Int. J. Open Problems Complex Analysis, Vol. 11, No. 2, July 2019 ISSN 2074-2827; Copyright ©ICSRS Publication, 2019 www.i-csrs.org

Certain Results on Meromorphic Starlike Functions

Kuldeep Kaur Shergill and Sukhwinder Singh Billing

Department of Mathematics, Sri Guru Granth Sahib World University Fatehgarh Sahib-140407(Punjab), INDIA e-mail: kkshergill16@gmail.com e-mail: ssbilling@gmail.com

Received 6 May 2019; Accepted 20 July 2019 Communicated by Imran Faisal

Abstract

In the present paper, we obtain certain results on meromorphic starlike functions using the technique of differential subordination.

Keywords: Analytic function, Meromorphic function, Meromorphic Starlike function.

Mathematics Subject Classification: Primary 30C45, Secondary 30C80.

1 Introduction

Let Σ_p denote the class of functions of the form

$$f(z) = \frac{1}{z^p} + \sum_{k=1}^{\infty} a_k z^{k-p} \ (p \in \mathbb{N} = \{1, 2, 3, \ldots\}),$$

which are analytic and *p*-valent in the punctured unit disc $\mathbb{E}_0 = \mathbb{E} \setminus \{0\}$, where $\mathbb{E} = \{z \in \mathbb{C} : |z| < 1\}$. A function $f \in \Sigma_p$ is said to be meromorphic *p*-valent starlike of order α if $f(z) \neq 0$ for $z \in \mathbb{E}_0$ and

$$-\Re \frac{1}{p} \left(\frac{zf'(z)}{f(z)} \right) > \alpha, \qquad (\alpha < 1; z \in \mathbb{E}).$$

The class of all such meromorphic *p*-valent starlike functions is denoted by $\mathcal{MS}_p^*(\alpha)$.

A function $f \in \Sigma_p$ is called meromorphic *p*-valent convex of order α if $f'(z) \neq 0$ and

$$-\Re \frac{1}{p} \left(1 + \frac{z f''(z)}{f'(z)} \right) > \alpha, \qquad (\alpha < 1; z \in \mathbb{E}).$$

The class of all meromorphic *p*-valent convex functions defined above is denoted by $\mathcal{MK}_p(\alpha)$.

The class $\Sigma_p^{\alpha}(\gamma)$ consists of functions $f \in \Sigma_p$ with $f(z)f'(z) \neq 0$ satisfying

$$-\Re \frac{1}{p} \left[(1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] > \gamma, \quad (z \in \mathbb{E}),$$

where γ is real number and $\gamma < 1$.

The function $f \in \Sigma_p^{\alpha}(\gamma)$ is called a meromorphic *p*-valent α -convex functions of order γ .

Let $\Sigma = \Sigma_1$, $\mathcal{MS}^*(\alpha) = \mathcal{MS}^*_1(\alpha)$, $\mathcal{MK}(\alpha) = \mathcal{MK}_1(\alpha)$ and $\Sigma^{\alpha}(\gamma) = \Sigma_1^{\alpha}(\gamma)$. For two functions f and g analytic in \mathbb{E} , we say that the function f(z) is subordinate to g(z) in \mathbb{E} , and write $f(z) \prec g(z)$, $(z \in \mathbb{E})$, if there exists a Schwarz function w(z), analytic in \mathbb{E} with w(0) = 0 and |w(z)| < 1, $(z \in \mathbb{E})$, such that f(z) = g(w(z)), $(z \in \mathbb{E})$.

In particular, if the function g is univalent in \mathbb{E} , the above subordination is equivalent to f(0) = g(0) and $f(\mathbb{E}) \subset g(\mathbb{E})$.

In the literature of meromorphic functions, there exist certain results involving the above classes. We state below some of them.

Recently Cho and Owa [2] proved the following results.

Theorem 1.1. If $f(z) \in \Sigma$ satisfies $f(z)f'(z) \neq in \mathbb{E}_0$ and

$$\Re\left[\alpha\frac{zf'(z)}{f(z)} - \frac{zf''(z)}{f'(z)}\right] < 2(2-\alpha) - \beta, \ (z \in \mathbb{E}),$$

then

$$-\Re\left[\frac{z^{2-\alpha}f'(z)}{f^{\alpha}(z)}\right] > \frac{1}{1+2(2-\alpha)-2\beta}, \ (z \in \mathbb{E}),$$

where $\alpha \leq 2$ and $[2(2-\alpha)-1]/2 \leq \beta < 2-\alpha$.

Nunokawa and Ahuja [1] proved the following result.

Theorem 1.2. Let $\alpha < 0$ and $\gamma \geq 0$. If

$$f \in \Sigma_{\gamma}^* \left(\frac{2\alpha - 2\alpha^2 + \gamma \alpha}{2(1 - \alpha)} \right),$$

then $f \in \mathcal{MS}^*(\alpha)$

Ravichandaran et al. [5] proved the following results.

Theorem 1.3. Let q(z) be univalent and $q(z) \neq 0$ in \mathbb{E} and (i) $\frac{zq'(z)}{q(z)}$ is starlike univalent in \mathbb{E} , and (ii) $\Re \left[1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} - \frac{q(z)}{\gamma} \right] > 0$ for $z \in \mathbb{E}$, $\gamma \neq 0$. If $f(z) \in \Sigma$ and $\left[(1 - \frac{zf'(z)}{\gamma} + \frac{zf''(z)}{\gamma} + \frac{zf''(z)}{\gamma} \right] = (1 - \frac{zq'(z)}{\gamma}) = (1 - \frac{zq'(z)}{\gamma})$

$$-\left[(1-\gamma)\frac{zf'(z)}{f(z)} + \gamma\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] \prec q(z) - \gamma\frac{zq'(z)}{q(z)}$$

then

$$-\frac{zf'(z)}{f(z)} \prec q(z)$$

and q(z) is the best dominant.

Theorem 1.4. Let $\alpha < 0, \ \gamma \neq 0$. If $f(z) \in \Sigma$ and

$$-\left[(1-\gamma)\frac{zf'(z)}{f(z)} + \gamma\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] \prec \frac{1 + 2[1-\gamma + (\alpha - 1)\gamma]z + (1-2\alpha)^2 z^2}{1 - 2\alpha z - (1-2\alpha)z^2}$$

then $-\Re \frac{zf'(z)}{f(z)} > \alpha.$

Roshian and Ravichandaran [3] proved the following results.

Theorem 1.5. Let q(z) be univalent in \mathbb{E} and $\frac{zq'(z)}{q(z)}$ be starlike in \mathbb{E} . If $f \in \Sigma_p$ satisfies

$$\alpha \frac{zf'(z)}{f(z)} - \frac{zf''(z)}{f'(z)} \prec 1 + (1-\alpha)p - \frac{zq'(z)}{q(z)}$$

then

$$-\frac{z^{1+(1-\alpha)p}f'(z)}{pf^{\alpha}(z)} \prec q(z),$$

and q(z) is the best dominant.

Theorem 1.6. Let $-1 \leq B < A \leq 1$. If $f \in \Sigma$ satisfies

$$\alpha \frac{zf'(z)}{f(z)} - \frac{zf''(z)}{f'(z)} \prec 2 - \alpha - \frac{(A - B)z}{(1 + Az)(1 + Bz)},$$

then

$$-\frac{z^{2-\alpha}f'(z)}{f^{\alpha}(z)} \prec \frac{(1+Az)}{(1+Bz)}.$$

2 Preliminaries

We shall use the following lemma of Miller and Mocanu [4] to prove our result.

Lemma 2.1. Let q be univalent in \mathbb{E} and let θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\phi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q_1(z) = zq'(z)\phi[q(z)]$, $h(z) = \theta[q(z)] + Q_1(z)$ and suppose that either (i) h is convex, or (ii) Q_1 is starlike. In addition, assume that (iii) $\Re\left(\frac{zh'(z)}{Q_1(z)}\right) > 0$ for all z in \mathbb{E} . If p is analytic in \mathbb{E} , with p(0) = q(0), $p(\mathbb{E}) \subset \mathbb{D}$ and $\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)], z \in \mathbb{E}$,

$$\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)], \ z \in$$

then $p(z) \prec q(z)$ and q is the best dominant.

3 Main Theorem

Theorem 3.1. Let α be a non-zero complex number. Let q, $q(z) \neq 0$, be a univalent function in \mathbb{E} satisfying therein the condition

$$\Re\left[1 + \frac{zq''(z)}{q'(z)} - \frac{2zq'(z)}{q(z)}\right] > max\left\{0, -\Re\frac{\gamma}{\alpha}\right\}$$
(1)

If $P, P(z) \neq 0$ in \mathbb{E} , satisfies the differential subordination

$$1 + \frac{\gamma}{P(z)} - \alpha \frac{zP'(z)}{(P(z))^2} \prec 1 + \frac{\gamma}{q(z)} - \alpha \frac{zq'(z)}{(q(z))^2}$$
(2)

then $P(z) \prec q(z)$ and q is the best dominant.

Proof. Let us define the functions θ and ϕ as follows:

$$\theta(w) = 1 + \frac{\gamma}{w}$$
 and $\phi(w) = -\frac{\alpha}{w^2}$

Clearly, the functions θ and ϕ are analytic in domain $\mathbb{D} = \mathbb{C} \setminus \{0\}$ and $\phi(w) \neq 0$ in \mathbb{D} . Now, define the function h as follows:

$$h(z) = 1 + \frac{\gamma}{q(z)} - \alpha \frac{zq'(z)}{(q(z))^2}$$
(3)

Differentiate (3) and simplifying a little, we get

$$\frac{zh'(z)}{Q_1(z)} = \frac{\gamma}{\alpha} + \frac{zQ_1'(z)}{Q_1(z)}$$

where $Q_1(z) = -\alpha \frac{zq'(z)}{(q(z))^2}$. In view of condition (1), Q_1 is starlike in \mathbb{E} and

$$\Re\left(\frac{zh'(z)}{Q_1(z)}\right) > 0, \ z \in \mathbb{E}.$$

Thus conditions (ii) and (iii) of lemma 2.1 are satisfied. Hence $P(z) \prec q(z)$. This completes the proof of our theorem.

Remark 3.1. If $\Re \frac{\gamma}{\alpha} \ge 0$, then the condition (1) of Theorem 3.1 can be stated as

$$\Re\left(1 + \frac{zq''(z)}{q'(z)} - 2\frac{zq'(z)}{q(z)}\right) > 0.$$

Letting $\gamma = 0$ in Theorem 3.1, we obtain the following result.

Theorem 3.2. Let $q, q(z) \neq 0$ in \mathbb{E} , be a univalent function satisfying the condition

$$\Re\left(1+\frac{zq''(z)}{q'(z)}-2\frac{zq'(z)}{q(z)}\right)>0, \ z\in\mathbb{E}.$$

If an analytic function P, $P(z) \neq 0$ in \mathbb{E} , satisfies the differential subordination

$$1 - \alpha \frac{zP'(z)}{(P(z))^2} \prec 1 - \alpha \frac{zq'(z)}{(q(z))^2}, \ z \in \mathbb{E},$$

then $P(z) \prec q(z)$ in \mathbb{E} and q is the best dominant.

By selecting $P(z) = -\frac{zf'(z)}{f(z)}$ in Theorem 3.1, we obtain the following result.

Theorem 3.3. Let $\alpha \neq 0$ and γ be complex numbers. Let $q, q(z) \neq 0, z \in \mathbb{E}$, be a univalent function satisfying the condition (1) of Theorem 3.1. If a meromorphic function $f \in \Sigma, -\frac{zf'(z)}{f(z)} \neq 0$, satisfies the differential subordination

$$\frac{(1-\alpha)zf'(z)/f(z) + \alpha(1+zf''(z)/f'(z)) - \gamma}{zf'(z)/f(z)} \prec 1 + \frac{\gamma}{q(z)} - \alpha\frac{zq'(z)}{(q(z))^2}, \ z \in \mathbb{E},$$

then $-\frac{zf'(z)}{f(z)} \prec q(z)$ in \mathbb{E} and q is the best dominant.

3.1 Applications to Univalent Functions

By selecting $q(z) = \frac{1+Az}{1+Bz}$ and $\gamma = 0$ in Theorem 3.3, we get the following criterion for starlikeness.

Certain Results on Meromorphic Starlike Functions

Corollary 3.4. Let A and B be real numbers with $-1 \leq B < A \leq 1$. If a meromorphic function $f \in \Sigma, -\frac{zf'(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$\frac{(1-\alpha)zf'(z)/f(z) + \alpha(1+zf''(z)/f'(z))}{zf'(z)/f(z)} \prec 1 - \alpha\frac{(A-B)z}{(1+Az)^2}$$

where α is non-zero complex number, then $-\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz}, \ z \in \mathbb{E}.$

Taking $q(z) = \frac{1 + Az}{1 + Bz}$ and $\alpha = 1$ in Theorem 3.3, we obtain

Corollary 3.5. Let γ be a complex number with $\Re \gamma \geq 0$ and A and B be real numbers satisfying $-1 \leq B < A \leq 1$. If $f \in \Sigma$ satisfies the differential subordination

$$\frac{1-\gamma+zf''(z)/f'(z)}{zf'(z)/f(z)} \prec 1+\gamma\left(\frac{1+Bz}{1+Az}\right) - \frac{(A-B)z}{(1+Az)^2}$$
$$en -\frac{zf'(z)}{(1+Az)} \prec \frac{1+Az}{1+Az} \text{ in } \mathbb{E}.$$

in \mathbb{E} , then $-\frac{zf(z)}{f(z)} \prec \frac{1+Hz}{1+Bz}$ in \mathbb{E} .

Taking $A = 1 - 2\alpha$, $B = -1, 0 \le \alpha < 1$ in Corollary 3.5, we get the following result.

Corollary 3.6. Let γ , $\Re \gamma \ge 0$ be a complex number. If $f \in \Sigma$ satisfies the differential subordination

$$\frac{1 - \gamma + z f''(z) / f'(z)}{z f'(z) / f(z)} \prec 1 + \gamma \frac{1 - z}{1 + (1 - 2\alpha)z} - \frac{2(1 - \alpha)z}{[1 + (1 - 2\alpha)z]^2}$$

in \mathbb{E} , then $f \in \mathcal{MS}^*(\alpha)$.

Writing A = 0 in Corollary 3.5, we obtain the following result:

Corollary 3.7. Let $f \in \Sigma$ satisfy

$$\left|\frac{1-\gamma+zf''(z)/f'(z)}{zf'(z)/f(z)} - (1+\gamma)\right| < (1+\gamma)|B|, \ z \in \mathbb{E}, \ \gamma \ge 0, \ -1 \le B < 0,$$

then $-\frac{zf'(z)}{f(z)} \prec \frac{1}{1+Bz}$ in \mathbb{E} .

The selection of B = 0 in Corollary 3.5, gives us the following:

Corollary 3.8. Let $f \in \Sigma$ satisfy $\frac{1 - \gamma + zf''(z)/f'(z)}{zf'(z)/f(z)} \prec 1 + \frac{\gamma}{1 + Az} - \frac{Az}{(1 + Az)^2}, \ z \in \mathbb{E}, \ \gamma \ge 0, \ 0 < A \le 1,$ then $\left|1 + \frac{zf'(z)}{f(z)}\right| < A, \ z \in \mathbb{E}.$

Remark 3.2. If we take $q(z) = \frac{2\beta}{1+z}$, $0 < \beta < 1$, it is easy to verify that it satisfies the condition (1). In addition, setting $\alpha = 1$ in Theorem 3.3, we obtain the following result.

Corollary 3.9. For $0 < \beta < 1$ and $\gamma > -1$, if $f \in \Sigma$ satisfies

$$\left|\frac{1-\gamma+zf''(z)/f'(z)}{zf'(z)/f(z)}-\left(1+\frac{\gamma}{2\beta}\right)\right|<\frac{1+\gamma}{2\beta},\ z\in\mathbb{E},$$

then f is meromorphic starlike of order β .

Writing $\gamma = 1$ in Corollary 3.5, we obtain the following result:

Corollary 3.10. If $f \in \Sigma$ satisfies the differential subordination

$$\frac{f''(z)f(z)}{f'^{2}(z)} \prec 1 + \frac{1+Bz}{1+Az} - \frac{(A-B)z}{(1+Az)^{2}}, \ z \in \mathbb{E}, \ -1 \le B < A \le 1,$$

then $-\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz}$ in \mathbb{E} .

In particular, for $\gamma = 1$ in Corollary 3.7, we obtain the following result:

Corollary 3.11. Let $f \in \Sigma$ satisfy

$$\left|\frac{f''(z)f(z)}{f'^2(z)} - 2\right| < 2|B|, \ z \in \mathbb{E}, \ -1 \le B < 0,$$

then $-\frac{zf'(z)}{f(z)} \prec \frac{1}{1+Bz}, \ z \in \mathbb{E}.$

Taking $B = -\frac{1-\beta}{\beta}$, $\frac{1}{2} \le \beta < 1$ in above corollary, we get the following result.

Corollary 3.12. Let $f \in \Sigma$ with $f(z)f'(z) \neq 0$ for 0 < |z| < 1 and let β be a constant such that $\frac{1}{2} \leq \beta < 1$. If

$$\left|\frac{f''(z)f(z)}{f'^{2}(z)} - 2\right| < 2\left(\frac{1-\beta}{\beta}\right), \ z \in \mathbb{E},$$

then $f \in \mathcal{MS}^*(\beta)$ and $-\frac{zf'(z)}{f(z)} \prec \frac{\beta}{\beta - (1 - \beta)z}, \ z \in \mathbb{E}.$

Replacing B = -1 in Corollary 3.11, we get the following result:

Corollary 3.13. If $f \in \Sigma$ satisfies,

$$\frac{f''(z)f(z)}{f'^2(z)} \prec 2(1+z), \ z \in \mathbb{E},$$

then $f \in \mathcal{MS}^*\left(\frac{1}{2}\right)$.

3.2 Applications to Multivalent Functions

In Theorem 3.2, if we take $P(z) = -\frac{1}{p(k+1)} \left(1 + \frac{zf''(z)}{f'(z)} + k\frac{zf'(z)}{f(z)}\right)$ where $f \in \Sigma_p$, we obtain the following theorem:

Theorem 3.14. If a function $f \in \Sigma_p$, $P(z) = -\frac{1}{p(k+1)} \left(1 + \frac{zf''(z)}{f'(z)} + k\frac{zf'(z)}{f(z)}\right) \neq 0$ in \mathbb{E} with k+1 > 0, satisfies the differential subordination

$$p(k+1)\frac{z\left(1+\frac{zf''(z)}{f'(z)}+k\frac{zf'(z)}{f(z)}\right)'}{\left(1+\frac{zf''(z)}{f'(z)}+k\frac{zf'(z)}{f(z)}\right)^2} \prec -\frac{zq'(z)}{(q(z))^2}, \ z \in \mathbb{E},$$

then

$$\frac{1}{p(k+1)} \left(1 + \frac{zf''(z)}{f'(z)} + k\frac{zf'(z)}{f(z)} \right) \prec q(z),$$

and q is the best dominant.

Setting $q(z) = \frac{1+z}{1-z}$ in Theorem 3.14, we get:

Corollary 3.15. If a function $f \in \Sigma_p, -\frac{1}{p(k+1)} \left(1 + \frac{zf''(z)}{f'(z)} + k\frac{zf'(z)}{f(z)}\right) \neq 0, z \in \mathbb{E}, k+1 > 0, satisfies the differential subordination$

$$p(k+1)\frac{z\left(1+\frac{zf''(z)}{f'(z)}+k\frac{zf'(z)}{f(z)}\right)'}{\left(1+\frac{zf''(z)}{f'(z)}+k\frac{zf'(z)}{f(z)}\right)^2} \prec -\frac{2z}{(1+z)^2}, \ z \in \mathbb{E},$$

or equivalently

$$1 + \frac{z\left(1 + \frac{zf''(z)}{f'(z)} + k\frac{zf'(z)}{f(z)}\right)'}{\left(1 + \frac{zf''(z)}{f'(z)} + k\frac{zf'(z)}{f(z)}\right)^2} \prec 1 - \frac{1}{p(k+1)}\frac{2z}{(1+z)^2} = F_1(z),$$

then

$$-\frac{1}{p(k+1)}\left(1+\frac{zf''(z)}{f'(z)}+k\frac{zf'(z)}{f(z)}\right) \prec \frac{1+z}{1-z}, \ z \in \mathbb{E}.$$
 (4)

Remark 3.3. We observe that the condition (4) is equivalent to

$$-\Re\left(1 + \frac{zf''(z)}{f'(z)} + k\frac{zf'(z)}{f(z)}\right) > 0, \ z \in \mathbb{E}, \ k+1 \ge 0,$$

which, in turn, implies that $f \in \mathcal{MS}_p^*(k)$, a well known class of meromorphic multivalent functions showed that the functions in this class are p-valent meromorphic convex for $-1 < k \leq 0$ and p-valent meromorphic starlike for k > 0.

Remark 3.4. It can easily be seen that the function F_1 (given by Corollary 3.15) is a conformal mapping of the unit disc \mathbb{E} with $F_1(0) = 1$ and

$$F_1(\mathbb{E}) = \mathbb{C} \setminus \{ w \in \mathbb{C} : 1 - \frac{1}{2p(k+1)} \le \Re(w) < \infty, \ \Im(w) = 0 \}.$$

On writting $P(z) = -\frac{1}{p} \frac{zf'(z)}{f(z)}$, $f \in \Sigma_p$ and $q(z) = \frac{1+Az}{1+Bz}$ in Theorem 3.2, we get the following result.

Theorem 3.16. Let A and B be real numbers satisfying $-1 \le B < A \le$ 1. If a function $f \in \Sigma_p$, $-\frac{1}{p} \frac{zf'(z)}{f(z)} \ne 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$\frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} \prec 1 + \frac{(B - A)z}{p(1 + Az)^2}, \ z \in \mathbb{E}$$

then $-\frac{1}{p} \frac{zf'(z)}{f(z)} \prec \frac{1 + Az}{1 + Bz}.$

Selecting A = 0 and B = -1 in Theorem 3.16, we get the following result.

Corollary 3.17. If a function $f \in \Sigma_p$, $-\frac{1}{p} \frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the inequality

$$\frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} - 1 \left| < \frac{1}{p}, \right|$$

then

$$-\Re\left(\frac{zf'(z)}{f(z)}\right) > \frac{p}{2}.$$

By taking A = 1 and B = 0 in Theorem 3.16, we obtain the following result.

Corollary 3.18. If a function $f \in \Sigma_p$, $-\frac{1}{p} \frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$\frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} \prec 1 - \frac{1}{p} \frac{z}{(1+z)^2} = F_2(z),$$

then

$$\left|\frac{1}{p}\frac{zf'(z)}{f(z)} + 1\right| < 1.$$

It can be observed that function F_2 is a conformal mapping of the unit disc \mathbb{E} with $F_2(0) = 1$ and

$$F_2(\mathbb{E}) = \mathbb{C} \setminus \{ w \in \mathbb{C} : 1 - \frac{1}{4p} \le \Re(w) < \infty, \ \Im(w) = 0 \}.$$

When we take A = 1 and B = -1 in Theorem 3.16, we get the following result.

Corollary 3.19. If a function $f \in \Sigma_p$, $-\frac{1}{p} \frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$\frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} \prec 1 - \frac{1}{p} \frac{2z}{(1+z)^2} = F_3(z),$$

then $f \in \mathcal{MS}_{p}^{*}$ i.e. f is a p-valent meromorphic starlike function.

Remark 3.5. It is easy to verify that function F_3 is a conformal mapping of the unit disc \mathbb{E} with $F_3(0) = 1$ and

$$F_3(\mathbb{E}) = \mathbb{C} \setminus \{ w \in \mathbb{C} : 1 - \frac{1}{2p} \le \Re(w) < \infty, \ \Im(w) = 0 \}.$$

If we take $q(z) = p\left(\frac{1+z}{1-z}\right)$ and $\alpha = 1$ in Theorem 3.2, we obtain:

Corollary 3.20. Let P be an analytic function in \mathbb{E} with P(0) = p. Suppose P satisfies the differential subordination

$$1 - \frac{zP'(z)}{(P(z))^2} \prec 1 - \frac{2z}{p(1+z)^2} = F_4(z),$$

then $-\Re(P(z)) > 0, \ z \in \mathbb{E}.$

Remark 3.6. We observe that F_4 is a conformal mapping of the unit disc \mathbb{E} with $F_4(0) = 1$ and

$$F_4(\mathbb{E}) = \mathbb{C} \setminus \{ w \in \mathbb{C} : -\frac{1}{2p} \le \Re(w) < \infty, \ \Im(w) = 0 \}.$$

4 Open Problem

In the present paper, we have obtained the results on meromorphic starlike functions in terms of differential subordination. One may explore the corresponding results in terms of superordination.

References

- M. Nunokawa and O. P. Ahuja, On meromorphic starlike and convex functions, Indian J. Pure Appl. Math., 32 (2001), no. 7, 1027-1032.
- [2] N.E. Cho and S.Owa, Sufficient conditions for meromorphic starlikeness and close-to-convexity of order α , International J. Math. Math. Sci., 26(2001), 566-581.
- [3] Roshian M. Ali and V. Ravichandran, Differential Subordination for meromorphic functions defined by a Linear Operator, Journal of Analysis and Applications, 2(2004), no.3, 149-158.
- [4] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics (No. 225), Marcel Dakker, New York and Basel, 2000.
- [5] V. Ravichandaran, S.Sivaprasad Kumar and Maslina Darus, On a subordination theorem for a class of meromorphic functions, J. Inequalities in Pure and Applied Mathematics, 5(1) Art. 8, 2004.