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1 Introduction

Let A (p) denote the class of functions of the form:

f (z) = zp +

1X
k=1+p

akz
k (p 2 N = f1; 2; 3; :::g) ; (1)

which are analytic and p-valent in the open unit disc U = fz 2 C : jzj < 1g
and let A(1) = A.
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Let Pk (; p) (k � 2; 0 �  < p; p 2 N) denote the class of functions

g (z) = p+

1X
k=1

ckz
k (2)

which are analytic in U and satisfy for every r < 1
�
z = rei� 2 U

�
the

conditions
(1) g(0) = p;

(2)

Z 2�

0

jRe fg (z)g � j
(p� ) d� � k�: (3)

The class Pk (; p) was introduced and studied by Aouf [2].
We note that:

(1) Pk (�; 1) = Pk () (k � 2; 0 �  < 1) ( see Padmanabhan and Parvatham
[17]);
(2) Pk (0; 1) = Pk (k � 2) ( see Pinchuk [20] and Robertson [23] );
(3) P2 (; p) = P (; p) ; (0 �  < p; p 2 N) ; where P (; p) is the class of
functions g of the form (2) and satisfy the conditions g (0) = p and Re fg(z)g >
; (0 �  < p) in U ;
(4) P2 (0; 1) = P , where P is the class of functions with positive real part in
U ;
(5) P2 (; 1) = P () (0 �  < 1) ; where h () = (1� ) p(z)+; h (z) 2 P ()
and p(z) 2 P:

From (1:2), we have g (z) 2 Pk (; p) if and only if there exists gi 2
P (; p) ; i = 1; 2 such that (see [2])

g (z) =

�
k

4
+
1

2

�
g1 (z)�

�
k

4
� 1
2

�
g2 (z) (z 2 U) : (4)

For analytic functions f (z) 2 A(p); given by (1) and � (z) 2 A(p) given by
� (z) = zp +

1P
k=1+p

bkz
k (p 2 N), the Hadamard product (or convolution) of

f (z) and � (z), is de�ned by

(f � �) (z) = zp +
1X

k=1+p

akbkz
k = (� � f) (z) : (5)

Let �1; A1; :::; �q; Aq and �1; B1; :::; �s; Bs (q; s 2 N) be positive real para-
meters such that
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1 +

sX
j=1

Bj �
qX
j=1

Aj � 0:

The Wright generalized hypergeometric function [28] (see also [27])

q	s [(�1; A1) ; :::; (�q; Aq) ; (�1; B1) ; :::; (�s; Bs) ; z] =q 	s

h
(�i; Ai)1;q ; (�i; Bi)1;s ; z

i
is de�ned by

q	s

h
(�i; Ai)1;q ; (�i; Bi)1;s ; z

i
=

1X
k=0

qQ
i=1

� (�i + kAi)

sQ
i=1

� (�i + kBi)
:
zn

k!
(z 2 U) :

If Ai = 1(i = 1; :::; q) and Bi = 1 (i = 1; :::; s) ; we have the relationship:


q	s

h
(�i; 1)1;q ; (�i; 1)1;s ; z

i
= qFs

�
�1; :::; �q; �1 ; :::; �s; z

�
;

where qFs
�
�1; :::; �q; �1 ; :::; �s; z

�
is the generalized hypergeometric function

(see [27]) and


 =

sQ
i=1

� (�i)

qQ
i=1

� (�i)

: (6)

The Wright generalized hypergeometric functions were invoked in the geomet-
ric function theory (see [21] and [22]).
By using the generalized hypergeometric function Dziok and Srivastava [10]
introduced a linear operator. In [9] Dziok and Raina and in [4] Aouf and
Dziok extended this linear operator by using Wright generalized hypergeomet-
ric function.
Aouf et al. [6] considered the following linear operator

�p;q;s

h
(�i; Ai)1;q ; (�i; Bi)1;s

i
: A(p)! A(p);

de�ned by the following Hadamard product:

�p;q;s

h
(�i; Ai)1;q ; (�i; Bi)1;s

i
f (z) =q �

p
s

h
(�i; Ai)1;q ; (�i; Bi)1;s ; z

i
� f (z) ;

where q�ps
h
(�i; Ai)1;q ; (�i; Bi)1;s ; z

i
is given by
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q�
p
s

h
(�i; Ai)1;q ; (�i; Bi)1;s ; z

i
= 
 zp q	s

h
(�i; Ai)1;q ; (�i; Bi)1;s ; z

i
:

We observe that, for a function f (z) of the form (1); we have

�p;q;s

h
(�i; Ai)1;q ; (�i; Bi)1;s

i
f (z) = zp +

1X
k=1+p


�k;p (�1) akz
k; (7)

where 
 is given by (6) and �k;p (�1) is de�ned by

�k;p (�1) =
� (�1 + A1 (k � p)) :::� (�q + Aq (k � p))

� (�1 +B1 (k � p)) :::� (�s +Bs (k � p)) (k � p)!
: (8)

If, for convenience, we write

�p;q;s [�1; A1; B1] f (z) = �p;q;s [(�1; A1) ; :::; (�q; Aq) ; (�1; B1) ; :::; (�s; Bs)] f (z) ;

then one can easily verify from (7) that

zA1 (�p;q;s [�1; A1; B1] f (z))
0 = �1�p;q;s [�1 + 1; A1; B1] f (z)

�(�1 � pA1)�p;q;s [�1; A1; B1] f (z) ; (A1 > 0): (9)

For p = 1, �1;q;s [�1; A1; B1] = � [�1] which was introduced by Dziok and
Raina [9] and studied by Aouf and Dziok [4]. We note that, for f (z) 2 A(p);
Ai = 1 (i = 1; 2; :::; q) andBi = 1 (i = 1; 2; :::; s) ; we obtain �p;q;s [�1; 1; 1] f (z) =
Hp;q;s[�1]f (z) ; where Hp;q;s[�1] is the Dziok-Srivastava operator (see [10]).
We note also that, for f (z) 2 A(p); q = 2, s = 1 and A1 = A2 = B1 = 1,

we have:
(1) �p;2;1 [a; 1; c] f (z) = Lp (a; c) f (z) (a > 0; c > 0; p 2 N) (see [25]);

(2) �p;2;1 [�+ p; 1; 1] f (z) = D�+p�1f (z) (� > �p; p 2 N) ; where D�+p�1f (z)
is the (�+ p� 1)�the order Ruscheweyh derivative (see [11]);

(3) �p;2;1 [� + p; 1; � + p+ 1] f (z) = F�;p(f)(z) (� > �p; p 2 N), where F�;p (f) (z)
is the generalized Bernardi-Libera-Livingston-integral operator (see [8]);

(4) �p;2;1 [c; 1; a] f (z) = Iac;pf (z)
�
a 2 R; c 2 CnZ�0 ; p 2 N

�
;where the operator

Iac;p was introduced and studied by by AL-Kharasani and Al-Hajiry (see [1]);
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(5) �p;2;1 [p+ 1; 1;n+ p] f (z) = In;pf (z) (n 2 Z;n > �p; p 2 N) ;where the op-
erator In;p was introduced and studied by by Liu and Noor (see [14]);

(6) �p;2;1 [�+ p; c; a] f (z) = I�p (a; c) f (z) (a; c 2 RnZ�o ;� > �p; p 2 N) ; where
I�p (a; c) is the Cho-Kwon-Srivastava operator (see [7]);

(7) �p;2;1 [1 + p; 1; 1 + p� �] f (z) = 
(�;p)z f (z) (�1 < � < 1 + p; p 2 N) ; where
the operator 
(�;p)z was introduced and studied by Patel and Mishra (see [18])
and studied by Srivastava and Aouf [26] when (0 � � < 1).

Now we de�ne the following classes of the class A (p) for 0 � ; � < p and
k � 2 :

Sk (p; ) =

�
f (z) 2 A (p) : zf

0
(z)

f (z)
2 Pk (p; ) ; z 2 U

�
; (10)

Ck (p; ) =

8>><>>:f (z) 2 A (p) :
�
zf

0
(z)
�0

f
0
(z)

2 Pk (p; ) ; z 2 U

9>>=>>; ; (11)

and

Vk (p; ; �) =

(
f (z) 2 A (p) ; g (z) 2 S2 (p; ) :

zf
0
(z)

g (z)
2 Pk (p; �) ; z 2 U

)
:

(12)
We can easily see that:

f(z) 2 Ck;p () ()
zf 0(z)

p
2 Sk;p () : (13)

We note that, for special choices for the parameters k and  involved in the
above classes, we can obtain well-known subclasses of A (p). For example, we
have

S2;p () = S
�
p(); C2;p () = Kp() and V2;p (; �) = Kp(; �):

The classes S�p(), Kp() and Kp(; �) denoted by p-valently starlike, convex
and close-to-convex of order  and type � (0 � ; � < p; p 2 N). The classes
S�p() and Kp() were studied by Patil and Thakare [19] and Owa [16] and the
class Kp(; �) was studied by Aouf [3]. Note that S�1 () = S

� () (0 �  < 1)
is the class of starlike function of order :
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Next, by using the Wright generalized hypergeometric functions, we intro-
duce the following classes of analytic functions for 0 � ; � < p, and k � 2

Sk;p (�1; A1; B1; ) = ff (z) 2 A (p) : �p;q;s [�1; A1; B1] f (z) 2 Sk (p; ) ; z 2 Ug ;
(14)

Ck;p (�1; A1; B1; ) = ff (z) 2 A (p) : �p;q;s [�1; A1; B1] f (z) 2 Ck (p; ) ; z 2 Ug ;
(15)

and

Vk;p (�1; A1; B1; ; �) = ff (z) 2 A (p) : �p;q;s [�1; A1; B1] f (z) 2 Vk (p; �) ; z 2 Ug :
(16)

We also note that

f (z) 2 Ck;p (�1; A1; B1; ),
zf

0
(z)

p
2 Sk;p (�1; A1; B1; ) : (17)

Putting q = 2; s = 1; �1 = c; �2 = 1, �1 = a (a; c > 0; p 2 N) and A1 =
A2 = B1 = 1; in the above classes we obtain, respectively, the following classes:

Sk;p (a; c; ) =
�
f (z) 2 A (p) : L�p (a; c) f (z) 2 Sk (p; ) ; z 2 U

	
; (18)

Ck;p (a; c; ) =
�
f (z) 2 A (p) : L�p (a; c) f (z) 2 Ck (p; ) ; z 2 U

	
; (19)

and

Vk;p (a; c; ; �) =
�
f (z) 2 A (p) : L�p (a; c) f (z) 2 Vk (p; �) ; z 2 U

	
: (20)

We also note that

f (z) 2 Ck;p (a; c; ),
zf

0
(z)

p
2 Sk;p (a; c; ) : (21)

Remark 1. (1) The classes Sk;p (a; c; ) ; Ck;p (a; c; ) and Vk;p (a; c; ; �) given
by (18),(19) and (20), respectively, correct the de�nitions of the classes intro-
duced by Hussain et al. [13, De�nations 1.1, 1.2 and 1.3, respectively];
(2) Putting k = 2; in (18), (19) and (20), respectively, we correct the

classes introduced by Hussain [12, De�nations 1.1, 1.2 and 1.3, respectively].
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2 Preliminary results

In order to prove our results, we need the following lemmas.
Lemma 1 [15]: Let u = u1 + iu2 and v = v1 + iv2 and � (u; v) be a complex-
valued function satisfying the conditions:
(1) � (u; v) is continuous in a domain D 2 C2.
(2) (0; 1) 2 D and Re� (1; 0) > 0.
(3) <e f� (iu2; v1)g > 0 where (iu2; v1) 2 D and v1 � �1

2
(1 + u22).

If h(z) = 1 + c1z + c2z
2 + ::: is analytic in U such that

�
h (z) ; zh

0
(z)
�
2 D

and Re
�
�
�
h (z) ; zh

0
(z)
�	
> 0 for z 2 U , then Refh (z)g > 0 in U .

Lemma 2 [24]: Let p(z) be analytic in U with p(0) = 1 and <fp (z)g > 0; z 2
U: Then for s > 0 and � 6= �1 (complex),

Re

�
p (z) +

szp
0
(z)

p (z) + �

�
> 0 (jzj < r0) ;

where r0 is given by

r0 =
j� + 1jq

A+ (A2 � j�2 � 1j)
1
2

; A = 2 (s+ 1)2 + j�j2 � 1;

and this radius is best possible.

Lemma 3 [24]. Let � be convex and f be starlike in U . Then, for F analytic
in U with F (0) = 1; ��Ff

��f is contained in the convex hull of F (U) :

3 Main Results

Unless otherwise mentioned, we shall assume in the reminder of this paper that,
the parameters �1; A1; :::; �q; Aq and �1; B1; :::; �s; Bs (q; s 2 N) are positive
real numbers, 0 � ; � < p, k � 2 and z 2 U .
Theorem 1. Let 0 � � �  < p; �1

A1
> p and k � 2; then

Sk;p (�1 + 1; A1; B1; ) � Sk;p (�1; A1; B1; �) ; (22)

where

� =
2[p� 2(p� �1

A1
)]

2 �1
A1
� 2p� 2 + 1 +

r�
2 �1
A1
� 2p� 2 + 1

�2
+ 8[p� 2(p� �1

A1
)

: (23)
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Proof. Let f(z) 2 Sk;p (�1 + 1; A1; B1; ) and

z (�p;q;s [�1; A1; B1] f (z))
0

�p;q;s [�1; A1; B1] f (z)
= H(z) = (p� �)h(z) + �; (24)

where

h (z) =

�
k

4
+
1

2

�
h1 (z)�

�
k

4
� 1
2

�
h2 (z) ; (25)

where hi(z) (i = 1; 2) are analytic in U and hi(0) = 1 (i = 1; 2) : Using (9) in
(24) and di¤erentiating the resulting equation with respect to z, we have

z (�p;q;s [�1 + 1; A1; B1] f (z))
0

�p;q;s [�1 + 1; A1; B1] f (z)
�  = � �  + (p� �)h (z) + (p��)zh0 (z)

(p��)h(z)+�+ �1
A1
�p :

(26)
Now we will show that H (z) 2 Pk (; p) or hi(z) 2 P . From (25) and (26) we
have

z (�p;q;s [�1 + 1; A1; B1] f (z))
0

�p;q;s [�1 + 1; A1; B1] f (z)
�  =

�
k

4
+
1

2

�
f� �  + (p� �)h1 (z)

+
(p��)zh01(z)

(p��)h1(z)+�+ �1
A1
�p

�
�
�
k

4
� 1
2

��
� �  + (p� �)h2 (z) + (p��)zh02(z)

(p��)h2(z)+�+ �1
A1
�p

�
;

this implies that

Re

(
� �  + (p� �)hi (z) +

(p� �) zh0i (z)
(p� �)hi (z) + � + �1

A1
� p

)
> 0 (i = 1; 2) :

We form the functional � (u; v) by taking u = hi(z), v = zh
0
i (z),

� (u; v) = � �  + (p� �)u+ (p� �) v
(p� �)u+ � + �1

A1
� p:

Clearly, the �rst two conditions of Lemma 1 are satis�ed in the domain D �
C� Cn

�+
�1
A1
�p

��p . Now, we verify the condition (iii) as follows:

Re f� (iu2; v1)g = (� � ) + Re
(

(p� �) v1
(p� �) iu2 + � + �1

A1
� p

)

� (� � )�
(p� �)

�
� + �1

A1
� p
�
(1 + u22)

2

�
(p� �)2 u22 +

�
� + �1

A1
� p
�2�

=
A+Bu22
2C

;
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where

A = 2(� � )
�
� +

�1
A1
� p
�2
� (p� �)

�
� +

�1
A1
� p
�
;

B = 2(� � ) (p� �)2 � (p� �)
�
� +

�1
A1
� p
�
;

C = (p� �)2 u22 +
�
� +

�1
A1
� p
�2
:

We note that Re f� (iu2; v1)g < 0 if and only if A � 0 and B < 0: From
A � 0, we obtain � as given by (23) and from 0 � � �  < p we have
B < 0. Therefore applying Lemma 1, hi (z) 2 P (i = 1; 2) and consequently
f 2 Sk;p (�1; A1; B1; �). This completes the proof of Theorem 1.

Putting q = 2; s = 1; �1 = c; �2 = 1; �1 = a and A1 = A2 = B1 = 1
(c 2 R; a 2 CnZ�0 ; p 2 N) in Theorem 1, we obtain the following corollary .
Corollary 1. Let 0 � � �  < p; c > p and k � 2; then

Sk;p (a; c+ 1; ) � Sk;p (a; c; �) ;

where

� =
2 [p� 2 (p� c)]

2c� 2p� 2 + 1 +
q
(2c� 2p� 2 + 1)2 + 8 [p� 2 (p� c)]

: (27)

Remark 2. The result in Corollary 1 corrects the result obtained by Hussain
et al. [13, Theorem 1].
Putting k = 2; in Corollary 1, we obtain the following corollary which

corrects the result obtained by Hussain [12, Theorem 1].
.
Corollary 2. Let 0 � � �  < p and c > p; then

Sp (a; c+ 1; ) � Sp (a; c; �) ;

where � given by (27).

Theorem 2. Let 0 � � �  < p; �1
A1
> p and k � 2; then

Ck;p (�1 + 1; A1; B1; ) � Ck;p (�1; A1; B1; �) : (28)

Proof. Applying (17) and Theorem 1, we observe that

f(z) 2 Ck;p (�1 + 1; A1; B1; ) () zf 0(z)

p
2 Sk;p (�1 + 1; A1; B1; )



Some Classes of Analytic 47

=) zf 0(z)

p
2 Sk;p (�1; A1; B1; �)() f(z) 2 Ck;p (�1; A1; B1; �) ;

which evidently proves Theorem 2.

Theorem 3. Let 0 � ; � < p; �1
A1
> p and k � 2; then

Vk;p (�1 + 1; A1; B1; ; �) � Vk;p (�1; A1; B1; ; �) : (29)

Proof. Let f (z) 2 Vk;p (�1 + 1; A1; B1; ; �) : Then, in view of the de�n-
ition of the class Vk;p (�1 + 1; A1; B1; ; �) ; there exists a function g (z) 2
S2;p (�1 + 1; A1; B1; ) such that

z (�p;q;s [�1 + 1; A1; B1] f (z))
0

�p;q;s [�1 + 1; A1; B1] g(z)
2 Pk (�; p) (z 2 U):

Now let

z (�p;q;s [�1; A1; B1] f (z))
0

�p;q;s [�1; A1; B1] g(z)
= G(z) = (p� �)h (z) + �; (30)

where h(z) is given by (25): Using (9) in (30), we have

�1
A1
�p;q;s [�1 + 1; A1; B1] f (z)� (

�1
A1 1

� p)�p;q;s [�1; A1; B1] f (z)

= [(p� �)h (z) + �]�p;q;s [�1; A1; B1] g(z): (31)

Di¤erentiating (31) with respect to z and multiplying by z; we obtain

�1
A1
z(�p;q;s [�1 + 1; A1; B1] f(z))

0 � (�1
A1
� p)z(�p;q;s [�1; A1; B1] f(z))0

= (p� �)h0 (z) �p;q;s [�1; A1; B1] g(z)+[(p� �)h (z)+�]z(�p;q;s [�1; A1; B1] g(z))0:
(32)

Since g(z) 2 S2;p (�1 + 1; A1; B1; ) ; by Theorem 1, g (z) 2 S2;p (�1; A1; B1; ),
then we have

z (�p;q;s [�1; A1; B1] g(z))
0

�p;q;s [�1; A1; B1] g(z)
= (p� ) q(z) + ;

where q(z) = 1+ c1z+ c2z2+ ::: is analytic in U with q(0) = 1: Then by using
(9), we have

�1
A1

�p;q;s [�1 + 1; A1; B1] g(z)

�p;q;s [�1; A1; B1] g(z)
= (p� ) q(z) + �1

A1
� p+ : (33)
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From (32) and (33), we obtain

z (�p;q;s [�1 + 1; A1; B1] f (z))
0

�p;q;s [�1 + 1; A1; B1] g(z)
� � = (p� �)h (z) + (p� �) zh0(z)

(p� ) q(z) + �1
A1
� p+  :

(34)
Now we will show that G (z) 2 Pk (�; p) or hi (z) 2 P; i = 1; 2: From (25) and
(34) we have

z (�p;q;s [�1 + 1; A1; B1] f(z))
0

�p;q;s [�1 + 1; A1; B1] g(z)
� �

=

�
k

4
+
1

2

�(
(p� �)h1 (z) +

(p� �) zh01(z)
(p� ) q(z) + �1

A1
� p+ 

)

�
�
k

4
� 1
2

�(
(p� �)h2 (z) +

(p� �) zh02(z)
(p� ) q(z) + �1

A1
� p+ 

)
;

this implies that

Re

(
(p� �)hi (z) +

(p� �) zh0i(z)
(p� ) q(z) + �1

A1
� p+ 

)
> 0 (z 2 U ; i = 1; 2) :

We form the functional � (u; v) by choosing u = hi(z), v = zh
0
i (z),

� (u; v) = (p� �)u+ (p� �) v
(p� ) q(z) + �1

A1
� p+  :

Clearly, the �rst two conditions of Lemma 1 are satis�ed in the domain D �
C�Cn

�1
A1
�p+
�p and q(z) = q1+iq2. Now, we verify the condition (iii) as follows:

Re f� (iu2; v1)g = Re

(
(p� �) v1

(p� ) (q1 + iq2) + �1
A1
� p+ 

)

� �

h
(p� ) q1 + �1

A1
� p+ 

i
(p� �) (1 + u22)

2

�h
(p� ) q1 + �1

A1
� p+ 

i2
+ [(p� ) q2]2

�
:

< 0:

By applying Lemma 1, hi (z) 2 P (i = 1; 2) and consequently f (z) 2 Vk;p (�1; A1; B1; ; �).
This completes the proof of Theorem 3.

Theorem 4. If 0 �  < p, k � 2 and f 2 Sk;p (�1; A1; B1; ) for z 2 U; then
f 2 Sk;p (�1 + 1; A1; B1; ) for

jzj < r0 =
j� + 1jq

A+ (A2 � j�2 � 1j)
1
2

; (35)
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where A = 2 (s+ 1)2 + j�j2 � 1; with � =
+

�1
A1
�p

p� 6= �1 and s = 1

p�  : This
radius is best possible.
Proof. Let f 2 Sk;p (�1; A1; B1; ) for z 2 U and

z (�p;q;s [�1; A1; B1] f (z))
0

�p;q;s [�1; A1; B1] f (z)
= (p� )h (z) + ; (36)

where h (z) is given by (25). Using (9) in (36), and di¤erentiating the resulting
equation with respect to z, we obtain

1
p�

�
z(�p;q;s[�1+1;A1;B1]f(z))

0

�p;q;s[�1+1;A1;B1]f(z)
� 

�
= h (z) +

( 1
p� )zh

0
(z)

h(z)+( +�1�A1pp� )

=

�
k

4
+
1

2

�8><>:h1 (z) + ( 1
p� )zh

0
1(z)

h1(z)+

 
+

�1
A1

�p
p�

!
9>=>;

�
�
k

4
� 1
2

�8><>:h2 (z) + ( 1
p� )zh

0
2(z)

h2(z)+

 
+

�1
A1

�p
p�

!
9>=>; :

Applying Lemma 2 with s =
�

1
p�

�
and � =

+
�1
A1
�p

p� 6= �1; we get

Re

8>><>>:hi (z) +
�

1
p�

�
zh

0
i (z)

hi (z) +

�
+

�1
A1
�p

p�

�
9>>=>>; > 0 for jzj < r0; (37)

where r0 is given by (35) and this radius is the best possible. This completes
the proof of Theorem 4.

Theorem 5. Let � be convex and f 2 S2;p
�
�1; A1; B1; p

0�
: Then G 2

S2;p
�
�1; A1; B1; p

0�
, where G = � � f and

�
0 � 0 < 1

�
:

Proof. To show that G = � � f 2 S2;p
�
�1; A1; B1; p

0� �
0 � 0 < 1

�
; it suf-

�cient to show that z(�p;q;s[�1;A1;B1]G)
0

p�p;q;s[�1;A1;B1]G
contained in the convex hull of F (U) :

Now
z (�p;q;s [�1; A1; B1]G)

0

p�p;q;s [�1; A1; B1]G
=
� � F�p;q;s [�1; A1; B1] f
� � �p;q;s [�1; A1; B1] f

; (38)

where F = z(�p;q;s[�1;A1;B1]f(z))
0

p�p;q;s[�1;A1;B1]f(z)
is analytic in U and F (0) = 1: From Lemma

3, we can see that z(�p;q;s[�1;A1;B1]G)
0

p�p;q;s[�1;A1;B1]G
is contained in the convex hull of F (U).
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Since z(�p;q;s[�1;A1;B1]G)
0

p�p;q;s[�1;A1;B1]G
is analytic in U and

F (U) � 
 =
�
w :

z (�p;q;s [�1; A1; B1]w (z))
0

p�p;q;s [�1; A1; B1]w (z)
2 P

�

0
��

;

then z(�p;q;s[�1;A1;B1]G)
0

p�p;q;s[�1;A1;B1]G
lies in
; this implies thatG = ��f 2 S2;p

�
�1; A1; B1; p

0�
:

In [8] Choi et al. de�ned the familiar integral operator F�;p(f)(z) as follows:

F�;p(f)(z) =
� + p

z�

zZ
0

t��1f(t)dt (� > �p; p 2 N)

= zp +
1X

k=1+p

�
� + p

� + k

�
akz

k: (39)

It follows that:

z (�p;q;s [�1; A1; B1]F�;p(f)(z))
0
= (� + p) �p;q;s [�1; A1; B1] f (z)

���p;q;s [�1; A1; B1]F�;p(f)(z):
(40)

Theorem 6. If 0 �  < p, k � 2 and f 2 Sk;p (�1; A1; B1; ), then
F�;p(f)(z) 2 Sk;p (�1; A1; B1; ) (� � 0):
Proof. Let f 2 Sk;p (�1; A1; B1; ) and set

z (�p;q;s [�1; A1; B1]F�;p(f)(z))
0

�p;q;s [�1; A1; B1]F�;p(f)(z)
=M(z) = (p� )h (z) + ; (41)

where h(z) is given by (25). Using (40) and (41), we have

(� + p)
�p;q;s [�1; A1; B1] f (z)

�p;q;s [�1; A1; B1]F�;p(f)(z)
= (p� )h (z) +  + �: (42)

Taking the logarithmic di¤erentiation on both sides of (42) with respect to z
and multiplying by z, we have

z (�p;q;s [�1; A1; B1] f (z))
0

�p;q;s [�1; A1; B1] f (z)
�  = (p� )h (z) + (p� ) zh0 (z)

(p� )h (z) +  + � : (43)

Now we will show that M (z) 2 Pk (; p) or hi(z) 2 P . From (25) and (43) we
have
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z(�p;q;s[�1;A1;B1]f(z))
0

�p;q;s[�1;A1;B1]f(z)
�  =

�
k

4
+
1

2

�n
(p� )h1 (z) + (p�)zh01(z)

(p�)h1(z)++�

o
�
�
k

4
� 1
2

�n
(p� )h2 (z) + (p�)zh02(z)

(p�)h2(z)++�

o
;

this implies that

Re

�
(p� )hi (z) +

(p� ) zh0i (z)
(p� )hi (z) +  + �

�
> 0 (z 2 U ; i = 1; 2) : (44)

We form the functional � (u; v) by choosing u = hi(z), v = zh
0
i (z),

� (u; v) = (p� )u+ (p� ) v
(p� )u+  + � :

Then clearly � (u; v) satis�es all the conditions of Lemma 1. Hence hi (z) 2
P (i = 1; 2) and consequently h (z) 2 Pk for z 2 U , which implies that F�;p(f)(z) 2
Sn;p (�1; A1; B1; ). This completes the proof of Theorem 6.

Next, we derive an inclusion property for the subclass Ck;p (�1; A1; B1; )
involving F�;p(f)(z), which is given by the following theorem.
Theorem 7. If 0 �  < p, k � 2; � � 0 and f 2 Ck;p (�1; A1; B1; ), then
F�;p(f)(z) 2 Ck;p (�1; A1; B1; ) :
Proof. By applying Theorem 5, it follows that

f 2 Ck;p (�1; A1; B1; )()
zf

0

p
2 Sk;p (�1; A1; B1; )

=) F�;p(f)(z)

�
zf

0

p

�
2 Sk;p (�1; A1; B1; )

() z (F�;p(f)(z))
0

p
2 Sk;p (�1; A1; B1; )() F�;p(f)(z) 2 Ck;p (�1; A1; B1; ) :

This completes the proof of Theorem 7.
Using (40) instead of (9) and the techniques of the proof of Theorem 3, we

can prove the following theorem.
Theorem 8. If 0 � ; � < p, k � 2; � � 0 and f 2 Vk;p (�1; A1; B1; ; �),
then F�;p(f)(z) 2 Vk;p (�1; A1; B1; ; �) :

Remark 3. Putting q = 2; s = 1; �1 = c; �2 = 1, �1 = a and A1 = A2 =
B1 = 1 (a; c > 0; p 2 N) ; our results in this paper correct the results of Hussain
et al. [13].



52 Adwan

Remark 4. Specializing q, s; �1; A1; :::; �q; Aq and �1; B1; :::�s; Bs; in the
above results, we obtain the corresponding results for di¤erent classes associ-
ated with the operators (1-7) de�ned in the introduction.

4 Open Problem

The authors suggest to study these classes de�ned by the Aouf et al. [5]
operator:

Dm
�;p(f � g)(z) =

1

zp
+

1X
k=0

[1 + �(k + p)]makbkz
k
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