h^2 d_{n-2} \le h^3 d_{n-3} \le h^4 d_{n-4} \le \dots \le h^n d_0.$$
(7)

We shall show that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences. If m > n, then we have

$$\begin{aligned} |d(gx_n, gx_m| + |d(gy_n, gy_m|) &\leq |d(gx_n, gx_{n+1}| + |d(gy_n, gy_{n+1}|) \\ &+ |d(gx_{n+1}, gx_{n+2}| + |d(gy_{n+1}, gy_{n+2}|) \\ &+ |d(gx_{n+2}, gx_{n+3}| + |d(gy_{n+2}, gy_{n+3}|) \\ &+ \dots + |d(gx_{m-1}, gx_m| + |d(gy_{m-1}, gy_m|) \\ &\leq h^n d_0 + h^{n+1} d_0 + h^{n+2} d_0 + h^{n+3} d_0 + \dots + h^{m-1} d_0 \\ &\leq \frac{h^n}{1 - h} d_0 \to 0 \quad as \quad n \to \infty. \end{aligned}$$

Hence $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in g(X). Since g(X) is complete, there exists x^* and y^* such that $gx_n \to x^*$ and $gy_n \to y^*$ as $n \to \infty$. On the other hand, we have from 3,

$$d(F(x^*, y^*), gx^*) \preceq d(F(x^*, y^*), gx_{n+1}) + d(gx_{n+1}, gx^*)$$

= $d(F(x^*, y^*), F(x_n, y_n)) + d(gx_{n+1}, gx^*)$

$$\begin{split} d(F(x^*,y^*),gx^*) &\preceq a_1 d(gx^*,gx_n) + a_2 d(gy^*,gy_n) \\ &+ a_3 \frac{[1 + d(gx^*,F(x^*,y^*))] d(gx_n,F(x_n,y_n))}{d(gx^*,gx_n) + 1} \\ &+ a_4 \frac{[1 + d(gx^*,F(x_n,y_n))] d(gx_n,F(x^*,y^*))}{d(gx^*,gx_n) + 1} \\ &+ a_5 \frac{[1 + d(gy^*,F(y^*,x^*))] d(gy_n,F(y_n,x_n))}{d(gy^*,gy_n) + 1} \\ &+ a_6 \frac{[1 + d(gy^*,F(y_n,x_n))] d(gy_n,F(y^*,x^*))}{d(gy^*,gy_n) + 1} \\ &+ |d(gx_{n+1},gx^*)| \end{split}$$

$$\begin{aligned} d(F(x^*, y^*), gx^*) &\preceq a_1 d(gx^*, gx_n) + a_2 d(gy^*, gy_n) \\ &+ a_3 \frac{[1 + d(gx^*, F(x^*, y^*))] d(gx_n, gx_{n+1})}{d(gx^*, gx_n) + 1} \\ &+ a_4 \frac{[1 + d(gx^*, gx_{n+1})] d(gx_n, F(x^*, y^*))}{d(gx^*, gx_n) + 1} \\ &+ a_5 \frac{[1 + d(gy^*, F(y^*, x^*))] d(gy_n, gy_{n+1})}{d(gy^*, gy_n) + 1} \\ &+ a_6 \frac{[1 + d(gy^*, gy_{n+1})] d(gy_n, F(y^*, x^*))}{d(gy^*, gy_n) + 1} \\ &+ |d(gx_{n+1}, gx^*)| \end{aligned}$$

$$\begin{split} |d(F(x^*,y^*),gx^*)| &\preceq a_1 |d(gx^*,gx_n)| + a_2 |d(gy^*,gy_n)| \\ &+ a_3 \frac{[1 + |d(gx^*,F(x^*,y^*))|](|d(gx_n,gx^*)| + |d(gx^*,gx_{n+1})|)]}{|d(gx^*,gx_n)| + 1} \\ &+ a_4 \frac{[1 + |d(gx^*,gx_{n+1})|]|d(gx_n,F(x^*,y^*))|}{|d(gx^*,gx_n)| + 1} \\ &+ a_5 \frac{[1 + |d(gy^*,F(y^*,x^*))|](|d(gy_n,gy^*)| + |d(gy^*,gy_{n+1})|))}{|d(gy^*,gy_n)| + 1} \\ &+ a_6 \frac{[1 + |d(gy^*,gy_{n+1})|]|d(gy_n,F(y^*,x^*))|}{|d(gy^*,gy_n)| + 1} \\ &+ |d(gx_{n+1},gx^*)|. \end{split}$$

Since $gx_n \to gx^*$ and $gy_n \to gy^*$ as $n \to \infty$, we have $|d(F(x^*, y^*), gx^*)| \leq 0$. That is, $F(x^*, y^*) = gx^*$.

Similarly one can show that $F(y^*, x^*) = gy^*$. Hence (x^*, y^*) is a coupled coincidence point of F and g.

For common coupled fixed point for the mappings F and g, the condition of Theorem 2.1 are not enough. So by applying the condition of w-compatibility on F and g, we obtain the following common coupled fixed point theorem. **Theorem 2.3** In addition to the hypotheses of Theorem 2.1 are not enough to prove the existence of a common coupled fixed point for the mappings F and g. By applying the condition of w-compatibility on F and g, we obtain the following common coupled fixed point theorem, if F and g are w-compatible, then F and g have a unique common coupled fixed point. Moreover, a common coupled fixed point of F and g is of the form (u, v) for some $u, v \in X$.

Proof 2.4 The existence of coupled coincidence point (x^*, y^*) of F and g follows from Theorem 2.1. Then (gx^*, gy^*) is a coupled point of coincidence of F, g and so $gx^* = F(x^*, y^*)$ and $gy^* = F(y^*, x^*)$.

First we will show that this coupled point of coincidence is unique.

For this, suppose that F and g have another coupled point of coincidence (gu, gv), that is, gu = F(u, v) and gv = F(v, u) where $(u, v) \in X \times X$. Then we have

$$\begin{split} d(F(x^*,y^*),F(u,v)) & \preceq & a_1d(gx^*,gu) + a_2d(gy^*,gv) \\ & +a_3\frac{[1+d(gx^*,F(x^*,y^*))]d(gu,F(u,v))}{d(gx^*,gu)+1} \\ & +a_4\frac{[1+d(gx^*,F(u,v))]d(gu,F(x^*,y^*))}{d(gx^*,gu)+1} \\ & +a_5\frac{[1+d(gy^*,F(y^*,x^*))]d(gv,F(v,u))}{d(gy^*,gv)+1} \\ & +a_6\frac{[1+d(gy^*,F(v,u))]d(gv,F(y^*,x^*))}{d(gy^*,gv)+1}. \end{split}$$

Hence

$$|d(gx^*, gu)| \leq a_1 |d(gx^*, gu)| + a_2 |d(gy^*, gv)| + a_4 |d(gx^*, gu)| + a_6 |d(gy^*, gv)|.$$
(8)

Similarly we obtain

$$|d(gy^*, gv)| \leq a_1 |d(gy^*, gv)| + a_2 |d(gx^*, gu)| + a_4 |d(gy^*, gv)| + a_6 |d(gx^*, gu)|.$$
(9)

Adding 8 and 9 we obtain

 $|d(gx^*, gu)| + |d(gy^*, gv)| \le (a_1 + a_2 + a_4 + a_6)[|d(gx^*, gu)| + |d(gy^*, gv)|].$ Since $(a_1 + a_2 + a_4 + a_6) < 1$. Therefore,

$$|d(gx^*, gu)| + |d(gy^*, gv)| \le 0$$

which contradiction. Hence $d(gx^*, gu) = 0$ and $d(gy^*, gv) = 0$, i.e., $gx^* = gu$ and $gy^* = gv$.

Thus $(gx^*, gy^*) = (u, v)$ is the unique coupled point of coincidence of F and g. Now if F and g are w-compatible, then $gu = g(F(x^*, y^*)) = F(gx^*, gy^*) = F(u, v) = w(say)$. Similarly, we obtain $gv = g(F(y^*, x^*)) = F(gy^*, gx^*) = F(v, u) = z(say)$. So, (w, z) is another coupled point of coincidence of F and g. By uniqueness, we have (u, v) = (w, z), that is, gu = F(u, v) = u and gv = F(v, u) = v. Thus (u, v) is the unique common coupled fixed point of F and g.

Example 2.5 Let $X = \{ix : x \in [0,1]\}$ and consider a complex valued metric $d : X \times X \to X$ defined by

$$d(x,y) = i|x-y|$$

for all $x, y \in X$. Then (X, d) is a complex valued metric space.

Define the mappings $F : X \times X \to X$ and $g : X \to X$ by $F(x,y) = i\left(\frac{x}{10} + \frac{y}{15}\right)$ and $g(x) = \frac{x}{5}i$ for all $x, y \in [0,1]$. Then we have

$$d(F(x,y),F(u,v)) = i|i\left(\frac{x}{10} + \frac{y}{15}\right) - i\left(\frac{u}{10} + \frac{v}{15}\right)|$$

$$= i|i\left(\frac{x}{10} - \frac{u}{10}\right) - i\left(\frac{y}{15} - \frac{v}{15}\right)|$$

$$\leq \frac{5}{10}i|i\left(\frac{x}{5} - \frac{u}{5}\right)| + \frac{5}{15}i|i\left(\frac{y}{5} - \frac{v}{5}\right)|$$

$$\leq \frac{1}{2}d(gx,gu) + \frac{1}{3}d(gy,gv)$$

where $a_1 = \frac{1}{2}$, $a_2 = \frac{1}{3}$, $a_i = 0$, i = 3, 4, 5, 6. Note that $a_1 + a_2 = \frac{5}{6} + \frac{5}{6} < 1$, $F(X \times X) \subseteq g(X)$ and g(X) is a complete subspace of X. Hence the condition of Theorem 2.1 are satisfied, that is, F and g have a coupled coincidence point (0,0). Furthermore, since F and g are w-compatible, hence, Theorem 2.3 shows that (0,0) is the unique common coupled fixed point of F and g.

Remark 2.6 It should be noted that Example 2.5 is valid for Theorem 2.1 as well as for Theorem 1.12. In fact Theorem 2.1 is more general the Theorem 1.12.

Remark 2.7 If we take $a_i = 0$ for i = 3, 4, 5, 6 and $g = I_X$ (identity mapping over X) in Theorem 2.1 then we get result of Kang et al [3].

Corollary 2.8 ([3], Corollary-2.2) Let (X, d) be a complete complex valued metric space. Suppose that the mapping $F : X \times X \to X$ satisfies

$$d(F(x, y), F(u, v)) \le h[(d(x, u) + d(y, v))]$$

for all $x, y, u, v \in X$, where h is a non-negative constant with $h < \frac{1}{2}$. Then F has a unique coupled fixed point.

Proof 2.9 If we take $a_1 = a_2 = h$, $a_i = 0$ for i = 3, 4, 5, 6 and $g = I_X$ (identity mapping over X) in Theorem 2.1, then we get required result.

Example 2.10 Let $X = \{ix : x \in [0,1]\}$ and consider a complex valued metric $d : X \times X \to X$ defined by

$$d(x,y) = i|x-y|$$

for all $x, y \in X$. Then (X, d) is a complex valued metric space.

Define the mappings $F : X \times X \to X$ by $F(x, y) = i\left(\frac{x+y}{3}\right)$ for all $x, y \in [0, 1]$. Then we have $h = \frac{1}{3} < \frac{1}{2}$. So all condition of Corollary 2.8 are satisfied and we get (0, 0) is a coupled fixed of F.

3 Acknowledgement

The fourth (corrsponding) author Dr Saurabh Manro is thankful to the National Board of Higher Mathematics for Post-Doctorate Fellowship.

4 Conflict of Interests

The authors declare that they have no competing interests.

References

- T. G. Bhaskar and V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Analysis:TMA. 65(7) (2006), 1379-1393.
- [2] A. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243-253.
- [3] S.M. Kang, M.Kumar, P.Kumar, S.Kumar, Coupled Fixed Point Theorems in Complex Valued Metric Spaces, Int. J. of Math. Analysis, 7(46) (2013), 2269 - 2277.
- [4] P.K. Jhade, M.S. Khan, Some Coupled Coincidence and Common Fixed Point Theorems in Complex-valued Metric spaces, Ser. Math. Inform. 29, (4) (2014), 385-395.