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Abstract

The main object of the present paper is to derive some properties
of certain general classes M, (o, A, B) and N,, (o, A, B) of multi-
valent analytic functions with higher order derivatives in the open
unit disk.
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1 Introduction

Let A, be the class of functions of the form:

f) =2+ 3 ant (peN={1,2,3 1) (1)

k=p+1
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which are analytic and p-valent in the open unit disk
A={zeC: |z <1}

If f(z) and g(z) are analytic in A, we say that f(z) is subordinate to g(z),
written symbolically as follows:

f<g inA or f(z)<g(z) (z€A),

if there exists a Schwrz function w(z), which (by definition) is analytic in A
with
w(0) =0 and |w(z)|<1 (z€A)
such that
f(z) =g(w(z)) (z€A).

Furthermore, If the function ¢(z) is univalent in A, then we have the fol-
lowing equivalence (cf., e.g., [8]; see also [[10], p.4]):

f(z) <g(z) (z€A) < f(0)=g(0) and f(A) C g(A).

Definition 1 For fized parameters A, B(—1 < B < A < 1) and o > 0, a
function f(z) € A, is said to be in the class M, ,(a, A, B), if and only if

- e T O
(peN,qgeNo;=NU{0};p > q),
where
FO(z) = op.a) "+ i (k. @iz, (3)
and ' E |
)= = ey Gp0 @

Definition 2 For fized parameters A, B(—1 < B < A < 1), a function f(z) €
A, is said to be in the class N, (v, A, B), if and only if

1 |:(1_azf(q+1)(z) 2 fat2) )} 1+ Az

p— F@(2) fen(z))| " T4 B2

+a<1+ (5)

(peN,qg € Ny;p>q).
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Remark 1 Letp=1,¢q=0,A =1 and B = —1, the class N, ,(a, A, B) reduce
to the class a—convex function which introduce by Mocanu [11] and studied by
([24, [19)).

Recently, many authors defined and investigated many subclasses defined
by the higher order derivative (see [1] ,[2], [3], [6] and [19] ).

The object of the present paper is to derive some properties for the general
classes M, ,(a, A, B) and N, (a, A, B) by using the method of differential
subordination.

2 Preliminaries

To prove our main results, we need the following lemmas.

Lemma 1 ([4], [8] and [10] ). Let ¢(z) be analytic in A and h(z) be analytic
and convex (univalent) in A with h(0) = ¢(0) = 1. If

o0+ b ez a2 zea), @

then
d(2) < P(z2) = ’yz’”bft””lh(t)dt < h(z) (z€A),

and (z) is the best dominant of (6).
We denote by P(v) the class of functions ¢(z) given by
0(2) =1+ bz +by2® 4 -+, (7)
which are analytic in A and satisfy the following inequality:
Re(p(2)) >v (0<~y<1, z€A).

Lemma 2 ([7]). Let the function ¢(z) given by (7) be in the class P = P(0).
Then

Re(p(2)) > (z € A).

Lemma 3 ([16)).If ¢, € P(v;) (0 <7, <1; j =1,2), then
P1*¢py € P(s) 73=1=2(1—7)(1 —73)

The result is the best possible.
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Lemma 4 ( [9],[15]). If -1< B < A<1, >0, and the complex number ~y
satisfy Re(y) > —B(1 — A)/(1 — B), then the following differential equation:

2q¢'(z) 1+ Az
a(z) + Bq(z)+v 1+ Bz (2

€ A)

has a univalent solution in A given by

( 2P+ (14+Bz)f(A-B)/B v

z - Ba B 7é 07
5ft6+7—1(1+3t)B(A—B)/Bdt
q(z) = 0 2P+ exp(BA2) 5 (8)
,Bftﬂﬂ—l exp(BAt)dt
\ 0

If the function ¢(z) given by
p(z) =1+ crz+cp2® + -,

s analytic in A and satisfies the following subordination:

2¢'(2) 1+ Az

Bo() +7 1+Bs FEH) ©)

¢(2) +

Then
1+ Az

1+ Bz

o(2) < q(2) < (z € A)

and q(z) is the best dominant (9).

Lemma 5 (Wilken and Feng [18)]). Let u be a positive measure on [0,1]. Let
g(z,t) be a complex-valued defined on A x [0,1] such that g(.,t) is analytic in
A for each t € [0,1] and that g(z,.) is p—integrable on [0,1] for all z € A. In
addition, suppose that Re {g(z,t)} > 0, g(—r,t) is real and

1 1
Re( >2—f0r!z\§r<1andt€[0,1].
g(zat) g(—T,t>

If the function G(z) is defined by

then
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For real or complex numbers a, b and c(c # 0,—1,—2,...), the Gauss hyperge-
ometric function is defined by

ab ala+1).b(b+1) ,
gFl(abcz)—l—i—E z+ S+ 1) z

We note that the series converges absolutely for z € A and hence represents
an analytic function in the unite disk A (see, for details, [[17], Chapter 14]).

Each of the identities (asserted by Lemma 6 below) is fairly well known
(cf., e.g., [[17], Chapter 14]).

Lemma 6 For real or complex numbers a,b and c(c #0,—1,-2,...),

1 (1) (1= o)t — W JFi(a,biei ) (Re(c) > Re(b) > 0);
O (10)
oFi(a,byc;2) = (1—2)7¢ 2F1(a,c—b;c;zi 1); (11)
2Fi(a, b5 ¢;2) =5 Fi(b, a;5¢;2); (12)
and a+b+1 1 ﬁ F(a+b+1)
Flap 0T 2y VT 5 ) 13
BT T Ty "
3 Main Results
Theorem 7 If f € M, ,(a, A, B), then
1 (9) 14+ A
oo < Q) < g (e a) (1)
where the function Q(z) is given by
Q(Z)_{ 1++(1——21(1+Bz) P (1,1 0+ 15 5P5) (B_;é 0)
-ara’l? (B =0),

is the best dominant of (14). Furthermore,

1 f(q)(z)
Re (5(;0’ 7 2 ) >p (z€A), (15)

where

4 -4 _B_l Fl 7;;(1 7% B
p(p,q,oz,A,B):{f_—i_(i—qul(l )7L P (1,124 4 1; B (ngo(;).

(p—a)+a

The result is the best possible.
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Proof. Setting
1 f9(2)

¢(Z) = 5(]9, C]) Sr—a) (Z S A) (16)
Then the function ¢(z) is analytic in A with ¢(0) = 1. Differentiating (16), we
get
(g+1) /
)
o(p,q + 1)zp71! p—q
then
(9) (g+1)
(1-a) f (2)7 ot (2)77
8(p,q)zP=e O(p,g+ 1)zt
! 14+ Az
= - ! : 1
o)+ (= )Z¢(2)<1+Bz (zea) (17)
Now, by using Lemma 1 for v = , we deduce that

o) < Q) = E= qz—%fz o (1) o

« 0

Y ) o

_{ +(1——)(1+Bz) 2Fl(11ff"1+1,E;§_ZH) (B #0)

1+(p q)+a

by change of variables followed by use (11) (witha =1, b= =2 and ¢ = b+1).
This proves the assertion (14) of Theorem 7. Next, to prove the assertion (15)
of Theorem 7, it suffices to show that

inf {Re(Q(2))} = Q(-1).

|z|]<1

Indeed, for |z| <r <1,

1+ Bz 1— Br
Setting
14+ Asz
G
(s, 2) 1+ Bsz
and

which is a positive measure on [0, 1], we get

1

Q(2) = [G(s, 2)du(s),

0
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so that

Re(Q(2)) = [~ dy(s) = Q(-r) (J2] <7 < 1),

0

Letting 7 — 1~ in the above inequality, we obtain the assertion (18). The
result in (15) is best possible as function Q(z) is the best dominant of (14). W
By putting ¢ = 0 in Theorem 7, we deduce the following consequence.

Corollary 8 Let o > 0 and let the function f(z) € A, satisfy the following

imequality:
flz) | fz) 1+Az
(1—a) g +asz*1 <1 B (z € A). (18)
Then i)
z
el Q(z) (z€A),
where the function Q(z) is given by
o) [ A=A+ B) AL+ L) (BAO
14 ZﬁAz (B =0),

is the best dominant of (14). Furthermore,

Re (f(j)) >p (z€A),

z
where
A A -1 B
2+ (1-4)0=B) AL LL2+1;4) (B #0)
_J B B P B—1
P(p70é7A7B)—{ 1—-2A (B=0).

The result is the best possible.
By putting A =1—2n and B = —1 in Corollary 8, we deduce the following
consequence.

Corollary 9 [14] Let a > 0 and let the function f(z) € A, satisfy the follow-
g inequality:

, —
o) 1+ (A —2n)e
2P pzp~1 1—2z

(z € A).
Then
Re(%)>n+(l—n) {2F1(1,1;§+1;%) -1 (z € A).

The result is the best possible.
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For a function f(z) € A,, the generalized Bernardi-Libera-Livingston inte-
gral operator F),, : A, — A, is defined by (cf., eg., [5])

Fu,pf(z) = M+pftu lf

ZH

= <zp+ > ( p) '“)*f(z) (n>—p; z€A). (19)

k=p+1 \ M +k
It follows from (3) and (19) that

2(Fupf ()7 = (1 +p) f1(2) — (1 + @) (Fupf (). (20)

Theorem 10 If p > —(p — q). Let f(z) € M, (o, A, B), for some o, a > 0,
then the function F), ,f (%) defined by (19) satisfies

(Fu,pf(z))(q) N (F%pf(z))q-i-l - 14+ Az A) ,

1—
( Oé) 5(p’ q)zp*q 5(p’ q + ]_)prqfl 1 + BZ (Z -
" (Fupf(2)@ A
Fﬂp z))' / 1 + Az
S Nor—a 21
TR AR T:F (21)
where
oy =] 3T Q-5 A+ B)LRMLE ) +lisd) (B0
1+ (ui;;irlAZ (B =0),
is the best dominant of (21).
Furthermore,
(Fupf(2)@
Re< (p, q)zr—1 >0 (2€4), (22)
where
A 1 B
5T (1- 1-B Flal; + +1,—_ B 0
U(paq,a,A,B):{ li_f;ur)p 34( )7 AL L (i 4 p) 5-1) (é:%o))
putp)+ .

The result is the best possible.
Proof. It is clear that the function F}, , f(2) in A,. Differentiating both sides
of the equality

Fopf(z) = L) U i g (23)

ZH

From (20), we have

2(Fupf (2))" + (n+ ) (Fupf(2))" = (1 +p)f(2). (24)
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Letting
(Funf (DD, @ =((Fupl (D))

z) = (11—«
o) ( ) S(p,q)zr=1  p—q O(p,q)zP1
= 1+biz+by?+--,

then (24) becomes

2¢'(2)
(1 +p)
It follows from (25) that

12, o )

#z) + (p,q)2P=1  p—qd(p,q)zr-a~t

(25)

:(1—04)5

N 24 (2) - 1+ Az

o2) w+p 14+ Bz

(Z S A)a

using the method of the proof of Theorem 7, we can obtain the assertion of
Theorem 10. H

Theorem 11 Let —1 < B; < 1(j = 1,2). If each of the functions f;(z) € A,
satisfies the following subordination condition

e 5T 1+ Az
0(p,q)z*=¢ ~ 0(p,q+1)zp797t 1+ Bjz

(1—a) (j=1,2;z€ A). (26)

If f(z) € A, is defined by

f90) _ 1) L) 7

é(p,q)  o(p.q)  O(p,q)

then

f(q)(z) f(q+1)(z) } -

1—
fre {( a)5(p, D 5pg+ i

where

=1~

4(A1 — B1)(A2 — By) [1—12F1( e ;) }

1,1, —+1;=
(1—B)(1— By) > g T
The result is the best possible when By = By = —1.

Proof. Suppose that each of the functions f;(z) € A, (j = 1,2) satisfies the
condition (26). Then by letting

£9(2) L a 2(f0(2))

d(p,q)zP~1  p—qd(p,q)zP1 =12, (29)
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we have

®j < % 17 1- B, 1,2
From (29), we have

£19(z) _P—q
opq)
Now if f(z) € A, is defined by (27), we fined from (30) that

f9(z) IRONNO
4(p, q) 5@.0)  0(pa)

— (P9, -p-0-D Z t)dt
(Pt i
(G e i )
0

(67

Z—(p—q)(i—l)ft%_lgpj(t)dt (j=1,2).

— p;qZ—(p—q)(é—l)ftp%z—lspo(t)dt
0

where

p—q i
Polt) = ——= ~(pma) l)fta (91 * o) (t)dL.

Since ¢, (2) € P(v;) and py(z) € P(7,), it follows from Lemma 3 that

(1% @2)(2) € P(73) (73 =1=2(1 =7)(1 =)
According to Lemma 2, we have
1 -2
1+ 2]
Now by using (34) in (32), we get

LS a 2(f9(2))
fte {(1 a)5(p, q)zra - p—qd(p, Q)Z”q}
= Re{yy(2)}

P—qp p=ay
= ——Ju= " Re(py * ) (uz)du
0

1
P—q} pa_y 2(1 — ;)
> 295 Iya — 14 22— 13 g
" (%’ T A

_ 4(A1 — Bl>(A2 — BQ) |:1 _ P — qz_(p a)
(1—B1)(1 - By) a

Re(p; * 09)(2) > 73+ (1 = 73) =27 -1+

1+ |7

(1= B1)(1— By)
= 7 (z€4)

22 2

2(1 —7s)

Ofl "1+u)” 1du]

- - - 1
_ A= BYUA, = By) {1 In <1, (E Y —) }
(07

27

(30)

(31)

(32)

(33)
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which completes the proof of the assertion (28).
When B; = By = —1, we consider the functions f;q)(z) cA, (j =1,2),
are defined by

_ Z 1+ At
f0(2) = Fem e GD it (f—t) dt (j=1,2),
J -

for which we have

£2(2) o (L7 1+ A
o(p.q)2*~0  p—qdlp,q)zr~t  1—t

p;(2) =(1-a) (j=12),

and

(1+ A)(1+ Ay)
1—2z '
Hence, for f(z) € A, given by (27) , we obtain

L fY() a z(f9(2))
{(1 a)5(p, q)zr4 - p—qd(p, Q)qu}

(pr*p2)(2) =1 =

= o(2)
SR (1 — 1+ AL+ A) +

(1+ A))(1+ Ay) J
1 —wuz > "

= 1-(1+A)1+A)+Q+A)1+A)1—2)"F (1,1;p_q+1; il )

« z—1

1 p—q 1

— 1—(1+A1)(1+A2)+5(1+A1)(1+A2)2F1 1’1;T+1;§
as z — —1,

which evidently completes the proof of Theorem 11. W

Theorem 12 If f € N, ,(a, A, B), then

1 zfltl(z) a 1 =
pP—q f(q)<2) <p—qé(z)o(z) <1—|‘B2

where )
ft a (1+Bt2) ;q(A_B)/B dt7 B?AO

1+Bz

’) (36)
St Vexp(EL(t — 1)A2)dt, B=0
0
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and O(z) is best dominant of (35). Furthermore, if

A<——% B with —1<B<0,

p—q
then (+1)()
1 zfu z> ~
Re >p (z€A),
(5 %) (zed)
where

1
2 F1(1, (P54(B — A)/B); (55t +1); B/(B — 1))

p(p,q, A, B) =

The result is best possible.

Proof. Let f € N, (a, A, B). Let us put

o= (55) )

and
ryi=sup{r:g(z) #0 (0<|z|] <r<1)}.

Then ¢(z) is single-valued and analytic in |z| < 7. Carrying out logarithmic
differentiation in (37), it follows that the function ¢(z) given by

L f(z) 1 ()
P& =0y T r—q Fag)

is analytic in |z| < m and ¢(0) = 1. Differentiating logarithmically (38), we
get

(38)

1 Zf(q+1) (z) Zf(q+2)
rErd Gy e e G ore) | I
B azy'(z) 1+ Az
#l2) (» — Q)p(2) g, A=)
Thus, by using Lemma 4, we find that
p(2) < O(z) =< 122 (|2 < ), (40)

1+ Bz
where O(z) is the best dominant of (36) and is given by (8) with

b4

and v = 0.
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Since, for —1 < B < A < 1, it easy to see that

14+ Az
Re(l—i—Bz) >0 (]z] <),

by (40), we have
Re(¢(z)) > 0.

Now (38) shows that ¢(z) is starlike (univalent) in |z| < ry. Thus it is not
possible that g(z) vanishes on |z| = ry if r; < 1. So we conclude that r; = 1,
and hence ¢(z) is analytic in A. Hence (40) implies that

~ 14+ Az
Plz) < O:) < o

(z € A).

This proves the assertion (35) of Theorem 12.
Next, we show that

inf {Re(é(z))} = O(-1). (41)

|z]<1
Indeed, if we set

a= u(B—A)/B, b=2"9 and c= u—l—l,
a a a

then ¢ > b > 0. From (36), by using (10) to (11), we see that, for B # 0,
~ 1
Q(z) = (1+ B2)*[t"*(1+ Btz)"dt
0

1 Bz
= —JF (1 ac ) 42
b2 1( ,a,C’BZ—Fl) ( )

To prove (41), we need show that

Re{;}ZNl (z € A).
Q(z)) Q-1

A<——2 B with —1<B<0,
p—q

implies that ¢ > a > 0, by using Lemma (5), we find from (42) that

Since

1

Q(2) = [g(z t)dp(t),

0
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where
gz, 1) = 1+1(1+_B;BZ 0<t<1)
and
du(t) = %t“_l(l — ) e,

which is a positive measure on [0, 1].
For —1 < B < 0, it may be noted that Re{g(z,t)} > 0, g(—r, 1) is real for
0<|z| <r <1landte€]l0,1]. Therefore, by using Lemma 5, we have

Re{N1 }z )
Q(2) Q(—-1)

which, upon letting r — 1—, yields

Re{N1 } Nl )
Q(z) Q(-1)

v

Further, by taking

for the case

and using (35) we get

P04, B) = 2Fy(1,(E4(B — A)/B); (54 + 1); B/(B — 1))’

The result is best possible. H
By putting ¢ = 0 in Theorem 12, we deduce the following consequence.

Corollary 13 Let o > 0 and let the function f(z) € A, satisfy the following

inequality:
oot ) <

Then
1+ Az

p f(z) pé(z) S 1+ Bz

(2 €4),
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where
1

Q) [ () * P - B0
z) = .
[t Vexp(2(t — 1)Az)dt, B=0
0

and O(z) is best dominant of (35). Furthermore, if

A<-%B with —1<B<0,
p

12f'(2) ~
e (p f(2) > o’
1
2F1(L,(B(B = A)/B); (2 +1);B/(B-1))

The result is best possible.

then

where
p(p, A, B) =

By putting A =1—27n (0 < n < 1) and B = —1 in Corollary 13, we deduce
the following consequence.

Corollary 14 Let o > 0 and let the function f(z) € A, satisfy the following
imequality:

O =

Then

Re szf(/g)) > [2F1(1, %(1 —); g +1; %) }1 (2 € A).

The result is the best possible.

4 Inclusion Properties Involving the Higher
Order Derivatives

Theorem 15 Let 0 < oy < ag. Then

Mp’q(ag, A, B) C an(Oél, A, B)



On certain subclasses of multivalent 33

Proof. Let 0 < a; < ay and suppose that
1 f@(z)
#e) = 3(p, q) 2P~

Then the function ¢(z) is analytic in A with ¢(0) = 1. Differentiating both
sides of (43) with respect to z and using (2), we have

(z € A). (43)

B f9(2) flat(z)
. a2)5(p, I (Y BNV E
= o(2) + ( qu) 2¢(2) < h(2). (44)

Hence an application of Lemma 1, yields

¢(2) < h(z). (45)

Noting that 0 < £ < 1 and that (z) is convex univalent in A, it follows from

(43), (44) and (45) that

f(Q)(Z) f(q+1)(z)
N . + (651 —
5(p, q)zr—1 d(p,q+1)zp—at

= A ((1 = ag)(s(ﬂﬂ PP diel©) ) - (1 - ﬂ) ¢(2)

P, q)2P4 d(p,q+1)zp-at

Thus f(z) € M, (a1, A, B) and the proof of Theorem 15 is completed. M
Theorem 16 Let 0 < oy < an. Then

N, (o, A, B) C N, (a1, A, B).
Proof. Let 0 < a; < ay and suppose that

p(z) = @ 2)
p—aq f9(z)
Then the function ¢(z) is analytic in A with ¢(0) = 1. Differentiating both
sides of (46) logarithmically with respect to z and using (5), we have

(z € A). (46)

1 . Zf@t)(z) N 2 flat2)
p—q |V e T Q(Hf(“_”(Z)ﬂ
= () 22y (47)
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Hence an application of Lemma 1 yields

¢(2) < h(z). (48)

Noting that 0 < %+ < 1 and that h(z) is starlike univalent in A, it follows from

2

(46), (47) and (48] that

=~ {(1 L) (1 + )}

p—q f@(z) 1 flrD(z) :
_ Z_; (p%q [(1 _QQ)%()Z(;)JFQQ <1+;(f+(—:+(;))]) + (1 — z—;> ¢(2)
< h(z).

Thus f(z) € N,4(a1, A, B) and the proof of Theorem 16 is completed. W

5 Open Problem

We can effect by some linear operators and solve some problems.
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