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Abstract

The purpose of the present paper is to introduce several new
subclasses of the function class σ of analytic and bi-univalent func-
tions in the open unit disk U. Furthermore, we obtain estimates
on the first two Taylor-Maclaurin coefficients |a2| and |a3| for func-
tions belonging to these new subclasses
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1 Introduction

LetA be the class of all analytic functions f in the open unit disk ∆ = {z ∈ C :
|z| < 1} and normalized by the conditions f(0) = 0 and f ′(0) = 1, C being,
as, usual, the set of complex numbers. Further, by ℘ we shall denote the
subclass of all functions in A which are univalent in ∆. If the functions f and
g are analytic in ∆, then f is said to be subordinate to g, written f(z) ≺
g(z), provided there is an analytic function w(z) defined on ∆ with w(0) = 0
and |w(z)| < 1 so that f(z) = g(w(z)). Some of the important and well-
investigated subclasses of the univalent function class ℘ include (for example)
the class S(α) of starlike functions of order α in ∆ and the class C(α) of convex
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functions of order α in ∆. By definition, we have

S(α) =

{
f : f ∈ ℘ and <zf

′(z)

f(z)
> α (z ∈ ∆, 0 ≤ α < 1)

}
(1)

and

C(α) =
{
f : f ∈ ℘ and zf

′
(z) ∈ S(α) (z ∈ ∆, 0 ≤ α < 1)

}
. (2)

In [12], the authors introduced the class S(φ) of the so-called Ma and Minda starlike
functions and the class C(φ) of Ma and Minda convex functions, unifying sev-
eral previously studied classes related to those of starlike and convex functions.
The class S(φ) consists of all the functions f ∈ A satisfying subordination
zf ′(z)

f(z)
≺ φ(z), whereas C(φ) is formed with functions f ∈ A for which the

subordination 1+
zf ′′(z)

f ′(z)
≺ φ(z) holds.

It is well known that for each f ∈ ℘, the koebe one-quarter Theorem
[7] ensures the image of ∆ under f contains a disk of radius 1/4. Thus every
univalent function f ∈ ℘ has an inverse f−1 which satisfies

f−1(f(z)) = z (|z| < 1)

and
f(f−1(w)) = w, (|w| < r0(f), r0(f) ≤ 1/4).

A function f ∈ A is said to bi-univalent in ∆ if both f and f−1 are univa-
lent in ∆. Let σ denote the class of bi-univalent functions defined in the unit
disk ∆.The class of bi-univalent functions was first introduced and studied
by Lewin [11], where it was proved that |a2| < 1.51.Brannan and Clunie [3]
improved Lewin’s result to |a2| <

√
2 and later Netanyahu [16] proved that

|a2| < 3
4
. Brannan and Taha [4] and Taha [26] considered certain subclasses

of bi-univalent functions, similar to the familiar subclasses of univalent func-
tions consisting of strongly starlike and convex functions. They introduced
bi-starlike functions and bi-convex functions and found non-sharp estimates
on the first two Taylor-Maclaurin coefficients |a2| and |a3|. The pioneering
work by Srivastava et al. [23] actually revived the study of bi-univalent func-
tions in recent years. In fact, ever since the publication of their widely-cited
paper [23], several results on coefficient bound estimates for the initial and
other coefficients were proved for various subclasses of the bi-univalent func-
tion σ (see, for example, [1, 2, 5, 6, 8, 9, 10, 13, 15, 19, 21, 24, 27, 28, 22, 25]
).

In [14], Mitrinovic essentially investigated certain geometric properties of
functions ψ of the form

ψ(z) =
z

g(z)
, g(z) = 1 +

∞∑
n=1

anz
n. (3)
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In [20], Reade et al. derived coefficient conditions that guarantee the uni-
valence, starlikeness or convexity of rational functions of the form (3), these
results have been improved and generalized in [17]. In this paper, estimates on
the initial coefficients for several subclasses of the bi-univalent function class
σ of rational form (3) are obtained. Several related classes are also considered.

In order to derive our main results, we require the following lemma.

Lemma 1.1 (see [18]) If p(z) = 1 + c1z + c2z
2 + c3z

3 + ...is an analytic
function in ∆ with positive real part, then

|cn| ≤ 2 (n ∈ N = {1, 2, ...}) . (4)

2 Coefficients estimates

Let φ be an analytic function with positive real part in the unit disk ∆, satis-
fying φ(0) = 1, φ′(0) > 0, and φ(∆) is symmetric with respect to the the real
axis, such a function has a Taylor series of the form:

φ(z) = 1 +B1z +B2z
2 +B3z

3 + ... (B1 > 0) . (5)

A function ψ(z) ∈ A with Re(ψ′(z)) > 0 is known to be univalent. This
motivates the following class of functions.

Definition 2.1 A function ψ ∈ σ given by (3)is said to be in the class
<σ(φ) if it satisfies the following conditions:[

(1 + eiγ)
zψ′(z)

ψ(z)
− eiγ

]
≺ φ(z) (z ∈ ∆, γ ∈ R)

and [
(1 + eiγ)

wg′(w)

g(w)
− eiγ

]
≺ φ(w) (w ∈ ∆, γ ∈ R) ,

where g(w) := ψ−1(w).

Theorem 2.2 Let ψ(z) ∈ <σ(φ) be of the form (3). Then

|a1| ≤
B1

√
B1√

|1 + eiγ| |B2
1 + (1 + eiγ)(B1 −B2)|

and |a2| ≤
B1

2 |1 + eiγ|
(6)
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Proof. Let ψ(z) ∈ <σ(φ) and g = ψ−1. Then there exist two functions

u and v, analytic in ∆, with u(0) = v(0) = 0, |u(z)| < 1 and |v(w)| <
1, z, w ∈ ∆, such that[

(1 + eiγ)
zψ′(z)

ψ(z)
− eiγ

]
= φ(u(z))

and [
(1 + eiγ)

wg′(w)

g(w)
− eiγ

]
= φ(v(w)). (7)

Next, define the functions p1 and p2 by

p1(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + ...

and

p2(w) =
1 + v(w)

1− v(w)
= 1 + b1w + b22w

2 + ...,

or, equivalently,

u(z) =
p1(z)− 1

p1(z) + 1
=

1

2

[
c1z +

(
c2 −

c21
2

)
z2 + ...

]
, (8)

and

v(w) =
p2(w)− 1

p2(w) + 1
=

1

2

[
b1w +

(
b2 −

b21
2

)
w2 + ...

]
. (9)

Then p1 and p2 analytic in ∆ with p1(0) = 1 = p2(0). Since u, v : ∆ −→ ∆, the
functions p1 and p2 have a positive real part in ∆, |bi| ≤ 2 and |ci| ≤ 2.

Clearly, upon substituting from (8) and (9) into (7), if we make use of (5),
we find that[

(1 + eiγ)
zψ′(z)

ψ(z)
− eiγ

]
= φ(

p1(z)− 1

p1(z) + 1
) = 1 +

1

2
B1c1z

+

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
z2 + ..., (10)

and [
(1 + eiγ)

wg′(w)

g(w)
− eiγ

]
= φ(

p2(w)− 1

p2(w) + 1
) = 1 +

1

2
B1b1w

+

[
1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1

]
w2 + ... ..(11)
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Since ψ ∈ σ has the Maclaurin’s series given by

ψ(z) = z − a1z2 + (a21 − a2)z3 + ..., (12)

a computation shows that its inverse g = ψ−1 has the expansion

g(w) = ψ−1(w) = w + a1w
2 + (a21 + a2)w

3 + · · · . (13)

Since[
(1 + eiγ)

zψ′(z)

ψ(z)
− eiγ

]
= 1− (1 + eiγ)a1z + (1 + eiγ)(a21 − 2a2)z

2 + · · ·

and[
(1 + eiγ)

wg′(w)

g(w)
− eiγ

]
= 1 + (1 + eiγ)a1w + (1 + eiγ)(a21 + 2a2)w

2 + · · · .

Using (12) and (13) in (10) and (11) respectively, we get

−(1 + eiγ)a1 =
1

2
B1c1 (14)

(1 + eiγ)(a21 − 2a2) =
1

2
B1(c2 −

c21
2

) +
1

4
B2c

2
1, (15)

(1 + eiγ)a1 =
1

2
B1b1 (16)

and

(1 + eiγ)(a21 + 2a2) =
1

2
B1(b2 −

b21
2

) +
1

4
B2b

2
1. (17)

From (14) and (16), we have
c1 = −b1. (18)

Adding (15) and (17), then using (14) and (18), we get

a21 =
B3

1(c2 + b2)

4(1 + eiγ) [B2
1 + (1 + eiγ)(B1 −B2)]

,

and now, by applying Lemma 1.1 for the coefficients b2 and c2, the last equa-
tion gives the bound of |a1| from (6). By subtracting (17) from (15), further
computations using (18) lead to

a2 =
1

8(1 + eiγ)
B1(b2 − c2).

The bound of |a2| , as asserted in (6), is now a consequence of Lemma 1.1, and
this completes our proof.
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If we set

φ(z) =

(
1 + z

1− z

)η
= 1 + 2ηz + 2η2z2 + ... (0 < η ≤ 1, z ∈ ∆) .

in Definition 2.1 of the bi-univalent function class <σ(φ), we obtain a new class
<σ(η) given by Definition 2.3 below.

Definition 2.3 For 0 < η ≤ 1, a function ψ ∈ σ given by (3) is said to be
in the class <σ(η) if it satisfies the following conditions:[

(1 + eiγ)
zψ′(z)

ψ(z)
− eiγ

]
≺
(

1 + z

1− z

)η
(z ∈ ∆, γ ∈ R)

and [
(1 + eiγ)

wg′(w)

g(w)
− eiγ

]
≺
(

1 + w

1− w

)η
(w ∈ ∆, γ ∈ R) ,

where g(w) := ψ−1(w).

Using the parameter setting of Definition 2.3 in Theorem 2.2, we get the fol-
lowing corollary.

Corollary 2.4 For 0 < η ≤ 1, let the function ψ ∈ <σ(η) be of the form
(3). Then

|a1| ≤
η√

|1 + eiγ| |2η + (1 + eiγ)(1− η)|
and |a2| ≤

η

|1 + eiγ|
.

Let

φ(z) =
1 + (1− 2ν)z

1− z
= 1 + 2(1− ν)z + 2(1− ν)z2 + ... (0 < ν ≤ 1, z ∈ ∆) .

in Definition 2.1 of the bi-univalent function class <σ(φ), we obtain a new class
Hσ(ν) given by Definition 2.5 below.

Definition 2.5 For 0 < ν ≤ 1, a function ψ ∈ σ given by (3) is said to be
in the class Hσ(ν) if the following conditions holds true:[

(1 + eiγ)
zψ′(z)

ψ(z)
− eiγ

]
≺ 1 + (1− 2ν)z

1− z
(z ∈ ∆, γ ∈ R)

and [
(1 + eiγ)

wg′(w)

g(w)
− eiγ

]
≺ 1 + (1− 2ν)w

1− w
(w ∈ ∆, γ ∈ R) ,

where g(w) := ψ−1(w).
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Using the parameter setting of Definition 2.5 in Theorem 2.2 we get the fol-
lowing corollary.

Corollary 2.6 For 0 < ν ≤ 1, let the function ψ ∈ <σ(ν) be given by (3).
Then

|a1| ≤

√
2 (1− ν)

|1 + eiγ|
and |a2| ≤

(1− ν)

|1 + eiγ|
.

Definition 2.7 A function ψ ∈ σ is given by (3) is said to be in the class
Sσ(λ, µ, φ) if it satisfies the following subordination conditions:

(1−λ)

(
ψ(z)

z

)µ
+λψ′(z)

(
ψ(z)

z

)µ−1
≺ φ(z) (0 < µ < 1; 0 ≤ λ ≤ 1 and z ∈ ∆)

and

(1−λ)

(
g(w)

w

)µ
+λg′(w)

(
g(w)

w

)µ−1
≺ φ(w) (0 < µ < 1; 0 ≤ λ ≤ 1 and w ∈ ∆) ,

where g(w) := ψ−1(w).

For functions in the class Sσ(λ, µ, φ), the following coefficient estimates are
obtained.

Theorem 2.8 Let ψ(z) ∈ Sσ(λ, µ, φ) be of the form (3). Then

|a1| ≤
B1

√
B1√∣∣∣B2

1

[
µ(µ+2λ+1)

2
+ λ
]

+ (B1 −B2) [µ(1− 2λ)− λ]2
∣∣∣ , (19)

and

|a2| ≤
B1

(µ+ 2λ)
. (20)

Proof. Let ψ ∈ Sσ(λ, µ, φ), there are two Schwarz functions u and
v defined by (8) and (9) respectively, such that

(1− λ)

(
ψ(z)

z

)µ
+ λψ′(z)

(
ψ(z)

z

)µ−1
= φ(u(z)) and (21)

(1− λ)

(
ψ(w)

w

)µ
+ λψ′(w)

(
ψ(w)

w

)µ−1
= φ(v(w)).
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Since

(1− λ)

(
ψ(z)

z

)µ
+ λψ′(z)

(
ψ(z)

z

)µ−1
= 1− [µ(1− 2λ)− λ] a1z +

[(
µ(µ+ 2λ+ 1)

2
+ λ

)
a21 − (2λ+ µ)a2

]
z2 + · · ·

and

(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1
= 1 + [µ(1− 2λ)− λ] a1w +

[(
µ(µ+ 2λ+ 1)

2
+ λ

)
a21 + (2λ+ µ)a2

]
w2 + · · · .

Then (12), (13) and (21) yields

− [µ(1− 2λ)− λ] a1 =
1

2
B1c1 (22)

(
µ(µ+ 2λ+ 1)

2
+ λ

)
a21 − (2λ+ µ)a2 =

1

2
B1(c2 −

c21
2

) +
1

4
B2c

2
1, (23)

[µ(1− 2λ)− λ] a1 =
1

2
B1b1 (24)

and (
µ(µ+ 2λ+ 1)

2
+ λ

)
a21 + (2λ+ µ)a2 =

1

2
B1(b2 −

b21
2

) +
1

4
B2b

2
1. (25)

From (22) and (24), we get

c1 = −b1, (26)

and after some further calculations using (23)-(26) we find

a21 =
B3

1(c2 + b2)

4
[
B2

1(µ(µ+2λ+1)
2

+ λ) + (B1 −B2) [µ(1− 2λ)− λ]2
] ,

and

a2 =
B1(b2 − c2)
4(µ+ 2λ)

.

Applying Lemma 1.1, the estimates in (19) and (20) follow.
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Definition 2.9 For 0 < η ≤ 1, a function ψ ∈ σ given by (3) is said to be
in the class Sσ(λ, µ, η) if it satisfies the following subordination conditions:

(1−λ)

(
ψ(z)

z

)µ
+λψ′(z)

(
ψ(z)

z

)µ−1
≺
(

1 + z

1− z

)η
(0 < µ < 1; 0 ≤ λ ≤ 1 and z ∈ ∆) ,

and

(1−λ)

(
g(w)

w

)µ
+λg′(w)

(
g(w)

w

)µ−1
≺
(

1 + w

1− w

)η
(0 < µ < 1; 0 ≤ λ ≤ 1 and w ∈ ∆) ,

where g(w) := ψ−1(w).

Using the parameter setting of Definition 2.9 in Theorem 2.8 we get the fol-
lowing corollary.

Corollary 2.10 For and 0 < η ≤ 1, let the function ψ ∈ Sσ(λ, µ, η) be of
the form (3). Then

|a1| ≤
2η√

−η
[
(µ(1− 2λ)− λ)2 − 2(µ(µ+2λ)

2
+ λ)

]
+ [µ(1− 2λ)− λ]2

and

|a2| ≤
2η

(µ+ 2λ)
.

Let

φ(z) =
1 + (1− 2ν)z

1− z
= 1 + 2(1− ν)z + 2(1− ν)z2 + ... (0 < ν ≤ 1, z ∈ ∆) .

Definition 2.11 For 0 < ν ≤ 1, a function ψ ∈ σ given by (3) is said to
be in the class Sσ(λ, µ, ν) if it satisfies the following subordination conditions:

(1−λ)

(
ψ(z)

z

)µ
+λψ′(z)

(
ψ(z)

z

)µ−1
≺ 1 + (1− 2ν)z

1− z
(0 < µ < 1; 0 ≤ λ ≤ 1 and z ∈ ∆)

and

(1−λ)

(
g(w)

w

)µ
+λg′(w)

(
g(w)

w

)µ−1
≺ 1 + (1− 2ν)w

1− w
(0 < µ < 1; 0 ≤ λ ≤ 1 and w ∈ ∆) ,

where g(w) = ψ−1(w).

Using the parameter setting of Definition 2.11 in Theorem 2.8 we get the
following corollary.
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Corollary 2.12 For 0 < ν ≤ 1, let the function ψ ∈ Sσ(λ, µ, ν) be of the
form (3). Then

|a1| ≤

√
4 (1− ν)

(µ(µ+ 2λ) + 2λ)
and |a2| ≤

2 (1− ν)

(µ+ 2λ)
.

Definition 2.13 A function ψ ∈ σ given by (3) is said to be in the class
Mσ(λ, µ, φ), if it satisfies the following subordinations conditions:

(1−λ)

(
ψ(z)

z

)µ
+λψ′(z)

(
z

ψ(z)

)µ−1
≺ φ(z) (0 < µ < 1; 0 ≤ λ ≤ 1 and z ∈ ∆)

and

(1−λ)

(
g(w)

w

)µ
+λg′(w)

(
w

g(w)

)µ−1
≺ φ(w), (0 < µ < 1; 0 ≤ λ ≤ 1 and w ∈ ∆) ,

where g(w) := ψ−1(w).

A function in the class Mσ(λ, µ, φ) is called bi-Mocanu convex function of Ma-
Minda type. This class unifies the classes S(α) and C(α). For functions in the
class Mσ(λ, µ, φ), the following coefficients estimates hold.

Theorem 2.14 Let ψ(z) ∈Mσ(λ, µ, φ) be of the form (3). Then

|a1| ≤
B1

√
B1√

|4B2
1 [(µ(µ+ 1) + 4λ(3− 2µ)]− [µ(1− 2λ) + 3λ]2(B1 −B2)|

, (27)

and

|a2| ≤
B1

4[µ(2λ− 1)− 4λ)]
. (28)

Proof. If ψ ∈ Mσ(λ, µ, φ), then there exist are two Schwarz functions u
and v defined by (8) and (9) respectively, such that

(1− λ)

(
ψ(z)

z

)µ
+ λψ′(z)

(
z

ψ(z)

)µ−1
= φ(u(z)), (29)

and

(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
w

g(w)

)µ−1
= φ(v(w)). (30)

Since
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(1− λ)

(
ψ(z)

z

)µ
+ λψ′(z)

(
z

ψ(z)

)µ−1
= 1− [µ(1− 2λ) + 3λ]a1z

+

[(
(µ(µ+ 1)

2
+ 2λ(3− 2µ)

)
a21 + [µ(2λ− 1)− 4λ]a2

]
z2 + ...

and

(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
w

g(w)

)µ−1
= 1 + [µ(1− 2λ) + 3λ]a1w

+

[(
(µ(µ+ 1)

2
+ 2λ(3− 2µ)

)
a21 − [µ(2λ− 1)− 4λ)]a2

]
w2 + ...,

from (10), (11), (29) and (30), it follows that

−[µ(1− 2λ) + 3λ]a1 =
1

2
B1c1, (31)(

(µ(µ+ 1)

2
+ 2λ(3− 2µ)

)
a21 + [µ(2λ− 1)− 4λ)]a2 =

1

2
B1(c2 −

c21
2

) +
1

4
B2c

2
1,

(32)

[µ(1− 2λ) + 3λ]a1 =
1

2
B1b1, (33)

and(
µ(µ+ 1)

2
+ 2λ(3− 2µ)

)
a21 − [µ(2λ− 1)− 4λ)]a2 =

1

2
B1(b2 −

b21
2

) +
1

4
B2b

2
1,

(34)
Equations (31) and (33) yields

c1 = −b1, (35)

and after some further calculations using (32)-(34) we find

a21 =
B3

1(c2 + b2)

4B2
1 [(µ(µ+ 1) + 4λ(3− 2µ)] + (µ(1− 2λ) + 3λ)2 (B1 −B2)

,

and

a2 =
B1 (b2 − c2)

4[µ(2λ− 1)− 4λ)]
.

Applying Lemma 1.1, the estimates in (27) and (28) follow.

Let

φ(z) =

(
1 + z

1− z

)η
= 1 + 2ηz + 2η2z2 + ... (0 < η ≤ 1, z ∈ ∆) .
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Definition 2.15 For 0 < η ≤ 1, a function ψ ∈ σ given by (3) is said to
be in the class Mσ(λ, µ, η) if the following subordinations conditions hold:

(1−λ)

(
ψ(z)

z

)µ
+λψ′(z)

(
z

ψ(z)

)µ−1
≺
(

1 + z

1− z

)η
(0 < µ < 1; 0 ≤ λ ≤ 1 and z ∈ ∆) ,

and

(1−λ)

(
g(w)

w

)µ
+λg′(w)

(
w

g(w)

)µ−1
≺
(

1 + w

1− w

)η
(0 < µ < 1; 0 ≤ λ ≤ 1 and w ∈ ∆) ,

g(w) := ψ−1(w).

Using the parameter setting of Definition 2.15 in Theorem 2.14 we get the
following corollary.

Corollary 2.16 For 0 < η ≤ 1, let the function ψ ∈ Mσ(λ, µ, η) be of the
form (3). Then

|a1| ≤
2η√

η [8(µ(µ+ 1) + 4λ(3− 2µ))− (µ(1− 2λ) + 3λ)2] + [µ(1− 2λ) + 3λ]2

and
|a2| ≤

η

2[µ(2λ− 1)− 4λ)]
.

Let

φ(z) =
1 + (1− 2ν)z

1− z
= 1 + 2(1− ν)z + 2(1− ν)z2 + ... (0 < ν ≤ 1, z ∈ ∆) .

Definition 2.17 For 0 < ν ≤ 1, a function ψ ∈ σ given by (3) is said to
be in the class Mσ(λ, µ, ν) if the following subordinations hold:

(1−λ)

(
ψ(z)

z

)µ
+λψ′(z)

(
z

ψ(z)

)µ−1
≺ 1 + (1− 2ν)z

1− z
(0 < µ < 1; 0 ≤ λ ≤ 1 and z ∈ ∆) ,

and

(1−λ)

(
g(w)

w

)µ
+λg′(w)

(
w

g(w)

)µ−1
≺ 1 + (1− 2ν)w

1− w
(0 < µ < 1; 0 ≤ λ ≤ 1 and w ∈ ∆) ,

where g(w) := ψ−1(w).
Using the parameter setting of Definition 2.17 in Theorem 2.14 we get the
following corollary.

Corollary 2.18 For 0 < ν ≤ 1, let the function ψ ∈ Mσ(λ, µ, ν) be of the
form (3). Then

|a1| ≤

√
2 (1− ν)

4λ(2µ− 3) + (µ(µ+ 1)
and |a2| ≤

(1− ν)

2[µ(2λ− 1)− 4λ)]
.
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3 Open Problem

The authors suggest to study the class of functions ψ ∈ σ which satisfy the
following conditions:[

(1 + βeiγ)
zψ′(z)

ψ(z)
− βeiγ

]
≺ φ(z) (z ∈ ∆, β ≥ 0, γ ∈ R)

and [
(1 + βeiγ)

wg′(w)

g(w)
− βeiγ

]
≺ φ(w) (w ∈ ∆, β ≥ 0, γ ∈ R) ,

where g(w) := ψ−1(w).
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