Int. J. Open Problems Complex Analysis, Vol. 10, No. 2, July 2018 ISSN 2074-2827; Copyright ©ICSRS Publication, 2018 www.i-csrs.org

Wavelets and generalized windowed transform associated to partial differential operators

Chirine Chettaoui

Faculty of Sciences of Tunis, Department of Mathematics, CAMPUS, 2092 Tunis, Tunisia e-mail: Chirine.Chettaoui@insat.rnu.tn

Received 21 April 2018; Accepted 20 June 2018

Communicated by Mustapha Raissouli

Abstract

We consider the partial operators on $\mathcal{K} = [0, +\infty] \times \mathbb{R}$

$$\begin{cases} D_1 = \frac{\partial}{\partial \theta} \\ D_2 = \frac{\partial^2}{\partial y^2} + ((2\alpha + 1) \coth y + \tanh y) \frac{\partial}{\partial y} - \frac{1}{\cosh^2 y} \frac{\partial^2}{\partial \theta^2} + (\alpha + 1)^2, \end{cases}$$

where $\alpha \in \mathbb{R}$, $\alpha \geq 0$.

For $\alpha = n - 2$, $n \in \mathbb{N}$, $n \ge 2$, the operators D_1 and $D_2 - (\alpha + 1)^2$ are used to study a harmonic analysis associated to Harish-Chandra's spherical functions ou Riemannian symmetric spaces.(see [4]p.72)

In this paper we give first harmonic analysis associated with the operators D_1 , D_2 (see [5]), next we define the wavelets and the generalized windowed transform and we prove for this transform Plancherel and inversion formulas.

Keywords: Partial differential operators; Wavelets; Generalized windowed transform.

2010 Mathematical Subject Classification: 43A32, 44A15, 44A35.

Introduction

Let g be a non negligeable square integrable function on \mathbb{R}^2 with respect to the Lebesgue measure. The classical windowed transform Ψ_g is a transform which replace the usual Fourier transform on \mathbb{R}^2 of a function f is given by:

$$\Psi_g(f)(\lambda, y) = \int_{\mathbb{R}^2} f(x) g_{\lambda, y}(x) dx, \quad \lambda, y \in \mathbb{R}^2.$$

This transform is the product of the analyzed function f by the function $g_{\lambda,y}$ called the classical wavelet defined by

$$g_{\lambda,y}(x) = e^{-i < \lambda, x > \frac{\tau_x g(y)}{||\tau_x g||_2}},$$

with τ_x the classical translation operator defined for $x \in \mathbb{R}^2$, by

$$\tau_x g(y) = g(x-y), \ y \in \mathbb{R}^2$$

The function g is called windowed function.

We prove for the transform Ψ_g Plancherel and inversion formulas.

In this paper, we introduce first the harmonic analysis associated with the operators D_1 , D_2 (generalized Fourier transform, generalized Paley-Wiener transform, generalized Plancherel theorem, generalized translation operator $T_{(y,\theta)}, (y,\theta) \in \mathcal{K}$, and generalized convolution product)(see[4]).

Next, we consider a non negligeable function g on \mathcal{K} , and its translate $T_{(y,\theta)}g$ and we study first the properties of its L^2 -norm $||T_{(y,\theta)}g||_{\alpha,2}$ with respect to the measure

$$\mathcal{A}_{\alpha}(y)dyd\theta = 2^{2(\alpha+1)}(\sinh y)^{2\alpha+1}\cosh ydyd\theta, (y,\theta) \in \mathcal{K}.$$

and we prove for all $(y, \theta) \in \mathcal{K}$ that the function $||T_{(y,\theta)}g||_{\alpha,2}$ is different from zero.

We define the wavelet $g^s_{(\lambda,\mu),(y,\theta)}$ associated with the operators D_1, D_2 given by

$$g^{s}_{(\lambda,\mu),(y,\theta)}(x,\tau) = \varphi_{\lambda,\mu}(x,\tau) \frac{T_{(y,\theta)}g(x,\tau)}{||T_{(x,\tau)}g||_{\alpha,2}^{s}}.$$

By using these wavelet we define the family of generalized windowed transform, $\Phi_q^s(f)$,

 $s \in \mathbb{R}$, associated, with the operators D_1, D_2 given for regular functions f on \mathcal{K} by

$$\Phi_g^s(f)((\lambda,\mu),(y,\theta)) = \int_{\mathcal{K}} f(x,\tau)(g^s_{(\lambda,\mu),(y,\theta)})^*(x,\tau)\mathcal{A}_\alpha(x)dxd\tau, \ (\lambda,\mu),(y,\theta) \in \mathcal{K},$$

where

$$\forall (x,\tau) \in \mathcal{K}, \quad (g^s_{(\lambda,\mu),(y,\theta)})^*(x,\tau) = \overline{g^s_{(\lambda,\mu),(y,\theta)}}(x,-\tau),$$

and we prove for this transform Plancherel and inversion formulas. The contents of the paper is as follows:

In the first section we give the main results concerning the harmonic analysis associated with the operators D_1, D_2 .

We study in the second section the generalized translation operator associated with the operators D_1, D_2 .

The third section we define and study the Wavelets associated with the operators D_1, D_2

In the fourth section is devoted to an example of wavelets associated with the operators D_1, D_2 .

In the last section we give the generalized windowed transform associated with the operators D_1, D_2 .

As example we give the Gaussian wavelets and the Gaussian windowed transform associated with the operators D_1, D_2 .

1 Harmonic analysis associated with the operators D_1, D_2

Notations. We denote by

- $\mathcal{E}_*(\mathbb{R}^2)$ (resp. $\mathcal{D}_*(\mathbb{R}^2)$) the space of C^{∞} -functions on \mathbb{R}^2 even with respect to the first variable (resp. with compact support even with respect to the first variable).

- $S_*(\mathbb{R}^2)$ the Schwartz space of functions on \mathbb{R}^2 even with respect to the first variable.

$$- \Gamma = \{ (\lambda, \mu) \in \mathbb{R} \times \mathbb{C}/|Im\mu| \le \alpha + 1 \} \cup \{ (\lambda, \mu) \in \mathbb{R} \times \mathbb{C}/\mu = i\eta, \\ \eta \ge -(\alpha + 1), \lambda = \pm(\alpha + 2m + 2m + 2m) \}$$

 $1+\eta$, $m \in \mathbb{N}$.

We provide these spaces with the classical topologies.

We consider the following system of partial differential operators defined by

$$\begin{cases} D_1 = \frac{\partial}{\partial \theta}.\\ D_2 = \frac{\partial^2}{\partial y^2} + ((2\alpha + 1) \coth y + \tanh y)\frac{\partial}{\partial y} - \frac{1}{\cosh^2 y}\frac{\partial^2}{\partial \theta^2} + (\alpha + 1)^2. \end{cases}$$
(1.1)

where $(y, \theta) \in [0, +\infty[\times \mathbb{R} \text{ and } \alpha \in \mathbb{R}, \alpha \ge 0$ We denote by $\varphi_{\lambda,\mu}(y, \theta)$ the is the unique solution of the system

$$\begin{cases} D_1 U = i\lambda U, & \lambda \in \mathbb{C}; \\ D_2 U = -\mu^2 U, & \mu \in \mathbb{C}; \\ U(0,0) = 1, \frac{\partial U}{\partial y}(0,\theta) = 0 \quad \forall \theta \in]0, +\infty[. \end{cases}$$
(1.2)

Proposition 1.1 For every $(\lambda, \mu) \in \mathbb{C} \times \mathbb{C}$ the unique solution of the system (1.2) is defined by

$$\varphi_{\lambda,\mu}(y,\theta) = e^{i\lambda\theta}(\cosh y)^{\lambda}\varphi_{\mu}^{(\alpha,\lambda)}(y) = e^{i\lambda\theta}(\cosh y)^{-\lambda}\varphi_{\mu}^{(\alpha,-\lambda)}(y)$$
(1.3)

where $\varphi_{\mu}^{(\alpha,\lambda)}$ is the Jacobi function defined by

$$\varphi_{\mu}^{(\alpha,\lambda)}(y) =_2 F_1(\frac{\alpha+\lambda+1+i\mu}{2}, \frac{\alpha+\lambda+1-i\mu}{2}, \alpha+1; -\sinh^2 y).$$

 $_{2}F_{1}$ denotes the hypergeometric function (See [6])

Corollary 1.1 *1. For all* $(y, \theta) \in \mathcal{K}$ *, we have*

$$\forall (\lambda, \mu) \in \Gamma, |\varphi_{\lambda, \mu}(y, \theta)| \le 1.$$
(1.4)

- 2. For all $(y,\theta) \in \mathcal{K}$, the function $(\lambda,\mu) \to \varphi_{\lambda,\mu}(y,\theta)$ is analytic function on \mathbb{C}^2 .
- 3. For all $(y,\theta) \in \mathcal{K}, \lambda \in \mathbb{C}$, the function $\mu \to \varphi_{\lambda,\mu}(y,\theta)$ is even satisfies the relation

$$\varphi_{\lambda,\mu}(y,\theta) = \varphi_{-\lambda,\mu}(y,\theta). \tag{1.5}$$

4. For all $(\lambda, \mu) \in \mathbb{C} \times \mathbb{C}$, the function $(y, \theta) \to \varphi_{\lambda,\mu}(y, \theta)$ is a C^{∞} -function on \mathcal{K} .

Proposition 1.2 The function $\varphi_{\lambda,\mu}, (\lambda,\mu) \in \mathbb{C} \times \mathbb{C}$, satisfies the following product formula

1. If $\alpha > 0$ then for all $(y, \theta), (x, \tau) \in \mathcal{K}$,

$$\varphi_{\lambda,\mu}(y,\theta)\varphi_{\lambda,\mu}(x,\tau) = \frac{\alpha}{\pi} \int_D \varphi_{\lambda,\mu}[\cosh y \cosh x e^{i(\theta+\tau)} + \sinh y \sinh x\xi] \times (1-|\xi|^2)^{\alpha-1} dm(\xi)$$
(1.6)
(1.6)
where D is the unit disk of C of center o and $dm(\xi_1 + i\xi_2) = d\xi_1 d\xi_2$

2. If $\alpha = 0$ then for all $(y, \theta), (x, \tau) \in \mathcal{K}$

$$\varphi_{\lambda,\mu}(y,\theta)\varphi_{\lambda,\mu}(x,\tau) = \frac{1}{2\pi} \int_0^{2\pi} \varphi_{\lambda,\mu}[\cosh y \cosh x e^{i(\theta+\tau)} + \sinh y \sinh x e^{i\psi}] d\psi.$$
(1.7)

1.1 The Fourier transform associated with the operators D_1, D_2

Notations. We denote by:

- $C_*(\mathbb{R}^2)$ the space of continuous functions on \mathbb{R}^2 even with respect to the first variable .

- $L^p_{A_{\alpha}}(\mathcal{K}), \ 1 \leq p \leq +\infty$, the space of measurable functions on \mathcal{K} such that

$$||f||_{\alpha,p} = \left(\int_{\mathcal{K}} |f(y,\theta)|^p A_{\alpha}(y) dy d\theta\right)^{\frac{1}{p}} < +\infty, \quad \text{if } 1 \le p < +\infty,$$

where A_{α} is the function defined by:

$$\forall y \in [0, +\infty[, A_{\alpha}(y) = 2^{2(\alpha+1)}(\sinh y)^{2\alpha+1}\cosh y.$$
 (1.8)

and

$$||f||_{\alpha,\infty} = ess \ sup_{(y,\theta)\in\mathcal{K}}|f(y,\theta)| < +\infty, \qquad if \ p = +\infty.$$

 $\begin{aligned} - \widetilde{C} &= \{ (\lambda, \mu) \in \mathbb{C} \times \mathbb{C} / \lambda \in \mathbb{R}, \mu \geq 0 \} \\ - \widetilde{D} &= \{ (\lambda, \mu) \in \mathbb{C} \times \mathbb{C} / \lambda \in \mathbb{R}, -i\mu = \eta > 0, C_1(\lambda, -\mu) = 0 \} = \{ (\lambda, \mu) \in \mathbb{R} \times \mathbb{C} / \mu = i\eta, \\ \eta \geq -(\alpha + 1), \lambda = \pm (\alpha + 2m + 1 + \eta), m \in \mathbb{N} \} \\ \text{and} \end{aligned}$

$$C_1(\lambda,\mu) = \frac{2^{\alpha-i\mu+1}\Gamma(i\mu)\Gamma(\alpha+1)}{\Gamma(\frac{\alpha+\lambda+1+i\mu}{2})\Gamma(\frac{\alpha-\lambda+1+i\mu}{2})}.$$
(1.9)

Wavelets and generalized windowed transform

$$d\gamma(\lambda,\mu) = \frac{1}{(2\pi)^2} |C_1(\lambda,\mu)|^{-2} \chi_{\widetilde{C}}(\lambda,\mu) d\lambda d\mu + \frac{1}{(2\pi)^2} C_2(\lambda,\mu) \chi_{\widetilde{D}}(\lambda,\mu) d\lambda d\mu.$$
(1.10)

where for $(\lambda_0, \mu_0) \in \widetilde{D}$ we denote by

$$C_2(\lambda_0, \mu_0) = Res_{\mu=\mu_0} [C_1(\lambda_0, \mu) . C_1(\lambda_0, -\mu)]^{-1}.$$
 (1.11)

- $L^p(\widetilde{C} \cup \widetilde{D}, d\gamma)$ the space of measurable functions on $\widetilde{C} \cup \widetilde{D}$ such that

$$\begin{split} ||f||_{\gamma,p} &= (\int_{\widetilde{C}\cup\widetilde{D}} |f(\lambda,\mu)|^p d\gamma(\lambda,\mu))^{\frac{1}{p}} < +\infty, \quad if \ 1 \le p < +\infty, \\ ||f||_{\gamma,\infty} &= ess \ sup_{(\lambda,\mu)\in\widetilde{C}\cup\widetilde{D}} |f(\lambda,\mu)| < +\infty, \quad if \ p = +\infty. \end{split}$$

- $H_*(\mathbb{C}^2)$ the space of entire functions on \mathbb{C}^2 , even with respect to the first variable, rapidly decreasing and of exponential type.

- $H^0_*(\mathbb{C}^2)$ the space of entire functions ψ in $H_*(\mathbb{C}^2)$, rapidly decreasing on \widetilde{D}

$$\forall k \in \mathbb{N}, \sup_{(\lambda,\mu)\in\widetilde{D}} (1+|\lambda|^2+|\mu|^2)^k |\psi(\lambda,\mu)| < +\infty$$

We provide these spaces with the classical topologies.

Definition 1.1 The Fourier transform associated with the operators D_1, D_2 of a function f in $\mathcal{D}_*(\mathbb{R}^2)$ is defined by

$$\forall (\lambda,\mu) \in \mathbb{C}^2, \quad \mathcal{F}(f)(\lambda,\mu) = \int_{\mathcal{K}} f(y,\theta)\varphi_{-\lambda,\mu}(y,\theta)\mathcal{A}_{\alpha}(y)dyd\theta.$$
(1.12)

The following Proposition gives some properties of the transform \mathcal{F} .

Proposition 1.3 For $f \in L^1_{A_{\alpha}}(\mathcal{K})$ we have

$$||\mathcal{F}(f)||_{\gamma,\infty} \le ||f||_{\alpha,1}.\tag{1.13}$$

Theorem 1.1 The Fourier transform \mathcal{F} is a topological isomorphism from $\mathcal{D}_*(\mathbb{R}^2)$ onto $H^0_*(\mathbb{C}^2)$.

Theorem 1.2 For every $f \in L^2_{A_{\alpha}}(\mathcal{K})$ such that $\mathcal{F}(f) \in L^1(\widetilde{C} \cup \widetilde{D}, d\gamma)$, we have the following inversion formula

$$f(y,\theta) = \int_{\widetilde{C}\cup\widetilde{D}} \varphi_{\lambda,\mu}(y,\theta) \mathcal{F}(f)(\lambda,\mu) d\gamma(\lambda,\mu), \ a.e \ on \ \mathcal{K}$$
(1.14)

Theorem 1.3 i) Plancherel formula: For all f in $\mathcal{D}_*(\mathbb{R}^2)$ we have

$$\int_{\mathcal{K}} |f(y,\theta)|^2 \mathcal{A}_{\alpha}(y) dy d\theta = \int_{\widetilde{C} \cup \widetilde{D}} |\mathcal{F}(f)(\lambda,\mu)|^2 d\gamma(\lambda,\mu).$$
(1.15)

ii) Plancherel theorem: The Fourier transform can be extended to an isometric isomorphism from $L^2_{A_{\alpha}}(\mathcal{K})$ onto $L^2(\widetilde{C} \cup \widetilde{D}, d\gamma(\lambda, \mu))$. (see [5-6]).

2 The generalized translation operators associated with the operators D_1, D_2

Definition 2.1 The generalized translation operators $T_{(y,\theta)}$, $(y,\theta) \in \mathcal{K}$, associated with the operators D_1, D_2 are defined for $f \in C_*(\mathbb{R}^2)$, by i) If $\alpha > 0$, for all $(y, \theta), (x, \tau) \in \mathcal{K}$

$$T_{(y,\theta)}f(x,\tau) = \frac{\alpha}{\pi} \int_D f[\cosh y \cosh x e^{i(\theta+\tau)} + \sinh y \sinh x\xi](1-|\xi|)^{\alpha-1} dm(\xi).$$
(2.1)

where D is the unit disk of \mathbb{C} of center o and $dm(\xi_1 + i\xi_2) = d\xi_1 d\xi_2$ ii) If $\alpha = 0$, for all $(y, \theta), (x, \tau) \in \mathcal{K}$

$$T_{(y,\theta)}f(x,\tau) = \frac{1}{2\pi} \int_0^{2\pi} f[\cosh y \cosh x e^{i(\theta+\tau)} + \sinh y \sinh x e^{i\Psi}] d\Psi \qquad (2.2)$$

Proposition 2.1 For $f \in C_*(\mathbb{R}^2)$ we have i) For all $\theta \in \mathbb{R}$,

$$T_{(0,\theta)}f(x,\tau) = f(x,\theta+\tau)$$

ii)For all $(y, \theta), (x, \tau) \in \mathcal{K}$,

$$T_{(y,\theta)}f(x,\tau) = T_{(x,\tau)}f(y,\theta)$$
$$T_{(y,\theta)} \circ T_{(x,\tau)} = T_{(x,\tau)} \circ T_{(y,\theta)}$$
$$T_{(0,0)} = Id$$

Proposition 2.2 The generalized translation operators $T_{(y,\theta)}, (y,\theta) \in \mathcal{K}$, satisfy:

i) For every bounded function f in $\mathbb{C}_*(\mathbb{R}^2)$ and for all $(y, \theta) \in \mathcal{K}$, the function $T_{(y,\theta)}f$ belongs to $\mathbb{C}_*(\mathbb{R}^2)$.

ii) (Product formula) For all $(y, \theta), (x, \tau) \in \mathcal{K}$ and $(\lambda, \mu) \in \mathbb{C}^2$ we have,

$$T_{(y,\theta)}\varphi_{\lambda,\mu}(x,\tau) = \varphi_{\lambda,\mu}(y,\theta)\varphi_{\lambda,\mu}(x,\tau).$$
(2.3)

Definition 2.2 The translation operators $T_{(y,\theta)}$, $(y,\theta) \in \mathcal{K}$, associated with the operators D_1, D_2 are defined for f in $L^2_{A_{\alpha}}(\mathcal{K})$, by

$$\forall (\lambda, \mu) \in \Gamma, \mathcal{F}(T_{(y,\theta)}f)(\lambda, \mu) = \varphi_{\lambda,\mu}(y,\theta)\mathcal{F}(f)(\lambda, \mu).$$
(2.4)

2.1 The convolution product associated with the operators D_1, D_2

Definition 2.3 The convolution product associated with the operators D_1, D_2 of two functions f and g in $\mathcal{D}_*(\mathbb{R}^2)$ is defined by

$$f * g(y,\theta) = \int_{\mathcal{K}} f(x,\tau) T_{(y,\theta)} g(x,-\tau) \mathcal{A}_{\alpha}(x) dx d\tau, \qquad (2.5)$$

Proposition 2.3 i) Let f,g be in $L^2_{A_{\alpha}}(\mathcal{K})$. Then the function f * g given for $(y, \theta) \in \mathcal{K}$, by

$$f * g(y,\theta) = \int_{\mathcal{K}} f(x,\tau) T_{(y,\theta)} g(x,-\tau) \mathcal{A}_{\alpha}(x) dx d\tau, \qquad (2.6)$$

is continuous on \mathcal{K} , tends to zero at infinity, and we have

$$\sup_{(y,\theta)\in\mathcal{K}} |f * g(y,\theta)| \le ||f||_{\alpha,2} ||g||_{\alpha,2}.$$
(2.7)

ii) Let f be in $L^2_{A_{\alpha}}(\mathcal{K})$ and g in $L^1_{A_{\alpha}}(\mathcal{K})$ then, - the function f * g defined almost everywhere on \mathcal{K} , by

$$f * g(y, \theta) = \int_{\mathcal{K}} f(x, \tau) T_{(y, \theta)} g(x, -\tau) \mathcal{A}_{\alpha}(x) dx d\tau, \qquad (2.8)$$

belongs to $L^2_{A_{\alpha}}(\mathcal{K})$ and we have

$$||f * g||_{\alpha,2} \le ||f||_{\alpha,2} ||g||_{\alpha,1}.$$
(2.9)

and

$$\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g). \tag{2.10}$$

2.2 Properties of the L^2 -norm of the generalized translation operators of functions of $L^1_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$

Proposition 2.4 For $(y, \theta) \in \mathcal{K}$ and $f \in L^2_{A_{\alpha}}(\mathcal{K})$, the function $T_{(y,\theta)}f$ belongs to $L^2_{A_{\alpha}}(\mathcal{K})$ and we have

$$||T_{(y,\theta)}f||_{\alpha,2} \le ||f||_{\alpha,2}.$$
(2.11)

Proposition 2.5 Let g be a function in $L^1_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$. i) We have for all $(y, \theta) \in \mathcal{K}$,

$$||T_{(y,\theta)}g||_{\alpha,2}^2 = \int_{\widetilde{C}\cup\widetilde{D}} |\varphi_{\lambda,\mu}(y,\theta)|^2 |\mathcal{F}(g)(\lambda,\mu)|^2 d\gamma(\lambda,\mu).$$
(2.12)

ii) We have

$$|T_{(y,\theta)}g||_{\alpha,2}^2 = T_{(y,\theta)}(g * g^*)(y,\theta), \quad a.e \quad on \quad \mathcal{K},$$
(2.13)

with

$$g^*(y,\theta) = \overline{g}(y,-\theta). \tag{2.14}$$

Proof.

i) From Theorem 1.3 and (2.4), we have for $(y, \theta) \in \mathcal{K}$,

$$\begin{aligned} ||T_{(y,\theta)}g||^{2}_{\alpha,2} &= \int_{\mathcal{K}} |T_{(y,\theta)}(g)(t,\tau)|^{2} \mathcal{A}_{\alpha}(t) dt d\tau \\ &= \int_{\widetilde{C}\cup\widetilde{D}} |\mathcal{F}(T_{(y,\theta)}g)(\lambda,\mu)|^{2} d\gamma(\lambda,\mu) \\ &= \int_{\widetilde{C}\cup\widetilde{D}} |\varphi_{\lambda,\mu}(y,\theta)|^{2} |\mathcal{F}(g)(\lambda,\mu)|^{2} d\gamma(\lambda,\mu) \end{aligned}$$

ii) As the function g is in $L^1_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$, then from (2.8), the function $g * g^*$ belongs to $L^2_{A_{\alpha}}(\mathcal{K})$ and from (2.4),(2.10),(2.9),(1.5),we have for $(y, \theta) \in \mathcal{K}, \forall (\lambda, \mu) \in \widetilde{C} \cup \widetilde{D}$:

$$\begin{aligned} \mathcal{F}(T_{(y,\theta)}(g * g^*))(\lambda,\mu) &= \varphi_{\lambda,\mu}(y,\theta)\mathcal{F}(g * g^*)(\lambda,\mu) \\ &= \varphi_{\lambda,\mu}(y,\theta)\mathcal{F}(g)(\lambda,\mu)\mathcal{F}(g^*)(\lambda,\mu) \\ &= \varphi_{\lambda,\mu}(y,\theta)\mathcal{F}(g)(\lambda,\mu)\overline{\mathcal{F}(g)(\lambda,\mu)}. \end{aligned}$$

Thus,

$$\mathcal{F}(T_{(y,\theta)}(g * g^*))(\lambda,\mu) = \varphi_{\lambda,\mu}(y,\theta) |\mathcal{F}(g)(\lambda,\mu)|^2$$

On the other hand, from Theorem 1.3 and (1.4), we deduce that $\mathcal{F}(T_{(y,\theta)}(g*g^*))$ belongs to $L^1(\widetilde{C} \cup \widetilde{D}, d\gamma)$. Thus from Theorem 1.2 we deduce that for almost all

 $(x,\tau) \in \mathcal{K}$, we have

$$T_{(y,\theta)}(g * g^*)(x,\tau) = \int_{\widetilde{C} \cup \widetilde{D}} \varphi_{\lambda,\mu}(x,\tau) \varphi_{\lambda,\mu}(y,\theta) |\mathcal{F}(g)(\lambda,\mu)|^2 d\gamma(\lambda,\mu).$$
(2.15)

We deduce (2.13) by taking $(x, \tau) = (y, \theta)$ in this relation and (2.12).

Proposition 2.6 Let g be a non negligible function in $L^1_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$. Then,

i) The function

$$(y,\theta) \longrightarrow ||T_{(y,\theta)}g||_{\alpha,2} \text{ is continuous on } \mathcal{K}.$$
 (2.16).

ii) For all $(y, \theta) \in \mathcal{K}$,

$$||T_{(y,\theta)}g||_{\alpha,2} \neq 0.$$
(2.17)

Wavelets and generalized windowed transform

To prove this proposition we need the following Lemma.

Lemma 2.1 We consider an entire function f on \mathbb{C}^2 , and $N = \{\lambda \in \mathbb{R}^2, f(\lambda) = 0\}$ it's set of real zero. Then the Lebesgue measure of the set N is equal to zero.

Proof

We write the function $f(\lambda)$ in the following form

$$f(\lambda) = \sum_{\alpha \in \mathbb{N}^2} a_{\alpha} \lambda^{\alpha}, \quad (\lambda = (\lambda_1, \lambda_2) \in \mathbb{C}^2)$$

where a_{α} are complex constants and $\lambda^{\alpha} = \lambda_1^{\alpha_1} \lambda_2^{\alpha_2}, \alpha = (\alpha_1, \alpha_2)$. We write $f_{\mathbb{R}^2}$ the restriction of f on \mathbb{R}^2 by

$$\forall \lambda \in \mathbb{R}^2, \quad f_{/\mathbb{R}^2}(\lambda) = \phi_1(\lambda) + i\phi_2(\lambda),$$

where ϕ_1 and ϕ_2 are real analytic functions. More precisely for all $\lambda \in \mathbb{R}^2$, we have

$$\phi_1(\lambda) = \sum_{\alpha \in \mathbb{N}^2} Re(a_\alpha) \lambda^\alpha,$$

and

$$\phi_2(\lambda) = \sum_{\alpha \in \mathbb{N}^2} Im(a_\alpha)\lambda^{\alpha}.$$

Then

$$N = N_{\phi_1} \cap N_{\phi_2},$$

where N_{ϕ_1} and N_{ϕ_2} are respectively the set of real zero of the functions ϕ_1 and ϕ_2 .

On the other hand, the set of zero of a real analytic function is of the form $N = S_1 \cup S_2$ (disjoint union) where S_j is a sub-variety (real analytic) of dimension j. The set S_j can be empty.

But it is well known that the Lebesgue measure of any sub-variety of \mathbb{R}^2 of dimension 1 is equal to zero. Then the Lebesgue measures of N_{ϕ_1} and N_{ϕ_2} are equal to zero and thus the Lebesgue measure of N is equal to zero.

Proof of Proposition 2.6

i) From Proposition 2.5, we have

$$\forall (y,\theta) \in \mathcal{K}, \ ||T_{(y,\theta)}g||_{\alpha,2}^2 = \int_{\widetilde{C} \cup \widetilde{D}} |\varphi_{\lambda,\mu}(y,\theta)|^2 |\mathcal{F}(g)(\lambda,\mu)|^2 d\gamma(\lambda,\mu).$$

For all $(\lambda, \mu) \in \widetilde{C} \cup \widetilde{D}$, the function $(y, \theta) \longrightarrow |\varphi_{\lambda,\mu}(y, \theta)|^2 |\mathcal{F}(g)(\lambda, \mu)|^2$ is continuous on \mathcal{K} and bounded by $|\mathcal{F}(g)(\lambda, \mu)|^2$ which is in $L^1(\widetilde{C} \cup \widetilde{D}, d\gamma)$, then from the dominated convergence theorem, the function $(y, \theta) \longrightarrow ||T_{(y,\theta)}g||_{\alpha,2}$ is continuous on \mathcal{K} .

ii) - If $(y, \theta) = (0, 0)$, we have

$$||T_{(0,0)}g||_{\alpha,2} = ||g||_{\alpha,2} \neq 0.$$

- If $(y, \theta) \in \mathcal{K} \setminus \{(0, 0)\}$. Suppose that there exists $(y_0, \theta_0) \in \mathcal{K} \setminus \{(0, 0)\}$ such that

$$||T_{(y_0,\theta_0)}g||_{\alpha,2} = 0.$$

From Proposition 2.5, we have

$$\int_{\widetilde{C}\cup\widetilde{D}} |\varphi_{\lambda,\mu}(y_0,\theta_0)|^2 |\mathcal{F}(g)(\lambda,\mu)|^2 d\gamma(\lambda,\mu) = 0.$$

The function $(\lambda, \mu) \longrightarrow \varphi_{\lambda,\mu}(y_0, \theta_0)$ is even with respect to the variable μ and entire on \mathbb{C}^2 . We denote by $N_{\alpha}(y_0, \theta_0) = \{(\lambda, \mu) \in \widetilde{C}, \varphi_{\lambda,\mu}(y_0, \theta_0) = 0\}$. We have

$$\begin{split} \int_{\widetilde{C}\cup\widetilde{D}} |\varphi_{\lambda,\mu}(y_0,\theta_0)|^2 |\mathcal{F}(g)(\lambda,\mu)|^2 d\gamma(\lambda,\mu) &= \int_{N_{\alpha}(y_0,\theta_0)} |\varphi_{\lambda,\mu}(y_0,\theta_0)|^2 |\mathcal{F}(g)(\lambda,\mu)|^2 d\gamma(\lambda,\mu) \\ &+ \int_{N_{\alpha}^c(y_0,\theta_0)} |\varphi_{\lambda,\mu}(y_0,\theta_0)|^2 |\mathcal{F}(g)(\lambda,\mu)|^2 d\gamma(\lambda,\mu) = 0, \end{split}$$

where $N_{\alpha}^{c}(y_{0}, \theta_{0})$ is the complementary of $N_{\alpha}(y_{0}, \theta_{0})$. From Lemma 2.1 the Lebesgue measure of $N_{\alpha}(y_{0}, \theta_{0})$ is equal to zero. Then

$$\int_{N_{\alpha}^{c}(y_{0},\theta_{0})} |\varphi_{\lambda,\mu}(y_{0},\theta_{0})|^{2} |\mathcal{F}(g)(\lambda,\mu)|^{2} d\gamma(\lambda,\mu) = 0.$$

Thus for all $(\lambda, \mu) \in N^c_{\alpha}(y_0, \theta_0)$, we have

$$|\mathcal{F}(g)(\lambda,\mu)|^2 = 0.$$

On the other hand from the relation (1.15) we have

$$\begin{aligned} ||g||_{\alpha,2}^2 &= \int_{\widetilde{C}\cup\widetilde{D}} |\mathcal{F}(g)(\lambda,\mu)|^2 d\gamma(\lambda,\mu) \\ &= \int_{N_{\alpha}(y_0,\theta_0)} |\mathcal{F}(g)(\lambda,\mu)|^2 d\gamma(\lambda,\mu) + \int_{N_{\alpha}^c(y_0,\theta_0)} |\mathcal{F}(g)(\lambda,\mu)|^2 d\gamma(\lambda,\mu). (2.18) \end{aligned}$$

By applying to this relation the fact that the Lebesgue measure of $N_{\alpha}(y_0, \theta_0)$ is equal to zero and the relation (2.18), we deduce that

$$||g||_{\alpha,2} = 0$$

This contradicts the fact that $||g||_{\alpha,2} \neq 0$.

2.3 The Gauss kernel associated with the operators D_1, D_2

2.3.1 Definition and properties of the heat kernel E_t

Definition 2.4 The heat kernel $E_t, t > 0$, associated with the operators D_1, D_2 is given by

$$\forall (y,\theta) \in \mathcal{K}, E_t(y,\theta) = \int_{\widetilde{C} \cup \widetilde{D}} e^{-t(\lambda^2 + \mu^2 + \frac{9}{4})} \varphi_{\lambda,\mu}(y,\theta) d\gamma(\lambda,\mu).$$
(2.19)

The function $E_t, t > 0$, possesses the following proprieties The function $E_t, t > 0$ is of class C^{∞} on \mathcal{K} i) We have

$$|E_t||_{\alpha,1} = 1. \tag{2.20}$$

ii) For all $(\lambda, \mu) \in \Gamma \cup \{(0, i\frac{3}{2})\}$, we have

$$\mathcal{F}(E_t)(\lambda,\mu) = e^{-t(\lambda^2 + \mu^2 + \frac{9}{4})}.$$
(2.21)

iii) For all t > 0, s > 0, we have

$$\forall (y,\theta) \in K, \quad E_t * E_s(y,\theta) = E_{t+s}(y,\theta). \tag{2.22}$$

2.3.2 Properties of the L^2 -norm of the Gauss kernel

The Gauss kernel $E(t, (y, \theta), (x, \tau))$ associated with the operators D_1, D_2 is defined by

$$E(t, (y, \theta), (x, \tau)) = T_{(y, \theta)}(E_t)(x, \tau), \quad (y, \theta), (x, \tau) \in \mathcal{K},$$

$$(2.23)$$

Remark 2.1 By using the relation (2.19) and (2.4), the relation (2.23) can also written in the form

$$\forall (y,\theta), (x,\tau) \in \mathcal{K}, E(t,(y,\theta),(x,\tau)) = \int_{\widetilde{C}\cup\widetilde{D}} e^{-t(\lambda^2 + \mu^2 + \frac{9}{4})} \varphi_{\lambda,\mu}(y,\theta) \varphi_{\lambda,\mu}(x,-\tau) d\gamma(\lambda,\mu)$$
(2.24)

Proposition 2.7 *i*)For all t > 0 we have

$$\forall (x,\tau) \in \mathcal{K}, \quad ||E(t,(x,\tau),(.,.))||_{\alpha,2}^2 = E(2t,(x,\tau),(x,\tau)).$$
(2.25)

ii)For all t > 0 we have

$$E(2t, (y, \theta), (y, \theta)) \le ||E_t||^2_{\alpha, 2}.$$
 (2.26)

Proof.

i) From Proposition 2.5 ii), the fact that the function E_t belongs to $S_*(\mathbb{R}^2)$ and the relations (2.22),(2.23), we have

$$\begin{aligned} \forall (x,\tau) \in \mathcal{K}, \quad ||E(t,(x,\tau),(.,.))||_{\alpha,2}^2 &= T_{(x,\tau)}(E_t * (E_t)^*)(x,\tau) \\ &= T_{(x,\tau)}(E_{2t})(x,\tau) \\ &= E(2t,(x,\tau),(x,\tau)). \end{aligned}$$

ii) From the relations (2.23) , (2.25) and (2.11) we deduce that for all t>0 we have

$$E(2t, (y, \theta), (y, \theta)) \le ||E_t||_{\alpha, 2}^2$$

Remark 2.2 From Theorem (1.1) and (2.23) we deduce that the function $E(t, (y, \theta), (x, \tau))$ is bounded.

3 Wavelets associated with the operators D_1, D_2

We consider in this section a non negligible function g in $L^1_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$. **Notation.** We denote by $\mathcal{M}^p_{g,s}(\mathcal{K})$, $s \in \mathbb{R}$, p = 1, 2, the space of measurable functions on \mathcal{K} , such that

$$||f||_{\mathcal{M}^p_{g,s}}^p = \int_{\mathcal{K}} |f((y,\theta))|^p \frac{\mathcal{A}_{\alpha}(y)dyd\theta}{||T_{(y,\theta)}g||_{\alpha,2}^{2(s-1)}} < +\infty.$$

Remark 3.1 From the relation (2.11), we deduce that - If s < 1. $L^p_{A_{\alpha}}(\mathcal{K}) \subset \mathcal{M}^p_{g,s}(\mathcal{K})$. - If s = 1. $\mathcal{M}^p_{g,s}(\mathcal{K}) = L^p_{A_{\alpha}}(\mathcal{K})$. - If s > 1. $\mathcal{M}^p_{g,s}(\mathcal{K}) \subset L^p_{A_{\alpha}}(\mathcal{K})$.

Definition 3.1 Let $(\lambda, \mu) \in \widetilde{C} \cup \widetilde{D}, (y, \theta) \in \mathcal{K}$ and $s \in \mathbb{R}$. The family of wavelets $\{g^s_{(\lambda,\mu),(y,\theta)}\}_{s\in\mathbb{R}}$ associated with the operators D_1, D_2 is defined on \mathcal{K} by

$$g_{(\lambda,\mu),(y,\theta)}^{s}(x,\tau) = \varphi_{\lambda,\mu}(x,\tau) \frac{T_{(y,\theta)}g(x,\tau)}{||T_{(x,\tau)}g||_{\alpha,2}^{s}}.$$
(3.1)

Proposition 3.1 We suppose that the function g is such that, for all $(y, \theta) \in \mathcal{K}$

and $s \in \mathbb{R}$, the function $(x, \tau) \longrightarrow \frac{T_{(y,\theta)}g(x,\tau)}{||T_{(x,\tau)}g||_{\alpha,2}^s}$ belongs to $L^{\infty}_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$ (resp. $L^{\infty}_{A_{\alpha}}(\mathcal{K}) \cap \mathcal{M}^2_{g,s}(\mathcal{K})$). Then the function $g^s_{(\lambda,\mu),(y,\theta)}$ belongs to $L^{\infty}_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$ (resp. $L^{\infty}_{A_{\alpha}}(\mathcal{K}) \cap \mathcal{M}^2_{g,s}(\mathcal{K})$).

28

Proof.

We deduce the results from the relations (3.1), (1.4).

Proposition 3.2 Under the hypothesis of Proposition 3.1 and if moreover i) for $s \leq 1$. For $(x, \tau) \in \mathcal{K}$ the function $(y, \theta) \longrightarrow \frac{T_{(y,\theta)}g(x, \tau)}{||T_{(x,\tau)}g||_{\alpha,2}^s}$ is continuous from \mathcal{K} into $L^2_{A_{\alpha,2}}(\mathcal{K})$. ii) For s > 1. For $(x, \tau) \in \mathcal{K}$ the function $(y, \theta) \longrightarrow \frac{T_{(y,\theta)}g(x, \tau)}{||T_{(x,\tau)}g||_{\alpha,2}^s}$ is continuous from \mathcal{K} into $\mathcal{M}^2_{g,s}(\mathcal{K})$. Then, i) For $s \leq 1$. The function $((\lambda, \mu), (y, \theta)) \longrightarrow g^s_{(\lambda, \mu), (y, \theta)}$ is continuous from $\widetilde{C} \cup \widetilde{D} \times \mathcal{K}$ into $L^2_{A_{\alpha}}(\mathcal{K})$. ii) For s > 1. The function $((\lambda, \mu), (y, \theta)) \longrightarrow g^s_{(\lambda, \mu), (y, \theta)}$ is continuous from $\widetilde{C} \cup \widetilde{D} \times \mathcal{K}$ into $\mathcal{M}^2_{a,s}(\mathcal{K})$.

Proof.

i) If $s \leq 1$. Let $((\lambda_0, \mu_0), (y_0, \theta_0)) \in \widetilde{C} \cup \widetilde{D} \times \mathcal{K}$. Using (3.1) and the fact that $T_{(y,\theta)}g(x,\tau) = T_{(x,\tau)}g(y,\theta)$ we obtain

$$\begin{split} ||g_{(\lambda,\mu),(y,\theta)}^{s} - g_{(\lambda_{0},\mu_{0}),(y_{0},\theta_{0})}^{s}||_{\alpha,2} \\ &\leq ||\varphi_{\lambda_{0},\mu_{0}}(x,\tau)(\frac{T_{(x,\tau)}g(y,\theta)}{||T_{(x,\tau)}g||_{\alpha,2}^{s}} - \frac{T_{(x,\tau)}g(y_{0},\theta_{0})}{||T_{(x,\tau)}g||_{\alpha,2}^{s}})||_{\alpha,2} \\ &+ ||(\varphi_{\lambda,\mu}(x,\tau) - \varphi_{\lambda_{0},\mu_{0}}(x,\tau)).\frac{T_{(x,\tau)}g(y_{0},\theta_{0})}{||T_{(x,\tau)}g||_{\alpha,2}^{s}}||_{\alpha,2} \\ &+ ||(\varphi_{\lambda,\mu}(x,\tau) - \varphi_{\lambda_{0},\mu_{0}}(x,\tau))(\frac{T_{(x,\tau)}g(y,\theta)}{||T_{(x,\tau)}g||_{\alpha,2}^{s}} - \frac{T_{(x,\tau)}g(y_{0},\theta_{0})}{||T_{(x,\tau)}g||_{\alpha,2}^{s}})||_{\alpha,2} \end{split}$$

Using (1.4), we get

$$\begin{aligned} ||g^{s}_{(\lambda,\mu),(y,\theta)} - g^{s}_{(\lambda_{0},\mu_{0}),(y_{0},\theta_{0})}||_{\alpha,2} &\leq 3||\frac{T_{(x,\tau)}g(y,\theta)}{||T_{(x,\tau)}g||^{s}_{\alpha,2}} - \frac{T_{(x,\tau)}g(y_{0},\theta_{0})}{||T_{(x,\tau)}g||^{s}_{\alpha,2}}||_{\alpha,2} \\ &+ ||(\varphi_{\lambda,\mu}(x,\tau) - \varphi_{\lambda_{0},\mu_{0}}(x,\tau)).\frac{T_{(x,\tau)}g(y_{0},\theta_{0})}{||T_{(x,\tau)}g||^{s}_{\alpha,2}}||_{\alpha,2} \end{aligned}$$

From hypothesis i) we obtain

$$\lim_{(y,\theta)\to(y_0,\theta_0)} ||\frac{T_{(x,\tau)}g(y,\theta)}{||T_{(x,\tau)}g||_{\alpha,2}^s} - \frac{T_{(x,\tau)}g(y_0,\theta_0)}{||T_{(x,\tau)}g||_{\alpha,2}^s}||_{\alpha,2} = 0,$$
(3.2)

and from Proposition 3.1, the relation (1.6) and the dominated convergence theorem, we get

$$\lim_{(\lambda,\mu)\to(\lambda_0,\mu_0)} ||(\varphi_{\lambda,\mu}(x,\tau) - \varphi_{\lambda_0,\mu_0}(x,\tau)) \cdot \frac{T_{(x,\tau)}g(y_0,\theta_0)}{||T_{(x,\tau)}g||_{\alpha,2}^s} ||_{\alpha,2} = 0.$$
(3.3)

Using (3.2), (3.3) we deduce that

$$\lim_{((\lambda,\mu),(y,\theta))\to((\lambda_0,\mu_0),(y_0,\theta_0))} ||g^s_{(\lambda,\mu),(y,\theta)} - g^s_{(\lambda_0,\mu_0),(y_0,\theta_0)}||_{\alpha,2} = 0.$$

30

ii) If s > 1. Using the same proof as for case $s \leq 1$, by changing the measure $\mathcal{A}_{\alpha}(x)dx$ by the measure $\frac{\mathcal{A}_{\alpha}(x)dx}{||T_{(x,\tau)}g||_{\alpha,2}^{2(s-1)}}$ we deduce that the function $(\lambda, y) \longrightarrow g^{s}_{(\lambda,\mu),(y,\theta)}$ is continuous from $\widetilde{C} \cup \widetilde{D} \times \mathcal{K}$ into $\mathcal{M}_{g,s}^{2}(\mathcal{K})$.

4 Example

As an example of the function g considered in the previous section, we take the heat kernel E_t , t > 0, associated with the operators D_1, D_2 . We obtain the Gaussian wavelets associated with the operators D_1, D_2 .

Definition 4.1 Let $((\lambda, \mu), (y, \theta)) \in \widetilde{C} \cup \widetilde{D} \times \mathcal{K}$. The family of Gaussian wavelets $G^s_{(\lambda,\mu),(y,\theta)}$ given by

$$G^{s}_{(\lambda,\mu),(y,\theta)}(x,\tau) = \varphi_{\lambda,\mu}(x,\tau) \frac{T_{(x,\tau)}E_t(y,\theta)}{\|T_{(x,\tau)}E_t(y,\theta)\|^s}.$$
(4.1)

Remark 4.1 The family of Gaussian wavelets $G^s_{(\lambda,\mu),(\eta,\theta)}$ is also given by

$$G^{s}_{(\lambda,\mu),(y,\theta)}(x,\tau) = \varphi_{\lambda,\mu}(x,\tau) \frac{E(t,(y,\theta),(x,\tau))}{(E(2t,(x,\tau),(x,\tau)))^{s/2}}.$$
(4.2)

Proposition 4.1 For all (y, θ) , $\in \mathcal{K}$ and $s \leq 0$, the function $\frac{E(t, (y, \theta), (x, \tau))}{(E(2t, (x, \tau), (x, \tau)))^{s/2}}$ belongs to $L^{\infty}_{A_{\alpha}}(\mathcal{K}) \cap L^{2}_{A_{\alpha}}(\mathcal{K})$ (resp. $L^{\infty}_{A_{\alpha}}(\mathcal{K}) \cap \mathcal{M}^{2}_{g,s}(\mathcal{K})$), then from the Proposition 3.1 the function $G^{s}_{(\lambda,\mu),(y,\theta)}$ belongs to $L^{\infty}_{A_{\alpha}}(\mathcal{K}) \cap L^{2}_{A_{\alpha}}(\mathcal{K})$ (resp. $L^{\infty}_{A_{\alpha}}(\mathcal{K}) \cap \mathcal{M}^{2}_{g,s}(\mathcal{K})$).

Proof.

From the relations (2.23),(2.25) and (2.26), we deduce that there exists a positive constant $M_0(t)$ such that for all $(y, \theta) \in \mathcal{K}$, we have

$$\forall (x,\tau) \in \mathcal{K}, \quad \frac{E(t,(y,\theta),(x,\tau))}{(E(2t,(x,\tau),(x,\tau)))^{s/2}} \le M_0(t).$$
(4.3)

We obtain the result asked from (1.4), the continuity of the function $(x, \tau) \mapsto \frac{E(t, (y, \theta), (x, \tau))}{(E(2t, (x, \tau), (x, \tau)))^{s/2}}$ on \mathcal{K} , and the relation (4.3).

5 The generalized windowed transform associated with the operators D_1, D_2

In this section, we take a non negligible function g in $L^1_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$ satisfying the hypothesis of Propositions 3.1, 3.2.

Definition 5.1 Let $s \in \mathbb{R}$. The generalized windowed transform Φ_g^s is defined for regular function f on \mathcal{K} by

$$\Phi_g^s(f)((\lambda,\mu),(y,\theta)) = \int_{\mathcal{K}} f(x,\tau)(g^s_{(\lambda,\mu),(y,\theta)})^*(x,\tau)\mathcal{A}_\alpha(x)dxd\tau, \quad ((\lambda,\mu),(y,\theta)) \in \widetilde{C} \cup \widetilde{D} \times \mathcal{K},$$
(5.1)

where

$$\forall (x,\tau) \in \mathcal{K}, \quad (g^s_{(\lambda,\mu),(y,\theta)})^*(x,\tau) = \overline{g^s_{(\lambda,\mu),(y,\theta)}}(x,-\tau).$$

Remark 5.1 The relation (5.1) can also be written in the following two forms.

i)
$$\Phi_g^s(f)((\lambda,\mu),(y,\theta)) = (\frac{\varphi_{\lambda,\mu}f}{||T_{(.,.)}g||_{\alpha,2}^s}) * g^*(y,-\theta),$$
(5.2)

where * is the convolution product defined by (2.6).

ii)
$$\Phi_g^s(f)((\lambda,\mu),(y,\theta)) = \mathcal{F}(f.\frac{T_{(y,\theta)}(g^*)}{||T_{(.,.)}g||_{\alpha,2}^s})(-\lambda,\mu),$$
(5.3)

where \mathcal{F} is Fourier transform associated with the operators D_1, D_2 given by (1.12).

5.1Plancherel formula for the generalized windowed transform

Theorem 5.1 For all $s \in \mathbb{R}$, we have for the transform Φ_q^s the following Plancherel formula

$$\int_{\widetilde{C}\cup\widetilde{D}}\int_{\mathcal{K}}|\Phi_g^s(f)((\lambda,\mu),(y,\theta))|^2d\gamma(\lambda,\mu)\mathcal{A}_\alpha(y)dyd\theta=||f||^2_{\mathcal{M}^2_{g,s}}.$$

This formula is true for the functions of the following spaces.

i) If
$$s \leq 1$$
. $f \in L^2_{A_{\alpha}}(\mathcal{K})$.

ii) If
$$s > 1$$
. $f \in \mathcal{M}^2_{g,s}(\mathcal{K})$.

Proof. i) If $s \leq 1$. For all $(y, \theta) \in \mathcal{K}$, the function $\frac{T_{(y,\theta)}(g^*)(x,\tau)}{||T_{(x,\tau)}g||_{\alpha,2}^s}$ is in $L^{\infty}_{A_{\alpha}}(\mathcal{K})$ and as f is in $L^2_{A_{\alpha}}(\mathcal{K})$, then the function $(x,\tau) \longrightarrow f(x,\tau) \frac{T_{(y,\theta)}(g^*)(x,\tau)}{||T_{(x,\tau)}g||_{\alpha,2}^s}$ belongs to $L^2_{A_{\alpha}}(\mathcal{K})$. Thus, from (5.3) we deduce that

$$\begin{split} \int_{\widetilde{C}\cup\widetilde{D}} \int_{\mathcal{K}} |\Phi_g^s(f)((\lambda,\mu),(y,\theta))|^2 \mathcal{A}_{\alpha}(y) dy d\theta d\gamma(\lambda,\mu) \\ &= \int_{\widetilde{C}\cup\widetilde{D}} \int_{\mathcal{K}} |\mathcal{F}(f.\frac{T_{(y,\theta)}(g^*)}{||T_{(...)}g||_{\alpha,2}^s})(\lambda,-\mu)|^2 \mathcal{A}_{\alpha}(y) dy d\theta d\gamma(\lambda,\mu). \end{split}$$

From Theorem 1.3, the fact that

$$||T_{(x,\tau)}(g^*)||_{\alpha,2} = ||T_{(x,\tau)}(g)||_{\alpha,2}$$

and Fubini-Tonnelli's theorem we obtain

$$\begin{split} \int_{\mathcal{K}} \int_{\widetilde{C}\cup\widetilde{D}} \Phi_{g}^{s}(f)((\lambda,\mu),(y,\theta))|^{2} d\gamma(\lambda,\mu) \mathcal{A}_{\alpha}(y) dy d\theta \\ &= \int_{\mathcal{K}} \frac{|f(x,\tau)|^{2}}{||T_{(x,\tau)}(g)||_{\alpha,2}^{2s}} (\int_{\mathcal{K}} |T_{(y,\theta)}g(x,\tau)|^{2} \mathcal{A}_{\alpha}(y) dy d\theta) \mathcal{A}_{\alpha}(x) dx d\tau \\ &= \int_{\mathcal{K}} \frac{|f(x,\tau)|^{2}}{||T_{(x,\tau)}(g)||_{\alpha,2}^{2(s-1)}} \mathcal{A}_{\alpha}(x) dx d\tau \\ &= ||f||_{\mathcal{M}^{2}_{g,s}}^{2}. \end{split}$$

ii) If s > 1. We obtain the result in this case by using the same proof as for the case $s \leq 1$.

5.2 Inversion formula for the generalized windowed transform

Theorem 5.2 For all $s \in \mathbb{R}$, the transform Φ_g^s admits the following inversion formula. Let $S_{p,q}$ be the subset of $\widetilde{C} \cup \widetilde{D}$ and $\lim_{(p,q)\to+\infty} S_{p,q} = \widetilde{C} \cup \widetilde{D}$ Then we have for $(x, \tau) \in \mathcal{K}$

$$f(x,\tau) = \lim_{(p,q)\to+\infty} \int_{S_{p,q}} \int_{\mathcal{K}} \Phi_g^s(f)((\lambda,\mu),(y,\theta)) g_{(\lambda,\mu),(y,\theta)}^{2-s}(x,-\tau) \mathcal{A}_\alpha(y) dy d\theta d\gamma(\lambda,\mu).$$
(5.4)

the limit is in $L^2_{\alpha}(\mathcal{K})$. This formula is true for the functions f of the following spaces.

i) If
$$s \leq 1$$
. $f \in L^1_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$.
ii) If $s > 1$. $f \in \mathcal{M}^1_{g,s}(\mathcal{K}) \cap \mathcal{M}^2_{g,s}(\mathcal{K})$.

To prove this theorem, we need the following lemma.

Wavelets and generalized windowed transform

Lemma 5.1 For all $(\lambda, \mu) \in \widetilde{C} \cup \widetilde{D}$, the integral

$$\int_{\mathcal{K}} \Phi_g^s(f)((\lambda,\mu),(y,\theta)) g_{(\lambda,\mu),(y,\theta)}^{2-s}(x,-\tau) \mathcal{A}_\alpha(y) dy d\theta,$$
(5.5)

is absolutely convergent and satisfies for all $(\lambda, \mu), (y, \theta) \in \widetilde{C} \cup \widetilde{D} \times \mathcal{K}$, the following relation

$$\int_{\mathcal{K}} \Phi_g^s(f)((\lambda,\mu),(y,\theta)) g_{(\lambda,\mu),(y,\theta)}^{2-s}(x,-\tau) \mathcal{A}_{\alpha}(y) dy d\theta = \frac{\varphi_{\lambda,\mu}(x,-\tau)}{||T_{(x,-\tau)}g||_{\alpha,2}^2} \mathcal{F}(f.T_{(x,-\tau)}(g*g^*))(-\lambda,\mu).$$
(5.6)

These results are true for the functions f of the following spaces.

i) If
$$s \leq 1$$
. $f \in L^1_{A_\alpha}(\mathcal{K}) \cap L^2_{A_\alpha}(\mathcal{K})$.

ii) If
$$s > 1$$
. $f \in \mathcal{M}^1_{g,s}(\mathcal{K}) \cap \mathcal{M}^2_{g,s}(\mathcal{K})$.

Proof.

i) If $s \leq 1$. Using (1.4), we have for all $((\lambda, \mu), (x, \tau)) \in \widetilde{C} \cup \widetilde{D} \times \mathcal{K}$,

$$\begin{split} \int_{\mathcal{K}} |\Phi_g^s(f)((\lambda,\mu),(y,\theta))g_{(\lambda,\mu),(y,\theta)}^{2-s}(x,-\tau)|\mathcal{A}_{\alpha}(y)dyd\theta \\ &\leq \frac{1}{||T_{(x,-\tau)}g||_{\alpha,2}^{2-s}} \int_{\mathcal{K}} |\Phi_g^s(f)((\lambda,\mu),(y,\theta))||T_{(y,\theta)}g(x,-\tau)|\mathcal{A}_{\alpha}(y)dyd\theta. \end{split}$$

Using Hölder's inequality and the relation (5.2) we obtain,

$$\begin{split} \int_{\mathcal{K}} |\Phi_g^s(f)((\lambda,\mu),(y,\theta))g_{(\lambda,\mu),(y,\theta)}^{2-s}(x,-\tau)|\mathcal{A}_{\alpha}(y)dyd\theta \\ &\leq \frac{1}{||T_{(x,-\tau)}g||_{\alpha,2}^{2-s}}||\Phi_g^s(f)((\lambda,\mu),(.,.))||_{\alpha,2}||g||_{\alpha,2} \\ &\leq \frac{||f||_{\alpha,1}||g||_{\alpha,2}^2}{||T_{(x,-\tau)}g||_{\alpha,2}^2} < +\infty. \end{split}$$

Thus the integral (5.5) is absolutely convergent. By using (5.2), we obtain for all $((\lambda, \mu), (x, \tau)) \in \widetilde{C} \cup \widetilde{D} \times \mathcal{K}$,

$$\int_{\mathcal{K}} \Phi_{g}^{s}(f)((\lambda,\mu),(y,\theta))g_{(\lambda,\mu),(y,\theta)}^{2-s}(x,-\tau)\mathcal{A}_{\alpha}(y)dyd\theta$$
$$=\frac{\varphi_{\lambda,\mu}(x,-\tau)}{||T_{(x,-\tau)}g||_{\alpha,2}^{2}}\int_{\mathcal{K}} [(\varphi_{\lambda,\mu}(.,.)f)*g^{*}(y,-\theta)].T_{(y,\theta)}g(x,-\tau)\mathcal{A}_{\alpha}(y)dyd\theta.$$
(5.7)

But from the associativity of the convolution product associated with the operators D_1, D_2 , we get

$$\int_{\mathcal{K}} [(\varphi_{\lambda,\mu}(.,.)f) * g^*(y,-\theta))] \cdot T_{(y,\theta)}g(x,-\tau)\mathcal{A}_{\alpha}(y)dyd\theta = (\varphi_{\lambda,\mu}(.,.)f) * (g*g^*)(x,-\tau)$$
$$= \mathcal{F}(f \cdot T_{(x,-\tau)}(g*g^*))(-\lambda,\mu). \quad (5.8)$$

Thus, we deduce (5.6) from the relation (5.7), (5.8).

ii) If s > 1. The same arguments used in i) imply the results of the Lemma 5.1 for the function f of the space $\mathcal{M}_{g,s}^1(\mathcal{K}) \cap \mathcal{M}_{g,s}^2(\mathcal{K})$.

Proof of Theorem 5.2.

i) If $s \leq 1$. For all f in $L^1_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$ and $(x, \tau) \in \mathcal{K}$, we have from Lemma 5.1

$$\begin{split} \int_{S_{p,q}} (\int_{\mathcal{K}} \Phi_g^s(f)((\lambda,\mu),(y,\theta)) g_{(\lambda,\mu),(y,\theta)}^{2-s}(x,-\tau) \mathcal{A}_{\alpha}(y) dy d\theta) d\gamma(\lambda,\mu) \\ &= \frac{1}{||T_{(x,\tau)}g||_{\alpha,2}^2} \int_{S_{p,q}} \mathcal{F}(f.T_{(x,-\tau)}(g*g^*))(\lambda,-\mu) \varphi_{\lambda,\mu}(x,-\tau) d\gamma(\lambda,\mu). \end{split}$$

As the functions f and g are in $L^1_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$, then from Proposition 2.3, the function $(t, \rho) \longrightarrow f(t, \rho) \cdot T_{(x, -\tau)}(g * g^*)(t, \rho)$ belongs to $L^1_{A_{\alpha}}(\mathcal{K}) \cap L^2_{A_{\alpha}}(\mathcal{K})$. Then, from Theorem 1.2 and Proposition 2.5, we deduce that

$$\lim_{(p,q)\to+\infty} \int_{S_{p,q}} \left(\int_{\mathcal{K}} \Phi_g^s(f)((\lambda,\mu),(y,\theta)) g_{(\lambda,\mu),(y,\theta)}^{2-s}(x,-\tau) \mathcal{A}_{\alpha}(y) dy d\theta \right) d\gamma(\lambda,\mu)$$
$$= \frac{1}{||T_{(x,\tau)}g||_{\alpha,2}^2} f(x,\tau) T_{(x,-\tau)}(g*g^*)(x,\tau)$$

 $= f(x,\tau).$

ii) If s > 1. Let f be in $\in \mathcal{M}^1_{g,s}(\mathcal{K}) \cap \mathcal{M}^2_{g,s}(\mathcal{K})$. We obtain the result of this case by using the same proof as for the previous case.

Theorem 5.3 We consider the function g in $S_*(\mathbb{R}^2)$. Then for all f in $S_*(\mathbb{R}^2)$ and $s \in \mathbb{R}$, we have the following inversion formula, $\forall (x, \tau) \in \mathcal{K}$,

$$f(x,\tau) = \int_{\widetilde{C}\cup\widetilde{D}} \int_{\mathcal{K}} \Phi_g^s(f)((\lambda,\mu),(y,\theta)) g_{(\lambda,\mu),(y,\theta)}^{2-s}(x,-\tau) \mathcal{A}_{\alpha}(y) dy d\theta d\gamma(\lambda,\mu).$$
(5.9)

Proof.

We deduce the relation (5.9) from (5.6), Proposition 2.5 and Theorem 1.2.

6 Example

The Gaussian windowed transform Φ_G^s , $s \leq 0$, associated with the operators D_1, D_2 is defined for regular function f by

$$\Phi_G^s(f)((\lambda,\mu),(y,\theta)) = \int_{\mathcal{K}} f(x,\tau) (G^s_{(\lambda,\mu),(y,\theta)})^*(x,\tau) \mathcal{A}_\alpha(x) dx d\tau, \qquad (6.1)$$

 $(\lambda,\mu), (y,\theta) \in \widetilde{C} \cup \widetilde{D} \times \mathcal{K}$ where $G^s_{(\lambda,\mu),(y,\theta)}$ is the Gaussian wavelet given by (4.1).

By applying to this transform the results of the previous sections we obtain for the transform $\Phi_G^s, s \in \mathbb{R}$, analogous Plancherel and inversion formulas.

7 Open Problem

In the future work I will to study the wavelet and the generalized windowed transform on the generalized Sobolev spaces.

References

- [1] L.C. Andrews, *Special functions of Mathematics for engineers*, second edition. Oxford University Press-Oxford-Tokyo-Melbourn, 1998.
- [2] A. Hassini and K. Trimèche, Wavelets and generalized windowed transforms associated with the Dunkl-Bessel-Laplace operator on $\mathbb{R}^d \times \mathbb{R}_+$, Mediterr. J. Math. 12,(2015), p. 1323-1344.
- [3] T.H. Koornwinder, The continuous wavelet transform. Series in Approximations and Decompositions, Vol.1. Wavelets: An elementary treatment of theory and applications. Edited by T.H.Koornwinder, World Scientific, (1993), p.27-48.
- [4] M. Flensted-Jensen, Spherical Functions on a Simply Connected Semigroupe wavelet Lie Group II. The Paley-Wiener Theorem for the Rank one Case, Math.Ann.(1977),228, p.65-92.
- [5] K.Trimèche, Opérateurs de permutation et analyse harmonique associés a des opérateurs aux dérives partielles, Math. Pures et Appl.(1991),70,p.1-73.
- [6] K.Trimèche, Generalized Harmonic Analysis and Wavelet Packets, Gordon and Breach Sci. Publishers, 2001.

[7] K.Trimèche, *Generalized Wavelets and Hypergroups*, Gordon and Breach Science Publishers, 1997.

36