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Abstract

In the present paper, a new class Vq(λ, β,A,B) of analytic func-
tions with varying arguments in the open unit disk ∆ := {z ∈ C :
|z| < 1} is introduced. The class is defined by the convolution of
q-analogue of the well-known Salagean and Ruscheweyh differen-
tial operator. We derive coefficient estimates, distortion theorem
and extreme points for the function belongs to the above mentioned
class.
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1 Introduction and Motivation

Let N and C be denote the set of natural numbers and complex numbers
respectively. In view of Riemann mapping theorem, the unit disk ∆ := {z ∈
C : |z| < 1} can be taken as a standard domain in the theory of analytic
function theory. Let H(∆) be represent the set of all analytic (or holomorphic)
functions in ∆. The class of functions f ∈ H(∆) with normalization condition
f(0) = f ′(0) − 1 = 0 be denoted by A. Thus, the function f ∈ A have the
following Taylor-Maclaurin series representation:

f(z) = z +
∞∑
k=2

akz
k (z ∈ ∆). (1)

We denote S, the class of all functions f ∈ A which are univalent in ∆.
The quantum calculus, so called q-calculus (q-analysis) is the usual calculus
without using the notion of limit. It provides important tools that has been
used in order to investigate several subclasses of A. It has attracted the at-
tention of various researchers due to its numerous applications in mathematics
and physics. Researchers all over the globe have applied it to construct and in-
vestigated several classes of analytic and bi-univalent functions. It was Jackson
(see [6, 7]) who first developed q integral and q derivative in a systematic way
and later geometrical interpretation of q-analysis has been recognized through
studies on quantum groups. The q-analogue of differential operators in some
subclasses of analytic functions in compact disk have been introduced by vari-
ous authors (see [1, 8, 9]). These q-operators are defined by using convolution
of normalized analytic functions and q-hypergeometric functions.
Here we mention some notations and concept of q-calculus that is used in this
paper. The notations and terminology can be found in [3, 4, 5]. We recall the
definition of fractional q-calculus operator of a complex-valued function f(z).
Definition 1: For 0 < q < 1, define the q-number [α]q by

[α]q =

{
1−qα
1−q (α ∈ C)∑α−1
i=0 q = 1 + q + q2 + · · ·+ qn−1 (α = n ∈ N).

(2)

Note that as q −→ 1−, [n]q −→ n.
Definition 2: For 0 < q < 1, define the q-factorial [n]q! by

[n]q! =

{
1 (n = 0)∏n

k=1[k]q (n ∈ N).
(3)

Definition 3 (see [5, 6]) : The q-derivative Dqf of a function f is defined in
a given subset of C by

(Dqf)(z) =

{
f(z)−f(qz)

(1−q)z (z 6= 0)

f ′(0) (z = 0)
(4)
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provided that f ′(0) exists.
It follows from (4) that

limq−→1−Dqf(z) = limq−→1−
f(z)− f(qz)

(1− q)z
= f ′(z)

for a function f which is differentiable in a given subset of C. Thus for a
function f(z) of the form (1), we have

Dqf(z) = 1 +
∞∑
k=2

[k]qakz
k−1. (5)

Making use of q-operator, we generalize Salagean and Ruscheweyh differential
operators as follows:
Definition 4: For f ∈ A, λ ∈ N0 := N ∪ {0}, the q-analogue of Salagean
differential operator Jλq : A −→ A is defined by

J0
qf(z) = f(z)

J1
qf(z) = z(Dqf(z))

· · ·
· · ·

Jλqf(z) = J1
q(J

λ−1
q f(z)) = z(DqJ

λ−1
q f(z)).

Thus, for a function f(z) of the form (1), we have

Jλqf(z) = z +
∞∑
k=2

[k]λqakz
k (z ∈ ∆). (6)

Definition 5 (see [1]): Let f ∈ A. Denote byRλ
q , the q-analogue of Ruscheweyh

differential operator defined by

Rλ
qf(z) = z +

∞∑
k=2

[k + λ− 1]q!

[λ]q![k − 1]q!
akz

k, (7)

where [α]q! is defined as (3). It may be noted that when q −→ 1− we have

limq−→1−Rλ
qf(z) = z + limq−→1−

∞∑
k=2

[k + λ− 1]q!

[λ]q![k − 1]q!
akz

k

z +
∞∑
k=2

(k + λ− 1)!

λ!(k − 1)!
akz

k = Rλf(z), (8)

where Rλ is Ruscheweyh differential operator which was defined in [13] and
has been studied by various researchers (for details, see [10, 12, 14]).
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Definition 6: For f ∈ A given by (1), we define a linear operator JRλ
q :

A −→ A define by the Hadamard product (or convolution) of q-analogue of
Salagean operator Jλq and Ruscheweyh operator Rλ

q as:

JRλ
qf(z) = (Jλq ?Rλ

q )f(z)

= z +
∞∑
k=2

[k + λ− 1]q!

[λ]q![k − 1]q!
[k]λqa

2
kz

k (z ∈ ∆). (9)

Motivated from the work studied in [2, 11], we now introduce a new subclass
of A by using the operator JRλ

q as follows:
Definition 7: A function f ∈ A given by (1) is in the class Tq(λ, β,A,B) (0 <
q < 1, λ ∈ N0, β ≥ 0,−1 ≤ A < B ≤ 1, 0 < B ≤ 1) if it satisfies the following
subordination condition:

(1− β)
JRλ

qf(z)

z
+ β(JRλ

qf(z))′ ≺ 1 + Az

1 +Bz
(z ∈ ∆). (10)

Silverman (see [15]) introduced and studied the univalent function with
varying arguments of coefficients as follows:
Definition 8: (see [15]) A function f(z) of the form (1) is in the class V(θk) if
f(z) ∈ S (the class of analytic and univalent function in ∆) and arg(ak) = θk
for all k (k ≥ 2). Further, if there exists a real number η such that

θk + (k − 1)η ≡ π(mod 2π), (11)

then f(z) is said to be in the class V(θk, η). The union of V(θk, η) taken over
all possible sequence {θk} and all possible real numbers η is denoted by V .

Let Vq(λ, β,A,B) denote the subclass of V consisting of functions f(z) ∈
Tq(λ, β,A,B).
In this paper, the authors obtain coefficient estimates, distortion theorem and
extreme point for the function f ∈ A belongs to the class Vq(λ, β,A,B).

2 Coefficient Estimates

Unless otherwise stated, we assume throughout the sequel that −1 ≤ A <
B ≤ 1, 0 < B ≤ 1, λ, β ∈ N0, 0 < q < 1; z ∈ ∆.
The sufficient condition for a function f(z) of the form (1) to be in the class
Tq(λ, β,A,B) is given by the following theorem.

Theorem 1: Let the function f(z) be of the form (1). If

∞∑
k=2

[1 + β(k − 1)](1 + β)Dλ
k,q|ak|2 ≤ (B − A) (12)
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then f(z) ∈ Tq(λ, β,A,B) where Dλ
k,q =

[k]λq [k+λ−1]q !
[λ]q ![k−1]q ! .

Proof :
A function f(z) of the form (1) belongs to the class Tq(λ, β,A,B) if and only
if there exists an analytic function w(z), satisfying the condition of Schwarz
lemma such that

(1− β)
JRλ

qf(z)

z
+ β(JRλ

qf(z))′ =
1 + Aw(z)

1 +Bw(z)
.

Or equivalently, ∣∣∣∣∣∣ (1− β)
JRλq f(z)

z
+ β(JRλ

qf(z))′ − 1

β[(1− β)
JRλq f(z)

z
+ β(JRλ

qf(z))′]− A

∣∣∣∣∣∣ < 1. (13)

Thus, it is sufficient to show that∣∣∣∣∣(1− β)
JRλ

qf(z)

z
+ β(JRλ

qf(z))′ − 1

∣∣∣∣∣−
∣∣∣∣∣B[(1− β)

JRλ
qf(z)

z
+ β(JRλ

qf(z))′
]
− A

∣∣∣∣∣ ≤ 0.

Letting |z| = r (0 ≤ r < 1), we have∣∣∣∣∣(1− β)
JRλ

qf(z)

z
+ β(JRλ

qf(z))′ − 1

∣∣∣∣∣−
∣∣∣∣∣B[(1− β)

JRλ
qf(z)

z
+ β(JRλ

qf(z))′
]
− A

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=2

[1 + β(k − 1)]Dλ
k,qa

2
kz

k−1

∣∣∣∣∣−
∣∣∣∣∣(B − A) +B

∞∑
k=2

[1 + β(k − 1)]Dλ
k,qa

2
kz

k−1

∣∣∣∣∣
≤

∞∑
k=2

[1 + β(k − 1)]Dλ
k,q|ak|2rk−1 − (B − A) +B

∞∑
k=2

[1 + β(k − 1)]Dλ
k,q|ak|2rk−1

≤
∞∑
k=2

[1 + β(k − 1)](1 +B)Dλ
k,q|ak|2 − (B − A).

In view of (12), the last inequality is less than zero. Hence f(z) ∈ Tq(λ, β,A,B).
This completes the proof of Theorem 2.

Theorem 2: Let the function f(z) ∈ A be of the form (1). Then f(z) ∈
Vq(λ, β,A,B) if and only if

∞∑
k=2

[1 + β(k − 1)](1 +B)Dλ
k,q|ak|2 ≤ (B − A). (14)

Proof. In view of Theorem 1, we need only to show that function f(z) ∈
Vq(λ, β,A,B) satisfies the coefficient inequalities (14). Let f(z) ∈ Vq(λ, β,A,B).
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Then from (1) and (13), we have∣∣∣∣∣
∑∞

k=2[1 + β(k − 1)]Dλ
k,qa

2
kz

k−1

(B − A) +
∑∞

k=2B[1 + β(k − 1)]Dλ
k,qa

2
kz

k−1

∣∣∣∣∣ < 1. (15)

Since f(z) ∈ V , f(z) lies in the class V(θk, η) for some sequence {θk} and real
number η such that θk + (k − 1)η ≡ π(mod2π) for all k ≥ 2.
Set z = reiη in (15), we have∑∞

k=2[1 + β(k − 1)]Dλ
k,q|ak|2ei(θk+(k−1)η)rk−1

(B − A) +B
∑∞

k=2[1 + β(k − 1)]Dλ
k,q|ak|2ei(θk+(k−1)η)rk−1

< 1,

which implies∣∣∣∣∣ −
∑∞

k=2[1 + β(k − 1)]Dλ
k,q|ak|2rk−1

(B − A)−B
∑∞

k=2[1 + β(k − 1)]Dλ
k,q|ak|2rk−1

∣∣∣∣∣ < 1.

Since <(w(z)) < |w(z)| < 1 implies

<

[ ∑∞
k=2[1 + β(k − 1)]Dλ

k,q|ak|2rk−1

(B − A)−B
∑∞

k=2[1 + β(k − 1)]Dλ
k,q|ak|2rk−1

]
< 1. (16)

It has been observed that the denominator of the left hand side of (16) cannot
vanish for [0, 1). Furthermore, it is positive for r = 0 and therefore for r ∈
[0, 1). Thus, we have

∞∑
k=2

[1 + β(k − 1)](1 +B)Dλ
k,q|ak|2rk−1 < (B − A)

which, upon letting r −→ 1− gives the require assertion of Theorem 2. The
proof of Theorem 2 is thus completed.

Corollary 3: Let the function f(z) ∈ A defined by (1) be in the class
Vq(λ, β,A,B). Then

|ak| ≤

√
(B − A)

[1 + β(k − 1)](1 +B)Dλ
k,q

(k ≥ 2).

The result is sharp for the function

f(z) = z +

√
(B − A)

[1 + β(k − 1)](1 +B)Dλ
k,q

eiθkzk (k ≥ 2).
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3 Distortion Theorem

Theorem 4: Let the function f(z) defined by (1) be in the class Vq(λ, β,A,B).
Then

|z|−

√
(B − A)

(1 + β)(1 +B)Dλ
2,q

|z|2 ≤ |f(z)| ≤ |z|+

√
(B − A)

(1 + β)(1 +B)Dλ
2,q

|z|2 (17)

The result is sharp.

Proof: Corollary 3 and elementary inequality

(1 + β)Dλ
2,q ≤ [1 + β(k − 1)]Dλ

k,q (k ≥ 2)

yield
∞∑
k=2

|ak| ≤

√
(B − A)

(1 + β)(1 +B)Dλ
2,q

. (18)

Thus,

|f(z)| = |z +
∞∑
k=2

akz
k|

≤ |z|+
∞∑
k=2

|ak||z|k

≤ |z|+ |z|2
∞∑
k=2

|ak|

≤ |z|+

√
(B − A)

(1 + β)(1 +B)Dλ
2,q

|z|2. (19)

Similarly, we have

|f(z)| = |z +
∞∑
k=2

akz
k|

≥ |z| −
∞∑
k=2

|ak||z|k

≥ |z| − |z|2
∞∑
k=2

|ak|

≥ |z| −

√
(B − A)

(1 + β)(1 +B)Dλ
2,q

|z|2. (20)
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Combining (19) and (20) we obtain the desire result. The result is sharp for
the function

f(z) = z +

√
(B − A)

(1 + β)(1 +B)Dλ
2,q

eiθ2z2 (21)

at z = ±|z|e−iθ2 , This completes the proof of Theorem 4.

Corollary 5: Under the hypothesis of Theorem 4, f(z) included in a disk
with center at origin and radius r1 given by

r1 = 1 +

√
(B − A)

(1 + β)(1 +B)Dλ
2,q

.

Theorem 6: Let the function f(z) defined by (1) belong to the class Vq(λ, β,A,B).
Then

1−

√
4(B − A)

(1 + β)(1 +B)Dλ
2,q

|z| ≤ |f ′(z)| ≤ 1 +

√
4(B − A)

(1 + β)(1 +B)Dλ
2,q

|z|. (22)

The result is sharp for the function f(z) given by (21) at z = ±|z|e−iθ2 .

Proof. In view of the inequality

k(1 + β)Dλ
2,q ≤ 2[1 + β(k − 1)]Dλ

k,q (k ≥ 2),

it follows that

∞∑
k=2

k|ak| ≤ 2

√
(B − A)

(1 + β)(1 +B)Dλ
2,q

=

√
4(B − A)

(1 + β)(1 +B)Dλ
2,q

.

Thus, we have

|f ′(z)| = |1 +
∞∑
k=2

kakz
k−1|

≤ 1 + |z|
∞∑
k=2

k|ak|

≤ 1 +

√
4(B − A)

(1 + β)(1 +B)Dλ
2,q

|z|. (23)
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Similarly, we obtain

|f ′(z)| = |1 +
∞∑
k=2

kakz
k−1|

≥ 1− |z|
∞∑
k=2

k|ak|

≥ 1−

√
4(B − A)

(1 + β)(1 +B)Dλ
2,q

|z|. (24)

The assertion (22) of Theorem 6 follows from (23) and (24). The result is
sharp for the function f(z) given by (21).

Corollary 7: Let the function f(z) ∈ A defined by (1) be in the class
Vq(λ, β,A,B). Then f(z) is included in a disk with center at origin and radius
r2 given by

r2 = 1 +

√
4(B − A)

(1 + β)(1 +B)Dλ
2,q

.

4 Extreme Points

Theorem 8: Let the function f(z) defined by (1) be in the class Vq(λ, β,A,B)
with arg(ak) = θk where [θk + (k − 1)η] ≡ π (mod2π). Define f1(z) = z and

fk(z) = z +

√
(B − A)

[1 + β(k − 1)](1 +B)Dλ
k,q

eiθkzk (k ≥ 2; z ∈ ∆).

Then f(z) is in the class Vq(λ, β,A,B) if and only if it can be expressed in the
form

f(z) =
∞∑
k=1

µkfk(z),

where µk ≥ 0 (k ≥ 1) and
∑∞

k=1 µk = 1.

Proof : If f(z) =
∑∞

k=1 µkfk(z) with
∑∞

k=1 µk = 1 and µk ≥ 0, then

∞∑
k=2

[1 + β(k − 1)](1 +B)Dλ
k,q

(B − A)

[1 + β(k − 1)](1 +B)Dλ
k,q

µk

=
∞∑
k=2

(B − A)µk = (B − A)(1− µ1) ≤ (B − A).
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So, by Theorem 6, we have f(z) ∈ Vq(λ, β,A,B). Conversely, let the function
f(z) defined by (1) be in the class Vq(λ, β,A,B). Define

µk =

√
[1 + β(k − 1)](1 +B)Dλ

k,q

(B − A)
|ak| (k ≥ 2)

and

µ1 = 1−
∞∑
k=2

µk.

From Theorem 6,
∑∞

k=2 µk ≤ 1 which implies µ1 ≥ 0. Since µkfk(z) = µkz +
akz

k, we have
∞∑
k=1

µkfk(z) = z +
∞∑
k=2

akz
k = f(z).

This completes the proof of Theorem 8.

5 Open Problem

Using post quantum analysis or (p,q)-differential operator, Salagean and Ruscheweyh
differential operator can be further generalized. The class defined in Definition
7 can be redefined by help of generalized operator. Accordingly, coefficient es-
timates, distortion theorem and extreme points for the function belongs to the
generalized class can be found.
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