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Abstract
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1 Introduction

Let S be the class of analytic and univalent functions of the form:

f(z) = z +
∞∑
k=2

akz
k, z ∈ U= {z : z∈ C : |z| < 1} (1)
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and T be the subclass of S consisting of functions of the form

f(z) = z −
∞∑
k=2

akz
k (ak ≥ 0; z ∈ U). (2)

Also let S∗(α) and C(α) denote the subclasses of S which are, respectively,
starlike and convex functions of order α, 0 ≤ α < 1, satisfying

S∗(α) = <
{
zf
′
(z)

f(z)

}
> α, 0 ≤ α < 1 (3)

and

C(α) = <

{
1 +

zf
′′
(z)

f ′(z)

}
> α, 0 ≤ α < 1. (4)

For convenience, we write S∗(0) = S∗ and C(0) = C (see Robertson [19]
and Srivastava and Owa [28]).

From (3) and (4) we have

f(z) ∈ C(α)⇐⇒ zf
′
(z) ∈ S∗(α).

Let
T ∗(α) = S∗(α) ∩ T and K(α) = C(α) ∩ T (see Silverman [27]).
Goodman ([8] and [9]) defined the following subclasses of S∗(C).
Definition 1. A function f(z) is uniformly starlike (convex) in U if f(z)

is in S∗(C) and has the property that for every circular are γ contained in
U, with center ζ also in U, the arc f(γ) is starlike (convex) with respect to
f(ζ). The classes of uniformly starlike and convex functions are denoted by
UST and UCV , respectively (for details see [8] and [9])).

f(z) ∈ UCV ⇔ <

{
1 + (z − ζ)

f
′′
(z)

f ′(z)

}
≥ 0, (z, ζ) ∈ U× U (5)

and

f(z) ∈ UST ⇔ <
{
f(z)− f(ζ)

(z − ζ)f ′(z)

}
≥ 0, (z, ζ) ∈ U× U. (6)

It is well known (see [15, 21]) that

f(z) ∈ UCV ⇐⇒
∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ <
{

1 +
zf
′′
(z)

f ′(z)

}
, z ∈ U. (7)

In [21], Ronning introduced the new class of starlike functions related to
UCV by
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f(z) ∈ Sp ⇐⇒
∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ <{zf ′(z)

f(z)

}
, z ∈ U. (8)

Further Ronning [20], generalized the class Sp by introducing a parameter
α by:

Definition 2. [20] A function f(z) of the form (1) is in the class Sp(α)
if it satisfies∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ <{zf ′(z)

f(z)
− α

}
(−1 ≤ α < 1, z ∈ U) (9)

and f(z) ∈ UCV (α) if and only if zf
′
(z) ∈ Sp(α).

By β−UCV ( 0 ≤ β <∞), we denote the class of all β−uniformly convex
functions introduced by Kanas and Wisniowska [13]. Recall that a function
f(z) ∈ S is said to be β−uniformly convex in U if the image of every circular
arc contained in U with center at ζ, where |ζ| ≤ β, is convex. Note that the
class 1− UCV coincides with the class UCV.

It is known that f(z) ∈ β − UCV if and only if it satisfies the following
condition

<

{
1 +

zf
′′
(z)

f ′(z)

}
> β

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ (z ∈ U, 0 ≤ β <∞). (10)

The class β−UST (0 ≤ β <∞), of β−uniformly starlike functions (see [14])
is associated with β − UCV by the relation

f(z) ∈ β − UCV ⇔ zf
′
(z) ∈ β − UST. (11)

Thus, the class β − UST, with 0 ≤ β <∞, is ths subclass of S satisfies the
following condition:

<

{
zf
′
(z)

f(z)

}
> β

∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ (z ∈ U, 0 ≤ β <∞). (12)

For f(z) ∈ S, Salagean [23] ( see also [3] ) defined the operator:

D1f(z) = Df(z) = zf
′
(z),

Dnf(z) = D(Dn−1f(z))

= z +
∞∑
k=2

knakz
k (n ∈ N0 = N ∪ {0} , N = {1, 2, ...}). (13)

For 0 < q < 1, the Jackson’s q−derivative of a function f(z) ∈ S is given
by (see [1, 5, 6, 7, 12, 25, 26])

Dqf(z) =

{
f(z)−f(qz)

(1−q)z for z 6= 0,

f ′(0) for z = 0,
(14)
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and D2
qf(z) = Dq(Dqf(z)). From (14), we have

Dqf(z) = 1 +
∞∑
k=2

[k]q akz
k−1, (15)

where

[k]q =
1− qk

1− q
(0 < q < 1). (16)

If q → 1−, [k]q → k. For a function h(z) = zk, we obtain Dqh(z) = Dqz
k =

1−qk
1−q z

k−1 = [k]q z
k−1 and lim

q→1−
Dqh(z) = kzk−1 = h′(z), where h′ is the ordi-

nary derivative of h.
Recently for f ∈ S, Govindaraj and Sivasubramanian [11] (see also [18])

defined the Salagean q−difference operator by:

D0
qf(z) = f(z),

D1
qf(z) = zDqf(z),

...

Dn
q f(z) = zDq(D

n−1
q f(z)) (n ∈ N)

= z +
∞∑
k=2

[k]nq akz
k (n ∈ N0, 0 < q < 1, z ∈ U). (17)

We note that lim
q→1−

Dn
q f(z) = Dnf(z), where Dnf(z) is defined by (13).

For β ≥ 0, −1 ≤ α < 1, 0 < q < 1 and n ∈ N0, denote by Snq (α, β) the
subclass of S satisfying

<
{
zDq(D

n
q f(z))

Dn
q f(z)

− α
}
> β

∣∣∣∣zDq(D
n
q f(z))

Dn
q f(z)

− 1

∣∣∣∣ , z ∈ U. (18)

Let Tq(n, α, β) = Snq (α, β) ∩ T. We note that
(i) lim

q→1−
Tq(n, α, β) = T (n, α, β) (see Aouf [2]),

(ii) Tq(0, α, β) = Tq(α, β) =
{
f ∈ T : <

{
zDqf(z)

f(z)
− α

}
> β

∣∣∣ zDqf(z)

f(z)

∣∣∣} ;

(iii) Tq(1, α, β) = Cq(α, β) =
{
f ∈ T : <

{
zDq(D1

qf(z))

D1
qf(z)

− α
}
> β

∣∣∣ zDq(D1
qf(z))

D1
qf(z)

∣∣∣} ;

(iv) lim
q→1−

Tq(α, β) = T (α, β) =
{
f ∈ T : <

{
zf
′
(z)

f(z)
− α

}
> β

∣∣∣ zf ′ (z)f(z)
− 1
∣∣∣} ;

(v) lim
q→1−

Cq(α, β) = C(α, β) =

{
f ∈ T : <

{
1 + zf

′′
(z)

f ′ (z)
− α

}
> β

∣∣∣∣ zf ′′ (z)f ′ (z)

∣∣∣∣} ;

(vi) lim
q→1−

Tq(n, α, β) = C(n, α, β) =
{
f ∈ T : <

{
1 + z(Dnf(z))

′′

(Dnf(z))′
− α

}
> β

∣∣∣ z(Dnf(z))
′′

(Dnf(z))′

∣∣∣} ;
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(vii) Tq(0, α, 0) = T ∗q (α) = <
{
zDqf(z)

f(z)

}
> α;

(viii) Tq(1, α, 0) = Kq(α) = <
{
zDq(Dqf(z))

Dqf(z)

}
> α;

(ix) lim
q→1−

T ∗q (α) = T ∗(α);

(x) lim
q→1−

Kq(α) = K(α).

2 Coefficient estimates

Unless indicated, we assume that −1 ≤ α < 1, β ≥ 0, 0 < q < 1, n ∈ N0,
f(z) ∈ T and z ∈ U.

Theorem 1. A function f(z) ∈ Tq(n, α, β) if and only if

∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]
ak ≤ 1− α. (19)

proof Assume that the inequality (19) holds. Then it is suffices to show
that

β

∣∣∣∣zDq(D
n
q f(z))

Dn
q f(z)

− 1

∣∣∣∣−<{zDq(D
n
q f(z))

Dn
q f(z)

− 1

}
≤ 1− α.

We have

β

∣∣∣∣zDq(D
n
q f(z))

Dn
q f(z)

− 1

∣∣∣∣−<{Dq(D
n
q f(z))

Dn
q f(z)

− 1

}
≤ (1 + β)

∣∣∣∣zDq(zD
n
q f(z))

Dn
q f(z)

− 1

∣∣∣∣
≤

(1 + β)
∑∞

k=2 [k]nq

[
[k]q − 1

]
ak

1−
∑∞

k=2 [k]nq ak
.

This last expression is bounded above by (1− α) since (19) holds.
Conversely we show that if f(z) ∈ Tq(n, α, β) and z is real, then

1−
∞∑
k=2

[k]nq ([k]q)akz
k−1

1−
∞∑
k=2

[k]nq akz
k−1

− α ≥ β

∣∣∣∣∣∣∣∣
∞∑
k=2

[k]nq ([k]q − 1)akz
k−1

1−
∞∑
k=2

[k]nq akz
k−1

∣∣∣∣∣∣∣∣ .
Letting z → 1− along the real axis, we obtain the desired inequality (19).

Hence the proof of Theorem 1 is completed.
Corollary 1. Let the function f(z) ∈ Tq(n, α, β). Then

ak ≤
1− α

[k]nq

[
[k]q (1 + β)− (α + β)

] (k ≥ 2). (20)
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The result is sharp for

f(z) = z − 1− α

[k]nq

[
[k]q (1 + β)− (α + β)

]zk (k ≥ 2). (21)

3 Modified Hadamard products

Let the functions fj(z) be defined, for j = 1, 2, ...,m, by

fj(z) = z −
∞∑
k=2

ak,jz
k (ak,j ≥ 0, z ∈ U). (22)

For fj(z) (j = 1, 2) defined by (22), the modified Hadamard product is
defined by

(f1 ∗ f2) (z) = z −
∞∑
k=2

ak,1ak,2z
k = (f2 ∗ f1) (z). (23)

Theorem 2. If fj(z) (j = 1, 2) defined by (22) are in the class Tq(n, α, β),
then

(f1 ∗ f2) (z) ∈ Tq(n, γ(n, α, β, q), β),

where

γ(n, α, β, q) = 1−

(
[2]q − 1

)
(1 + β) (1− α)2

[2]nq

[
[2]q (1 + β)− (α + β)

]2
− (1− α)2

. (24)

The result is sharp.
proof Employing the techniques used by Schild and Silverman [24], we

need to find the largest γ = γ(n, α, β, q) such that

∞∑
k=2

[k]nq

[
[k]q (1 + β)− (γ + β)

]
1− γ

ak,1ak,2 ≤ 1. (25)

Since
∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]
1− α

ak,j ≤ 1 (j = 1, 2), (26)

then Cauchy-Schwarz inequality yields

∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]
1− α

√
ak,1ak,2 ≤ 1. (27)
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Thus it is sufficient to show that

[k]nq

[
[k]q (1 + β)− (γ + β)

]
1− γ

ak,1ak,2 ≤
[k]nq

[
[k]q (1 + β)− (α + β)

]
1− α

√
ak,1ak,2,

(28)
that is, that

√
ak,1ak,2 ≤

[
[k]q (1 + β)− (α + β)

]
(1− γ)[

[k]q (1 + β)− (γ + β)
]

(1− α)
(k ≥ 2). (29)

Note that

√
ak,1ak,2 ≤

(1− α)

[k]nq

[
[k]q (1 + β)− (α + β)

] (k ≥ 2). (30)

Consequently, we need only to prove that

(1− α)

[k]nq

[
[k]q (1 + β)− (α + β)

] ≤
[
[k]q (1 + β)− (α + β)

]
(1− γ)[

[k]q (1 + β)− (γ + β)
]

(1− α)
(k ≥ 2),

(31)
or, equivalently, that

γ = 1−

(
[k]q − 1

)
(1 + β) (1− α)2

[k]nq

[
[k]q (1 + β)− (α + β)

]2
− (1− α)2

(k ≥ 2). (32)

Since

Φq(k) = 1−

(
[k]q − 1

)
(1 + β) (1− α)2

[k]nq

[
[k]q (1 + β)− (α + β)

]2
− (1− α)2

, (33)

is an increasing function of k (k ≥ 2), letting k = 2 in (33), we obtain

γ ≤ Φq(2) = 1−

(
[2]q − 1

)
(1 + β) (1− α)2

[2]nq

[
[2]q (1 + β)− (α + β)

]2
− (1− α)2

, (34)

which proves the main assertion of Theorem 2.
Finally, taking fj(z) (j = 1, 2) of the form

fj(z) = z − 1− α

[2]nq

[
[2]q (1 + β)− (α + β)

]z2 (j = 1, 2), (35)
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we can see that the result is sharp.
Theorem 3. Let the functions f1(z) and f2(z) defined by (22) be in the

classes Tq(n, α, β) and Tq(n, ρ, β), respectively. Then

(f1 ∗ f2) (z) ∈ Tq(n, ξ(n, α, ρ, β, q), β),

where

ξ(n, α, ρ, β, q) = 1− ([2]q−1)(1+β)(1−α)(1−ρ)
[2]nq [[2]q(1+β)−(α+β)][[2]q(1+β)−(ρ+β)]−(1−α)(1−ρ)

. (36)

The result is the best possible for the functions

f1(z) = z − 1−α
[2]nq [[2]q(1+β)−(α+β)]

z2, f2(z) = z − 1−ρ
[2]nq [[2]q(1+β)−(ρ+β)]

z2. (37)

proof Proceeding as in the proof of Theorem 2, we get

ξ ≤ Bq(k) = 1− ([k]q−1)(1+β)(1−α)(1−ρ)
[k]nq [[k]q(1+β)−(α+β)][[k]q(1+β)−(ρ+β)]−(1−α)(1−ρ)

, (k ≥ 2). (38)

Since the function Bq(k) is an increasing function of k (k ≥ 2), setting k = 2
in (38), we get

ξ ≤ Bq(2) = 1− ([2]q−1)(1+β)(1−α)(1−ρ)
[2]nq [[2]q(1+β)−(α+β)][[2]q(1+β)−(ρ+β)]−(1−α)(1−ρ)

. (39)

This completes the proof of Theorem 3.

Corollary 2. Let the functions fj(z) (j = 1, 2, 3) defined by (22) be in
the class Tq(n, α, β). Then

(f1 ∗ f2 ∗ f3) (z) ∈ Tq(n, δ(n, α, β, q), β),

where

δ(n, α, β, q) = 1− ([2]q−1)
2
(1+β)2(1−α)3

[2]2nq [[2]q(1+β)−(α+β)]
3
−(1−α)3

. (40)

The result is the best possible for the functions fj(z) given by (35); j = 1, 2, 3.
proof From Theorem 2, we have (f1 ∗ f2) (z) ∈ Tq(n, γ(n, α, β, q), β),

where γ is given by (24). By using Theorem 3, we get (f1 ∗ f2 ∗ f3) (z) ∈
Tq(n, δ(n, α, β, q), β), where

δ(n, α, β, q) = 1− ([2]q−1)(1+β)(1−α)(1−γ)
[2]nq [[2]q(1+β)−(α+β)][[2]q(1+β)−(γ+β)]−(1−α)(1−γ)

= 1− ([2]q−1)
2
(1+β)2(1−α)3

[2]2nq [[2]q(1+β)−(α+β)]
3
−(1−α)3

.

This completes the proof of Corollary 2.
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Theorem 4. Let the functions fj(z) (j = 1, 2) defined by (22) be in the
class Tq(n, α, β). Then the function

h(z) = z −
∞∑
k=2

(a2k,1 + a2k,2)z
k, (41)

belongs to the class Tq(n, τ(n, α, β, q), β), where

τ(n, α, β, q) = 1− 2([2]q−1)(1+β)(1−α)
2

[2]nq [[2]q(1+β)−(α+β)]
2
−2(1−α)2

. (42)

The result is sharp for the functions fj(z) (j = 1, 2) defined by (35).
proof By virtue of Theorem 1, we obtain

∞∑
k=2

 [k]nq

[
[k]q (1 + β)− (α + β)

]
1− α

2

a2k,j

≤

 ∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]
1− α

ak,j

2

≤ 1 (j = 1, 2), (43)

It follows that

∞∑
k=2

1

2

 [k]nq

[
[k]q (1 + β)− (α + β)

]
1− α

2 (
a2k,1 + a2k,2

)
≤ 1. (44)

Therefore, we need to find the largest τ = τ(n, α, β, q) such that

[k]nq [[k]q(1+β)−(τ+β)]
1−τ ≤ 1

2

[
[k]nq [[k]q(1+β)−(α+β)]

1−α

]2
(k ≥ 2), (45)

that is,

τ ≤ 1− 2([k]q−1)(1+β)(1−α)
2

[k]nq [[k]q(1+β)−(α+β)]
2
−2(1−α)2

(k ≥ 2). (46)

Since

Qq(k) = 1− 2([k]q−1)(1+β)(1−α)
2

[k]nq [[k]q(1+β)−(α+β)]
2
−2(1−α)2

, (47)

is an increasing function of k (k ≥ 2), we readily have

τ ≤ Qq(2) = 1− 2([2]q−1)(1+β)(1−α)
2

[2]nq [[2]q(1+β)−(α+β)]
2
−2(1−α)2

, (48)

and Theorem 9 follows at once.
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Theorem 5. Let the function f1(z) = z −
∞∑
k=2

ak,1z
k be in the class

Tq(n, α, β) and f2(z) = z −
∞∑
k=2

|ak,2| zk with |ak,2| ≤ 1, k = 2, 3, ... . Then

(f1 ∗ f2) (z) ∈ Tq(n, α, β).
proof Since

∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]
|ak,1ak,2|

=
∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]
|ak,2| ak,1

≤
∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]
ak,1

≤ 1− α,

by Theorem 1, it follows that (f1 ∗ f2) (z) ∈ Tq(n, α, β).

4 A family of integral operators

Theorem 6. Let the function f(z) defined by (2) be in the class Tq(n, α, β)
and let c > −1 be real number. Then the function F (z) defined by

F (z) =
c+ 1

zc

z∫
0

tc−1f(t)dt (c > −1), (49)

also belongs to the class Tq(n, α, β).
proof It follows from (49) that

F (z) = z −
∞∑
k=2

bkz
k, (50)

where

bk =
c+ 1

c+ k
ak ≤ ak. (51)

Therefore,
∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]
bk

=
∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]( c+ 1

c+ k

)
ak

≤
∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]
ak ≤ 1− α, (52)
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since f(z) ∈ Tq(n, α, β). Hence, by Theorem 1, F (z) ∈ Tq(n, α, β).
Theorem 7. Let the function F (z) = z−

∑∞
k=2 akz

k (ak ≥ 0), be in the
class Tq(n, α, β) and c > −1 be real number. Then the function f(z) given
by (49) is univalent in |z| < R∗, where

R∗ = inf
k

[
[k]nq [[k]q(1+β)−(α+β)](c+1)

k(1−α)(c+k)

] 1
k−1

(k ≥ 2). (53)

The result is sharp.
proof From (49), we have

f(z) =
z1−c(zcF (z))

′

c+ 1
= z −

∞∑
k=2

(
c+ k

c+ 1

)
akz

k. (54)

In order to obtain the required result, it suffices to show that
∣∣f ′(z)− 1

∣∣ < 1
whenever |z| < R∗, where R∗ is given by (53). Now∣∣∣f ′(z)− 1

∣∣∣ ≤ ∞∑
k=2

k

(
c+ k

c+ 1

)
ak |z|k−1 .

Thus
∣∣f ′(z)− 1

∣∣ < 1, if

∞∑
k=2

k

(
c+ k

c+ 1

)
ak |z|k−1 < 1. (55)

But Theorem 1 confirms that

∞∑
k=2

[k]nq

[
[k]q (1 + β)− (α + β)

]
ak

1− α
≤ 1. (56)

Hence (55) will be satisfied if

k

(
c+ k

c+ 1

)
|z|k−1 <

[k]nq

[
[k]q (1 + β)− (α + β)

]
1− α

,

that is, if

|z| <
[
[k]nq [[k]q(1+β)−(α+β)](c+1)

k(1−α)(c+k)

] 1
k−1

(k ≥ 2). (57)

Therefore the function f(z) given by (49) is univalent in |z| < R∗. The
sharpness of the result follows if we take

f(z) = z − (1−α)(c+k)
[k]nq{[k]q(1+β)−(α+β)}(c+1)

zk (k ≥ 2; c > −1). (58)

This completes the proof Theorem 7.
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5 Inclusion relations involving Nk,q,δ(e)

In this section following the works of Goodman [10] and Ruscheweyh [22],
we define the k, δ neighborhood of function f(z) ∈ T by ( see also [3], [4],
[16] and [17])

Nk,δ(f ; g) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k and

∞∑
k=2

k |ak − bk| ≤ δ

}
. (59)

In particular, for the identity function e(z) = z, we have

Nk,δ(e; g) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k and

∞∑
k=2

k |bk| ≤ δ

}
. (60)

Now we define the k, q, δ neighborhood of function f(z) ∈ T by

Nk,q,δ(f ; g) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k and

∞∑
k=2

[k]q |ak − bk| ≤ δq

}
,

(61)
In particular, for the identity function e(z) = z, we have

Nk,q,δ(e; g) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k and

∞∑
k=2

[k]q |bk| ≤ δq

}
. (62)

Theorem 8. Let

δq =
[2]q(1−α)

[2]nq [[2]q(1+β)−(α+β)]
. (63)

Then Tq(n, α, β) ⊂ Nk,q,δ(e).

proof For f ∈ Tq(n, α, β), Theorem 1, yields

[2]nq

[
[2]q (1 + β)− (α + β)

] ∞∑
k=2

ak ≤ 1− α,

so that
∞∑
k=2

ak ≤
1− α

[2]nq

[
[2]q (1 + β)− (α + β)

] . (64)
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On the other hand, we also find from (19) and (64) that

[2]nq (1 + β)
∞∑
k=2

[k]q ak ≤ 1− α + [2]nq (α + β)
∞∑
k=2

ak

≤ 1− α +
[2]nq (α + β)(1− α)

[2]nq

[
[2]q (1 + β)− (α + β)

]
≤

[2]q (1 + β)(1− α)

[2]q (1 + β)− (α + β)
∞∑
k=2

[k]q ak ≤
[2]q (1− α)

[2]nq

[
[2]q (1 + β)− (α + β)

] , (65)

which, in view of the (60), proves Theorem 8.
Now we determine the neighborhood for the class Tq(n, α, β, ξ) which we

define as follows.
A function f ∈ T is said to be in the class Tq(n, α, β, ξ) if there exists a

function g ∈ Tq(n, α, β) such that∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1− ξq (z ∈ U, 0 ≤ ξq < 1). (66)

Theorem 9. If g ∈ Tq(n, α, β) and

ξq = 1− δq [2]
n
q [[2]q(1+β)−(α+β)]

2{[2]nq [[2]q(1+β)−(α+β)]−(1−α)}
. (67)

Then Nk,q,δ(g) ⊂ Tq(n, α, β, ξ).
proof Suppose that f ∈ Nk,q,δ(g) then we find from (65) that

∞∑
k=2

[k]q |ak − bk| ≤ δq,

which implies that the coefficient inequality

∞∑
k=2

|ak − bk| ≤
δq
2
.

Next, since g ∈ Tq(n, α, β), we have

∞∑
k=2

bk ≤
1− α

[2]nq

[
[2]q (1 + β)− (α + β)

] ,
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so that

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ <

∞∑
k=2

|ak − bk|

1−
∞∑
k=2

bk

≤ δq
2
×

[2]nq

[
[2]q (1 + β)− (α + β)

]
[2]nq

[
[2]q (1 + β)− (α + β)

]
− (1− α)

≤ 1− ξq.

Provided that ξq is given precisely by (67). Thus, by definition, f ∈ Tq(n, α, β, ξ)
for ξq given by (67), which completes the proof of Theorem 9.

Remark 1.
For different values of n, q, α and β in our results, we have results for the

special classes defined in the introduction.
Remark 2.
Theorems 8 and 9 correct the results of [29, Theorems 3.1 and 3.2].

6 Open problem

The authors suggest to study the quasi Hadamard products of functions in
this class.
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