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Abstract

The purpose of the present paper is to introduce a new sub-
class of harmonic functions in the unit disk U associated with the
Poisson distribution series. Coefficient conditions, extreme points,
distortion bounds, convex combination are studied. Furthermore,
several corollaries of the main theorems are presented.
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1 Introduction

In a complex domain G, let u and v be harmonic real-valued functions. Then
the continuous function f = u + iv defined on G is said to be harmonic. In
any simply connected domain D, we can write f as h + ḡ, where h and g
are analytic on D. A necessary and sufficient condition for f to be locally
univalent and sense preserving on D is that |h′(z)| > |g′(z)| for all z in D( see
[1]).
Clunie and Sheil-Small [2] introduced a class SH of harmonic complex-valued
functions f which are univalent and sense-preserving on the open unit disk
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U = {z ∈ C : |z| < 1} with standard normalization f(0) = fz(0) − 1 = 0.
Then for f = h+ ḡ ∈ SH we may express the analytic functions h and g as

h(z) = z +
∞∑
n=2

anz
n, g(z) =

∞∑
n=1

bnz
n, |b1| < 1. (1)

Let SH be the subclass of SH consisting of functions of the form f(z) = h(z) +
g(z), where

h(z) = z −
∞∑
n=2

|an|zn, g(z) =
∞∑
n=1

|bn|zn, |b1| < 1. (2)

Also, Sheil-Small [3] investigated the class SH as well as its geometric subclasses

and obtained some coefficient bounds. Since then, there has been several re-
lated papers on SH and its subclasses studied by Avci and Zlotkiewicz [4],
Silverman [5], and Jahangiri [6]. Furthermore, Some several researcher such
as (e.g see [7], [8], [9]) have recently studied the harmonic univalent functions
and many others researchers.

A variable x is said to be Poisson distributed if it takes the values 0, 1, 2, 3, ...
with probabilities em,m em

1!
,m em

3!
, ... respectively, where m is called the param-

eter. Thus

P (x = r) =
mne−m

r!
, r = 0, 1, 2, ... .

Recently, Porwal [10] introduce a power series whose coefficients are probabil-
ities of Poisson distribution

K(m, z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−mzn, (m > 0, z ∈ U).

We note that, by ratio test, the radius of convergence of the above series is
infinity. They also obtained some interesting results on certain classes of ana-
lytic univalent functions.

In 2016, Porwal and Kumar [11] introduced a new linear operator I(m,n) :
A→ A by using the convolution (or Hadamard product), and defined as follows

I(m, z)f = K(m, z) ∗ f(z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−manz

n, (m > 0, z ∈ U).

where ∗ denote the convolution (or Hadamard product) of two series.

Corresponding to I(m, z)f(z), we define the following class of functions.
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Definition 1.1 Let f(z) = h(z) + g(z), be the harmonic univalent function
given by (1), then f ∈ SH(m,λ, α) if and only if

<
(

(1− λ)
I(m, z)f(z)

z
+ λ

[I(m, z)f(z)]
′

z′

)
≥ α, (3)

where 0 ≤ α < 1, 0 ≤ λ ≤ 1 and z = reiθ ∈ U.

We also let SH(m,λ, α) = SH(m,λ, α) ∩ SH. In this paper, a new subclass

of harmonic univalent functions associated with Poisson distribution I(m, z)
examined to be in the function class SH(m,λ, α). The coefficient condition for
the function class SH(m,λ, α) is given. Furthermore, we determine distortion
theorem, convex combinations , and extreme points for the functions f in
SH(m,λ, α).

2 Coefficient bound

We begin with a sufficient coefficient condition for functions f in SH(m,λ, α).

Theorem 2.1 Let f = h+ g be given by (1). If

∞∑
n=2

[λ(n− 1) + 1]
mn−1

(n− 1)!
e−m|an|+

∞∑
n=1

[λ(n+ 1)− 1]
mn−1

(n− 1)!
e−m|bn| ≤ 1−α.

(4)
Then f ∈ SH(m,λ, α).

Proof. Using the fact that <(w) > α if and only if |w − α + 1| ≥ |w − α− 1|,
where

w = (1− λ)
I(m, z)f(z)

z
+ λ

[I(m, z)f(z)]
′

z′
.

It is enough to show that |w − α + 1| − |w − α− 1| ≥ 0.
Now, we have

|w− α+ 1| = |(1− λ)

(
1 +

∞∑
n=2

mn−1

(n− 1)!
e−manz

n−1 +
∞∑
n=1

mn−1

(n− 1)!
e−mbnz

n−1

)

+λ

(
1 +

∞∑
n=2

mn−1

(n− 1)!
e−mnanz

n−1 −
∞∑
n=2

mn−1

(n− 1)!
e−mnbnz

n−1

)
+ 1− α|

≥ 2− α−
∞∑
n=2

|1 + λ(n− 1)| mn−1

(n− 1)!
e−m|an||zn−1|
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−
∞∑
n=1

|1− λ(n+ 1)| mn−1

(n− 1)!
e−m|bn||zn−1|

and

|w− α− 1| = |(1− λ)

(
1 +

∞∑
n=2

mn−1

(n− 1)!
e−manz

n−1 +
∞∑
n=1

mn−1

(n− 1)!
e−mbnz

n−1

)

+λ

(
1 +

∞∑
n=2

mn−1

(n− 1)!
e−mnanz

n−1 −
∞∑
n=2

mn−1

(n− 1)!
e−mnbnz

n−1

)
− 1− α|

≤ α +
∞∑
n=2

|1 + λ(n− 1)| mn−1

(n− 1)!
e−m|an||zn−1|

+
∞∑
n=1

|1− λ(n+ 1)| mn−1

(n− 1)!
e−m|bn||zn−1|.

So by using (4) we have

|w − α + 1| − |w − α− 1| ≥ 2[1− α−
∞∑
n=2

|λ(n− 1) + 1| m
n−1

(n− 1)!
e−m|an|

−
∞∑
n=1

|λ(n+ 1)− 1| m
n−1

(n− 1)!
e−m|bn|] ≥ 0

and so the proof is completed.

Remark 2.2 The coefficient bound (4) in previous theorem is sharp for the
function

f(z) = z+
∞∑
n=2

xn
|λ(n− 1) + 1|

mn−1

(n− 1)!
e−mzn+

∞∑
n=1

yn
|λ(n− 1) + 1|

mn−1

(n− 1)!
e−mzn,

(5)
where

∑∞
n=2 |xn|+

∑∞
n=1 |yn| = 1− α.

Theorem 2.3 Let f = h+ g ∈ SH. Then f ∈ SH(m,λ, α) If and only if

∞∑
n=2

[λ(n− 1) + 1]
mn−1

(n− 1)!
e−m|an|+

∞∑
n=1

[λ(n+ 1)− 1]
mn−1

(n− 1)!
e−m|bn| ≤ 1−α.

(6)
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Proof. Since SH(m,λ, α) ⊂ SH(m,λ, α), we only need to prove the ”only if ”
part, assume that f ∈ SH(m,λ, α). Therefore, for assume that z = reiθ ∈ U,
we have

<
{

(1− λ)
I(m, z)f(z)

z
+ λ

[I(m, z)f(z)]
′

z′

}

= <{(1− λ)

(
1 +

∞∑
n=2

mn−1

(n− 1)!
e−manz

n−1 +
∞∑
n=1

mn−1

(n− 1)!
e−mbnz

n−1

)

+λ

(
1−

∞∑
n=2

mn−1

(n− 1)!
e−mnanz

n−1 −
∞∑
n=2

mn−1

(n− 1)!
e−mnbnz

n−1

)
}

= <

{
1−

∞∑
n=2

(1− λ+ nλ)
mn−1

(n− 1)!
e−manz

n−1 +
∞∑
n=1

(1− λ− nλ)
mn−1

(n− 1)!
e−mbnz

n−1

}

≥ 1−
∞∑
n=2

(λ(n−1)+1)
mn−1

(n− 1)!
e−m|an|µn−1−

∞∑
n=1

(λ(n+1)−1)
mn−1

(n− 1)!
e−m|bn|µn−1 ≥ α.

The last inequality hold for all values of z ∈ U on the positive real axes. So
if z = µ → 1, we obtain the required result given by (6). So the proof of the
Theorem 2.3 is completed.

If λ = 0 in Theorem 2.3, we obtained the following Corollary

Corollary 2.4 Let f = h+ g ∈ SH(m,α) if and only if

∞∑
n=2

mn−1

(n− 1)!
e−m|an| −

∞∑
n=1

mn−1

(n− 1)!
e−m|bn| ≤ 1− α.

If λ = 1 in Theorem 2.3, we obtained the following Corollary

Corollary 2.5 Let f = h+ g ∈ SH(m, 1, α) if and only if

∞∑
n=2

n
mn−1

(n− 1)!
e−m|an|+

∞∑
n=1

n
mn−1

(n− 1)!
e−m|bn| ≤ 1− α.

3 Distortion bounds

In this section, we obtain distortion bounds for functions f in SH(m,λ, α).

Theorem 3.1 Let f ∈ SH(m,λ, α), then for |z| < 1, we have

|f(z)| ≥ (1− |b1|)µ−
1

me−m

(
(1− α)

1 + λ
− 2λ− 1

1 + λ
|b1|
)
µ2 (7)
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and

|f(z)| ≤ (1 + |b1|)µ+
1

me−m

(
(1− α)

1 + λ
− 2λ− 1

1 + λ
|b1|
)
µ2. (8)

Proof. Let f ∈ SH(m,λ, α). Taking the absolute value of f , we have

|f(z)| = |z −
∑∞

n=2 |an|zn +
∑∞

n=1 |bn|zn|

≥ (1− |b1|)µ−
∑∞

n=2(|an|+ |bn|)µn

≥ (1− |b1|)µ−
∑∞

n=2(|an|+ |bn|)µ2

≥ (1− |b1)µ− 1−α
1+λ

(
1

me−m

) (∑∞
n=2

1+λ
1−αme

−m(|an|+ |bn|)
)
µ2

≥ (1− |b1)µ−
1−α
1+λ

(
1

me−m

)∑∞
n=2

(
λ(n−1)+1

1−α

(
mn−1

(n−1)!e
−m
)
|an|+ λ(n+1)−1

1−α

(
mn−1

(n−1)!e
−m
)
|bn|
)
µ2

≥ (1− |b1)µ− 1−α
1+λ

(
1

me−m

) (
1− 2λ−1

1−α |b1|
)
µ2

= (1− |b1)µ−
(

1
me−m

) (
1−α
1+λ
− 2λ−1

1+λ
|b1|
)
µ2.

Relation (8) can be proved by using the similar statements. Therefore, it is
omitted. So the proof is completed. The following covering result follows from
the left hand inequality in Theorem 3.1.

If λ = 0 in Theorem 3.1, we obtained the following Corollary

Corollary 3.2 Let f ∈ SH(m,α), then for |z| < 1, we have

|f(z)| ≥ (1− |b1|)µ−
1

me−m
(1− α + |b1|)µ2 (9)

and

|f(z)| ≤ (1 + |b1|)µ+
1

me−m
(1− α + |b1|)µ2. (10)

If λ = 1 in Theorem 3.1, we obtained the following Corollary

Corollary 3.3 Let f ∈ SH(m, 1, α), then for |z| < 1, we have

|f(z)| ≥ (1− |b1|)µ−
1

me−m

(
(1− α)

2
− 1

2
|b1|
)
µ2 (11)

and

|f(z)| ≤ (1 + |b1|)µ+
1

me−m

(
(1− α)

2
− 1

2
|b1|
)
µ2. (12)
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4 Convex combinations and Extreme points

Now we introduce SH(m,λ, α) is closed under convex combination.

Theorem 4.1 If fn,i (i = 1, 2, ...) belongs to SH(m,λ, α), then the function
Φ(z) =

∑∞
i=1 tifn,i(z), is also in SH(m,λ, α), where fn,i(z) is defined by

fn,i(z) = z −
∞∑
n=2

an,iz
n +

∞∑
n=1

bn,iz̄
n, (i = 1, 2, 3, ..., 0 ≤ ti ≤ 1,

∞∑
i=1

ti = 1).

(13)

Proof. Since f ∈ SH(m,λ, α). Then by (4) we have

∞∑
n=2

(|λ(n− 1) + 1|)
(

mn−1

(n− 1)!
e−m

)
|an,i|

+
∞∑
n=1

(|λ(n+ 1)− 1|)
(

mn−1

(n− 1)!
e−m

)
|bn,i| ≤ 1− α, (i = 1, 2, 3, ...).

Also, we have

Φ(z) =
∞∑
i=1

tifn,i(z) = z −
∞∑
n=2

(
∞∑
i=1

tian,i

)
zn +

∞∑
n=1

(
∞∑
i=1

tibn,i

)
zn.

Now according to Theorem 2.3 we have

∞∑
n=2

(|λ(n− 1) + 1|)
(

mn−1

(n− 1)!
e−m

) ∣∣∣∣∣
∞∑
i=1

tian,i

∣∣∣∣∣
+
∞∑
n=1

(|λ(n+ 1)− 1|)
(

mn−1

(n− 1)!
e−m

) ∣∣∣∣∣
∞∑
i=1

tibn,i

∣∣∣∣∣
=
∞∑
i=1

ti{
∞∑
n=2

(|λ(n− 1) + 1|)
(

mn−1

(n− 1)!
e−m

)
|an,i|

+
∞∑
n=1

(|λ(n+ 1)− 1|)
(

mn−1

(n− 1)!
e−m

)
|bn,i|}
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≤ (1− α)
∞∑
i=1

ti = 1− α.

Thus

Φ(z) ∈ SH(m,λ, α).

So, we note that SH(m,λ, α) is a convex set.

Next we determine the extreme points of closed convex hulls of SH(m,λ, α),
denoted by clco SH(m,λ, α).

Theorem 4.2 Let f = h+g ∈ SH(m,λ, α) if and only if it can be expressed
as

f(z) = X1z +
∞∑
n=2

Xnhn(z) +
∞∑
n=1

Yngn(z), z ∈ U, (14)

where

hn(z) = z − 1−α
(|λ(n−1)+1|)

(
(n−1)!

mn−1e−m

)
zn, (n = 2, 3, ...),

gn(z) = z + 1−α
(|λ(n+1)−1|)

(
(n−1)!

mn−1e−m

)
zn, (n = 1, 2, ...),

X1z +
∑∞

n=2Xn +
∑∞

n=1 Yn = 1, Xn ≥ 0, Yn ≥ 0.

Proof. For functions f of the form (14) we have

f(z) = z −
∑∞

n=2
1−α

(|λ(n−1)+1|)

(
(n−1)!

mn−1e−m

)
Xnz

n

+
∑∞

n=1
1−α

(|λ(n+1)−1|)

(
(n−1)!

mn−1e−m

)
Ynz

n.

Since by (6), we have∑∞
n=2(|λ(n− 1) + 1|) 1−α

(|λ(n−1)+1|)

(
(n−1)!

mn−1e−m

)
|Xn|

+
∑∞

n=1(|λ(n+ 1)− 1|) 1−α
(|λ(n+1)−1|)

(
(n−1)!

mn−1e−m

)
|Yn|.

= (1− α)

(
∞∑
n=2

|Xn|+
∞∑
n=1

|Yn|

)
= (1− α)(1 +X1) ≤ 1− α,

(15)

and so f ∈ clco SH(m,λ, α).

Conversely, suppose that f ∈ clco SH(m,λ, α). Setting
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Xn = (|λ(n−1)+1|)
1−α

(
mn−1

(n−1)!e
−m
)
|an|, 0 ≤ Xn ≤ 1, n = 2, 3, ... ,

Yn = (|λ(n+1)−1|)
1−α

(
mn−1

(n−1)!e
−m
)
|bn|, 0 ≤ Yn ≤ 1, n = 1, 2, ... ,

and X1 = 1−
∑∞

n=2Xn −
∑∞

n=1 Yn , and note that, by Theorem 2.1, X1 ≥ 0.
Consequently, we obtain

f(z) = z −
∑∞

n=2 |an|zn +
∑∞

n= |bn|zn,

=
∞∑
n=2

(1− α)Xn

(|λ(n− 1) + 1|)

(
(n− 1)!

mn−1e−m

)
zn

+
∞∑
n=1

(1− α)Yn
(|λ(n+ 1)− 1|)

(
(n− 1)!

mn−1e−m

)
zn

=

(
1−

∞∑
n=2

Xn −
∞∑
n=1

Yn

)
z +

∞∑
n=1

gn(z)Yn +
∞∑
n=2

hn(z)Xn

= X1z +
∞∑
n=1

gn(z)Yn +
∞∑
n=2

hn(z)Xn,

that is the required representation.
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