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Abstract

Making use of Salagean operator, we introduce a new sub-
classes of univalent functions with positive coefficients. We
obtain coefficient bounds, distortion inequalities, extreme points
and convolution property are studied. Further, we discuss in-
tegral mean property and some neighborhoods results.
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1 Introduction

Let A denote the class of functions of the form

f (z) = z +
∞∑
k=2

akz
k (1)

which are analytic in the open unit disc U ={z : z ∈ C and |z| < 1} and S
denote the subclass of A that are univalent in U.



2 El-Ashwah et al.

Salagean [13] introduced the following operator which is popularly know as
the Salagean derivative operator as follows:

D0f (z) = f (z)

D1f (z) = Df (z) = zf ′ (z)

and in general,

Dnf (z) = D
(
Dn−1f (z)

)
(n ∈ N0 = N ∪ {0} , N = {1, 2, 3...}) .

We easily find from (1) that

Dnf (z) = z +
∞∑
k=2

knakz
k (f ∈ S; n ∈ N0) (2)

In 1999, Kanas and Wisniowaska [8], (see also [7]) studied the class of
α−uniformly convex analytic functions, denoted by α−UCV (0 ≤ α <∞) so
that f ∈ α− UCV, if and only if

Re

{
1 + (z − ζ)

f ′′ (z)

f ′ (z)

}
≥ 0, (3)

For ϕ ∈ R and ζ = −αzeiϕ, the condition (3) can be written as

Re

{
1 +

(
1 + αeiϕ

) zf ′′ (z)

f ′ (z)

}
≥ 0, (4)

and α− UCV (ρ) denote the subclass of S, satisfying

Re

{
1 +

(
1 + αeiϕ

) zf ′′ (z)

f ′ (z)

}
≥ ρ, (0 ≤ ρ < 1) . (5)

Further, the class α− S∗ (ρ) denote the subclass of S, satisfying

Re

{(
1 + αeiϕ

) zf ′ (z)

f (z)
− αeiϕ

}
≥ ρ, (0 ≤ ρ < 1) (6)

Also, let V be the subclass of S consisting of functions of the form

f (z) = z +
∞∑
k=2

|ak| zk. (7)

Now, we will define a new subclass of S as follows:
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Definition 1.1 A function f ∈ S is said to be in the class α−S∗n (γ, β) if the
following condition

Re

{(
1 + αeiϕ

) (1− β)Dn+1f (z) + βDn+2f (z)

(1− β)Dnf (z) + βDn+1f (z)
− αeiϕ

}
< γ, (8)

is satisfied, where 1 < γ ≤ 4+α
3
, 0 ≤ β ≤ 1, ϕ ∈ R and 0 ≤ α <∞.

Also,

α− PS∗n (γ, β) = α− S∗n (γ, β) ∩ V (9)

Remark

(i) Putting β = 0, we obtain α−S∗n (γ, 0) = α−S∗p,n (γ) and α−PS∗n (γ, 0) =
α− PS∗p,n (γ) which were studied by Dixit and Dixit [3];

(ii) Putting β = 0 and n = 0, we obtain α− S∗0 (γ, 0) = α− S∗p (γ) which was
studied by Porwal and Dixit [11];

(iii) Putting β = 1 and n = 0, we obtain α−S∗0 (γ, 1) = α−UCV ∗ (γ) which
was studied by Porwal and Dixit [11];

(iv) Putting β = 0, n = 0 and α = 0, we obtain 0 − S∗0 (γ, 0) = L (γ) and
0− PS∗ (γ, β) = U (γ) which were studied by Uralegaddi et al. [14];

(v) Putting β = 1, n = 0 and α = 0, we obtain 0 − S∗0 (γ, 1) = M (γ) and
0− PS∗0 (γ, 1) = V (γ) which were studied by Uralegaddi et al. [14];

(vi) Putting α = 0, we obtain 0− PS∗n (γ, β) = A (n, γ, β) which was studied
by Dixit et al. ([4] with g (z) = z

1−z );

(vii) Putting α = 0 and β = 0,we obtain 0− PS∗n (γ, 0) = A∗ (n, γ)which was
studied by Dixit and Chandra [2].

Several authors such as [7, 8, 9] studied the classes of α−uniformly convex
and starlike functions. In the present paper, using Salagean derivative opera-
tor, an attempt has been made to have unified study of mentioned classes of
functions with positive coefficients. Further, we discuss integral mean property
and some neighborhoods results.
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2 Coefficient inequalities

Unless otherwise mentioned, we assume in the reminder of this paper that
0 ≤ α < ∞, 1 < γ ≤ 4+α

3
, 0 ≤ β ≤ 1, n ∈ N0 = N ∪ {0} . The following

theorems lay the foundation of our systematic study of the class α−PS∗n (γ, β)
defined in the preceding section.

Theorem 2.1 Let f (z) ∈ S be given by (1) be in S if

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak| ≤ (γ − 1) , (10)

then f ∈ α− S∗n (γ, β).

Proof. Suppose that (10) is true for z ∈ U. It suffices to show that∣∣∣∣∣∣
(1 + αeiϕ)

[
(1−β)Dn+1f(z)+βDn+2f(z)
(1−β)Dnf(z)+βDn+1f(z)

]
− αeiϕ − 1

(1 + αeiϕ)
[
(1−β)Dn+1f(z)+βDn+2f(z)
(1−β)Dnf(z)+βDn+1f(z)

]
− αeiϕ − (2γ − 1)

∣∣∣∣∣∣ < 1. (11)

Then, L. H. S. of (11)

=

∣∣∣∣∣∣∣∣
(1 + αeiϕ) [[(1− β)Dn+1f (z) + βDn+2f (z)]− [(1− β)Dnf (z) + βDn+1f (z)]]

(1 + αeiϕ) [(1− β)Dn+1f (z) + βDn+2f (z)]−
[(1 + αeiϕ) + (2γ − 2)] [(1− β)Dnf (z) + βDn+1f (z)]

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1 + αeiϕ)
∞∑
k=2

kn [1 + β (k − 1)] [k − 1] akz
k

(1 + αeiϕ)

[
∞∑
k=2

kn [1 + β (k − 1)] [k − 1] akz
k

]
−2 (γ − 1)− 2 (γ − 1)

[
∞∑
k=2

kn [1 + β (k − 1)] akz
k

]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The last assertion is bounded above by (1) if

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak| ≤ (γ − 1) ,

which completes the proof.
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Theorem 2.2 Let f (z) be given by (7) , then f (z) ∈ α − PS∗n (γ, β) if and
only if

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak| ≤ (γ − 1) . (12)

The result is sharp.

Proof. The if part follows from Theorem 2.1. To prove the only if part, let
f ∈ α− PS∗n (γ, β) , then by (9) , we have

Re

{(
1 + αeiϕ

) (1− β)Dn+1f (z) + βDn+2f (z)

(1− β)Dnf (z) + βDn+1f (z)
− αeiϕ

}
< γ.

which is equivalent to

Re


(
1 + αeiϕ

) (1− β)

(
z +

∞∑
k=2

kn+1akz
k

)
+ β

(
z +

∞∑
k=2

kn+2akz
k

)
(1− β)

(
z +

∞∑
k=2

knakzk
)

+ β

(
z +

∞∑
k=2

kn+1akzk
) − αeiϕ

 < γ.

The above condition must hold for all values of z, |z| = r < 1, upon choosing
the values of z on positive real axis, where 0 ≤ z = r < 1 and

Re
(
−αeiϕ

)
≥ −

∣∣αeiϕ∣∣ = −α,

the above inequality reduces to

(1 + α)

[
(1− β)

(
r +

∞∑
k=2

kn+1 |ak| rk
)

+ β

(
r +

∞∑
k=2

kn+2 |ak| rk
)]

−α

[
(1− β)

(
r +

∞∑
k=2

kn |ak| rk
)

+ β

(
r +

∞∑
k=2

kn+1 |ak| rk
)]

≤ γ

[
(1− β)

(
r +

∞∑
k=2

kn |ak| rk
)

+ β

(
r +

∞∑
k=2

kn+1 |ak| rk
)]

Letting r → 1−, we have

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak| ≤ (γ − 1) .

The proof is completed.
We note that the assertion (12) of Theorem 2.2 is sharp, the extremal function
being

f(z) = z +
(γ − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]
zk, (k ≥ 2) .
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Remark

(i) Putting β = 0 in Theorem 2.2 we obtain the result obtained by Dixit and
Dixit [3, Theorem 2.2];

(ii) Putting β = 0 and n = 1, we obtain the result obtained by Porwal and
Dixit [11, Theorem 2.3];

(iii) Putting β = 0 and n = 0, we obtain the result obtained by Porwal and
Dixit [11, Theorem 2.4];

(iv) Putting α = 0, we obtain the result obtained by Dixit et al.
(
[11] with g (z) = z

1−z

)
;

(v) Putting α = β = n = 0, we obtain the result obtained by Uralegaddi et
al. [14].

Corollary 2.3 Let the function f (z) be defined by (7) belong to the class
α− PS∗n (γ, β) . Then

|ak| ≤
(γ − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]
. (13)

3 Distortion Bounds

In this section, we shall prove distortion theorems for the functions belonging
to the class α− PS∗n (γ, β) .

Theorem 3.1 Let the function f (z) ∈ α − PS∗n (γ, β) then, for |z| = r < 1,
we have

|f (z)| ≤ r +
(γ − 1)

2n (1 + β) [2 + α− γ]
r2 (14)

and

|f (z)| ≥ r − (γ − 1)

2n (1 + β) [2 + α− γ]
r2, (15)

with equality for

f (z) = z +
(γ − 1)

2n (1 + β) [2 + α− γ]
z2. (16)

Proof. Since f (z) ∈ α− PS∗n (γ, β) , then Theorem 2.2 gives

2n (1 + β) [2 + α− γ]
∞∑
k=2

|ak| ≤
∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak| ≤ (γ − 1) .
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Thus, we have
∞∑
k=2

|ak| ≤
(γ − 1)

2n (1 + β) [2 + α− γ]
z2. (17)

From (2) and (17) we obtain

|f (z)| ≤ |z|+ |z|2
∞∑
k=2

|ak|

≤ r +
(γ − 1)

2n (1 + β) [2 + α− γ]
r2.

The proof of assertion (15) is similar, so we omit it.

Theorem 3.2 Let the function f (z) ∈ α − PS∗n (γ, β) then, for |z| = r < 1,
we have

|f ′ (z)| ≤ 1 +
(γ − 1)

2n−1 (1 + β) [2 + α− γ]
r (18)

and

|f ′ (z)| ≥ 1− (γ − 1)

2n−1 (1 + β) [2 + α− γ]
r. (19)

The equalities in (18) and (19) are attained for the function f (z) given by
(16).

Proof. We have

|f ′ (z)| ≤ 1 +
∞∑
k=2

k |ak|
∣∣zk−1∣∣ ≤ 1 + r

∞∑
k=2

k |ak| .

Since f (z) ∈ α− PS∗n (γ, β) , we have

2n−1 (1 + β) (2 + α− γ)
∞∑
k=2

k |ak| ≤
∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak| ≤ (γ − 1) .

Thus, we have
∞∑
k=2

k |ak| ≤
(γ − 1)

2n−1 (1 + β) [2 + α− γ]
,

hence

|f ′ (z)| ≤ 1 +
(γ − 1)

2n−1 (1 + β) [2 + α− γ]
r.

The proof of assertion (19) is similar, so we omit it.
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4 Extreme Points

Theorem 4.1 Let f1 (z) = z and

fk (z) = z +
(γ − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]
zk, (k ≥ 2) , (20)

then f (z) ∈ α− PS∗n (γ, β) if and only if it can be expressed in the form

f (z) =
∞∑
k=1

λkfk (z) ,

where λk ≥ 0 and
∑∞

k=1 λk = 1.

Proof. Suppose that

f (z) =
∞∑
k=1

λkfk (z) = z +
∞∑
k=2

λk
(γ − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]
zk.

Then, from Theorem 2.2, we have

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ]

(γ − 1)
λk

(γ − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]

=
∞∑
k=2

λk = (1− λ1) < 1.

Then f (z) ∈ α−PS∗n (γ, β) . Conversely, suppose that f (z) ∈ α−PS∗n (γ, β) ,
then, since

|ak| ≤
(γ − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]
,

we may set

λk =
kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak|

(γ − 1)

and

λ1 = 1−
∞∑
k=2

λk.

Thus clearly, from (20) , we have

f (z) =
∞∑
k=1

λkfk (z) .

This completes the proof of the theorem.
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Corollary 4.2 The extreme points of the class α− PS∗n (γ, β) are given by

f1 (z) = z

and

fk (z) = z +
(γ − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]
zk, (k ≥ 2) .

Theorem 4.3 The class α− PS∗n (γ, β) is convex set.

Proof. Suppose that each of the functions fi (z) , (i = 1, 2) given by

fi (z) = z +
∞∑
k=2

ak,iz
k, ( ak,i ≥ 0)

is in the class α−PS∗n (γ, β) . It sufficient to show that the function g (z) define
by

g (z) = ηf1 (z) + (1− η) f2 (z) , (0 ≤ η < 1)

is also in the class α− PS∗n (γ, β) . Since

g (z) = η

(
z +

∞∑
k=2

ak,1z
k

)
+ (1− η)

(
z +

∞∑
k=2

ak,2z
k

)

= z +
∞∑
k=2

[ηak,1 + (1− η) ak,2] z
k

with the aid of Theorem 2.2, we have

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] [ηak,1 + (1− η) ak,2]

= η

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] ak,1

+ (1− η)
∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] ak,2

≤ η (γ − 1) + (1− η) (γ − 1) = (γ − 1) .

which completes the proof of the theorem.
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5 Theorems involving Hadamard product

Let f (z) be defined by (7) and let

g (z) = z +
∞∑
k=2

bkz
k, (bk ≥ 0) . (21)

The Hadamard product of f (z) and g (z) is defined by

(f ∗ g) (z) = z +
∞∑
k=2

akbkz
k. (22)

The following result present an interesting property of Hadamard product.

Theorem 5.1 Let f1 (z) , f2 (z) , ..., fp (z) be defined as follows

fs (z) = z +
∞∑
k=2

ak,sz
k, (ak,s ≥ 0) (23)

be in the class α− PS∗n (γs, β) , (s = 1, 2, ..., p) and (0 ≤ α < 1), then

f1 ∗ f2 ∗ ... ∗ fp ∈ α− PS∗n (γ, β) , (24)

where γ = max {γs, s = 1, 2, ..., p} .

Proof. Since fs (z) ∈ α − PS∗n (γs, β) , (s = 1, 2, ..., p) , by using Theorem 2.2
we have, for γ = max {γs, s = 1, 2, ..., p}

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] ak,s ≤ (γs − 1) (25)

and
∞∑
k=2

|ak,s| ≤
(γs − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]
, (26)

for each s = 1, 2, ..., p. Using (25) for any s and (26) for the rest, we have

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γs]
p∏
s=1

ak,s

≤
p∏
s=1

(γs − 1)

[
1

kn [1 + β (k − 1)] [k (1 + α)− α− γ]

]p−1
≤

p∏
s=1

(γs − 1) ≤ (γ − 1)p

≤ (γ − 1) since γs > 1 for s = 1, 2, 3, ..., p

Consequently, we have the assertion (24) with the aid of Theorem 2.2. The
proof of Theorem 5.1 is completed.
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Theorem 5.2 Let the function f (z) be defined by (7) and g (z) defined by
(21) be in the classes α − PS∗n (γ1, β) and α − PS∗n (γ2, β) respectively. Then
the Hadamard product

(f ∗ g) (z) ∈ α− PS∗n
((

(γ − 1)2 + 1
)
, β
)
, (27)

where γ = max {γ1, γ2} .
Proof. Since f (z) ∈ α − PS∗n (γ1, β) and g (z) ∈ α − PS∗n (γ2, β) in view of
Theorem 2.2 we have

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] akbk

≤
∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak|
(γ2 − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]

≤ (γ2 − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]

∞∑
k=2

kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak|

≤ (γ2 − 1) (γ1 − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]

≤ (γ − 1)2 =
(
γ2 − 2γ + 2

)
− 1.

Since 1 < γ ≤ 4+α
3

therefor 1 < γ2 − 2γ + 2 ≤ 4+α
3
. Hence by Theorem 2.2 the

Hadamard product (f ∗ g) (z) ∈ α− PS∗n (γ2 − 2γ + 2, β) .

6 Integral Mean inequality

Definition 6.1 For f, g ∈ A we say that the function f is subordinate to g,
if there exists a Schwarz function w, with w(0) = 0 and |w(z)| < 1; z ∈ U ;
such that f(z) = g(w(z)) for all z ∈ U . This subordination is usually denoted
by f(z) ≺ g(z). It is well-known that, if the function g is univalent in U , then
f(z) ≺ g(z) is equivalent to f(0) = g(0) and f(U) ⊂ g(U).

In 1925 Littlewood prove the following subordination theorem.

Theorem 6.2 [10] If f and g are analytic in U with f ≺ g, then

2π∫
0

|f (z)|µ dθ ≤
2π∫
0

|g (z)|µ dθ.
(
µ > 0, z = reiθ, 0 < r < 1

)
.

We will make use of Theorem 6.2 to prove the following theorem:
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Theorem 6.3 Let f (z) ∈ α−PS∗n (γ, β) and fk (z) is defined by (20) . If there
exist an analytic function w (z) given by

[w (z)]k−1 =
kn [1 + β (k − 1)] [k (1 + α)− α− γ]

(γ − 1)

∞∑
k=2

akz
k−1,

then, for z = reiθ (0 < r < 1) ,

2π∫
0

∣∣f (reiθ)∣∣µ dθ ≤ 2π∫
0

|fk (z)|µ dθ. ( µ > 0) .

Proof. We must show that

2π∫
0

∣∣∣∣∣1 +
∞∑
k=2

akz
k−1

∣∣∣∣∣
µ

dθ ≤
2π∫
0

∣∣∣∣1 +
(γ − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]
zk−1

∣∣∣∣µ dθ.
By applying Littlewood’s subordition theorem, it would suffice to show that

1 +
∞∑
k=2

akz
k−1 ≺ 1 +

(γ − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]
zk−1.

By setting

1 +
∞∑
k=2

akz
k−1 = 1 +

(γ − 1)

kn [1 + β (k − 1)] [k (1 + α)− α− γ]
[w (z)]k−1 ,

we find that

[w (z)]k−1 =
kn [1 + β (k − 1)] [k (1 + α)− α− γ]

(γ − 1)

∞∑
k=2

akz
k−1,

which readily yields w (0) = 0.
Furthermore using (10) we obtain

|w (z)|k−1 ≤

∣∣∣∣∣kn [1 + β (k − 1)] [k (1 + α)− α− γ]

(γ − 1)

∞∑
k=2

akz
k−1

∣∣∣∣∣
≤ kn [1 + β (k − 1)] [k (1 + α)− α− γ]

(γ − 1)

∞∑
k=2

ak
∣∣zk−1∣∣

≤
∣∣zk−1∣∣ < 1.

This completes the proof of the theorem.
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7 Neighborhoods for the class α− PS∗n,m (γ, β)

Let V (m) denote the subclass of V consisting of a function of the form

f (z) = z +
∞∑

k=m+1

|ak| zk (28)

and α − PS∗n,m (γ, β) a subclass of α − PS∗n (γ, β) which is consisting of the
functions given by (28) .

Following the earlier investigations by Goodman [6], Ruscheweyh [12], Alt-
intas and Owa [1] and El-Ashwah [5], we define (m, δ)-neighborhood of f(z) ∈
V (m) by

Nm,δ (f) =

{
g : g ∈ V (m), g (z) = z +

∞∑
k=m+1

bkz
k and

∞∑
k=m+1

k |ak − bk| ≤ δ.

}
(29)

In particular, if
e (z) = z,

we immediately have

Nm,δ (e) =

{
g : g ∈ V (m), g (z) = z +

∞∑
k=m+1

bkz
k and

∞∑
k=m+1

k |bk| ≤ δ.

}
(30)

Lemma 7.1 Let the function f (z) ∈ V (m) be defined by (28) . Then f (z) is
in the class α− PS∗n,m (γ, β) if and only if

∞∑
k=m+1

kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak| ≤ (γ − 1) . (31)

Theorem 7.2 Let

δ =
(γ − 1)

(m+ 1)n−1 (1 +mβ) [m (1 + α)− (γ − 1)]
(32)

Then
α− PS∗n,m (γ, β) ⊂ Nm,δ (e) .

Proof. Let the function f (z) ∈ α − PS∗n,m (γ, β) . Then, in view of (31) , we
have

(m+ 1)n (1 +mβ) [m (1 + α)− (γ − 1)]
∞∑

k=m+1

|ak| (33)

≤
∞∑

k=m+1

kn [1 + β (k − 1)] [k (1 + α)− α− γ] |ak| ≤ (γ − 1) , (34)
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which readily yields

∞∑
k=m+1

|ak| ≤
(γ − 1)

(m+ 1)n (1 +mβ) [m (1 + α)− (γ − 1)]
(35)

Making use of (31) again, in conjunction with (35) , we get

(m+ 1)n (1 +mβ) (1 + α)
∞∑

k=m+1

k |ak|

≤ γ − 1 + (m+ 1)n (1 + βm) (α + γ)
∞∑
k=2

|ak| ≤
(γ − 1) (1 + α) (m+ 1)

[m (1 + α)− (γ − 1)]

∞∑
k=m+1

kak ≤
(γ − 1)

(m+ 1)n−1 (1 +mβ) [m (1 + α)− (γ − 1)]
= δ (36)

The proof is completed.
We will determine the neighborhood for the class α − PS∗(ρ)n,m (γ, β) which

define as follows.

Definition 7.3 A function f (z) ∈ V (m) is said to be in the class α −
PS∗n,m (γ, β) if there exist a function g (z) ∈ α− PS∗n,m (γ, β) such that∣∣∣∣f (z)

g (z)
− 1

∣∣∣∣ < 1− ρ (z ∈ U, 0 ≤ ρ < 1) . (37)

Theorem 7.4 If g (z) ∈ α− PS∗(ρ)n,m (γ, β) and

ρ = 1− δ (m+ 1)n (1 +mβ) [m (1 + α)− (γ − 1)]

(m+ 1)n+1 (1 +mβ) [m (1 + α)− (γ − 1)]− (m+ 1) (γ − 1)
, (38)

then

Nm,δ (g) ⊂ α− PS∗n,m (γ, β) (39)

where

δ ≤ (m+ 1)
{

1− (γ − 1) {(m+ 1)n (1 +mβ) [m (1 + α)− (γ − 1)]}−1
}
.

Proof. Suppose that f (z) ∈ Nm,δ (g). We find from (29) that

∞∑
k=m+1

k |ak − bk| ≤ δ, (40)
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which ready implies that

∞∑
k=m+1

|ak − bk| ≤
δ

m+ 1
(41)

Next, since g (z) ∈ α− PS∗n,m (γ, β) , we have

∞∑
k=m+1

bk ≤
(γ − 1)

(m+ 1)n (1 +mβ) [m (1 + α)− (γ − 1)]
, (42)

so that

∣∣∣∣f (z)

g (z)
− 1

∣∣∣∣ ≤
∞∑

k=m+1

|ak − bk|

1−
∞∑

k=m+1

bk

(43)

≤ δ

m+ 1

(m+ 1)n (1 +mβ) [m (1 + α)− (γ − 1)]

(m+ 1)n (1 +mβ) [m (1 + α)− (γ − 1)]− (γ − 1)

= 1− ρ. (44)

Thus by above definition g (z) ∈ α− PS∗(ρ)n,m (γ, β) for ρ given by (38) .

8 Open problem

In the present paper, some geometric properties have been discussed, the dif-
ferential subordination results still open,e.g. factor sequence.
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