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Abstract

After reviewing the Dunkl Pitt and the Dunkl Beckner inequalities we
connect both the inequalities to show a generalization of uncertainty prin-
ciples for the Dunkl wavelet transform. Next we present two concentra-
tion uncertainty principles such as Benedick-Amrein-Berthier’s uncertainty
principle and local uncertainty principle. Finally, we study the Dunkl log-
arithmic Sobolev inequalities. Obtaining best possible constants of inequali-
ties, we connect the inequalities to show a generalization of the uncertainty
principles of Heisenberg type.

Keywords: Dunkl transform, Dunkl wavelet transform, Dunkl Pitt’s inequality, Dunkl
Beckner’s inequality, Dunkl logarithm Sobolev inequality, Dunkl Benedick-Amrein-Berthier’s
uncertainty principle, Local uncertainty principle

2010 Mathematical Subject Classification: 44A05,42B10

1 Introduction

We consider the differential-difference operators Tj, j = 1, 2, ..., d, associated with a root
system R and a multiplicity function k, introduced by Dunkl in [15], and called the Dunkl
operators in the literature.

The Dunkl theory is based on the Dunkl kernel K(λ, .), λ ∈ Cd, which is the unique
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analytic solution of the system

Tju(x) = λju(x), j = 1, 2, ..., d,

satisfying the normalizing condition u(0) = 1.
With the kernel K(λ, .), Dunkl have defined in [16] the Dunkl transform FD. For a

family of weighted functions, ωk, invariant under a finite reflection group W , Dunkl trans-
form is an extension of the Fourier transform that defines an isometry of L2(Rd, ωk(x)dx)
onto itself. The basic properties of the Dunkl transforms have been studied by several
authors, see [14, 15, 16, 60] and the references therein.

Very recently, many authors have been investigating the behavior of the Dunkl trans-
form to several problems already studied for the Fourier transform; for instance, Babenko
inequality [7], uncertainty principles [8, 31], real Paley-Wiener theorems [37], heat equa-
tion [49], Dunkl Gabor transform [34, 38, 40], Dunkl wavelet transform [61], and so
on.

In the classical setting, the notion of wavelets was first introduced by Morlet, a French
petroleum engineer at ELF-Aquitaine, in connection with his study of seismic traces. The
mathematical foundations were given by Grossmann and Morlet in [24]. The harmonic
analyst Meyer and many other mathematicians became aware of this theory and they
recognized many classical results inside it (see [9, 32, 44, 59]). Classical wavelets have
wide applications, ranging from signal analysis in geophysics and acoustics to quantum
theory and pure mathematics (see [12, 26] and the references therein).

Next, the theory of wavelets and continuous wavelet transform has been extended in
the context of the Dunkl seeting (see [61]).

This paper is a continuation of the papers [34, 39] in the study of the quantitative
uncertainty principles for the Dunkl wavelet transform on Rd. In the classical setting,
the notion of the quantitative uncertainty principles for the wavelet transform was first
introduced by Wilczok [63]. Next, this subject has been extended for the generalized
wavelet transforms (see [4, 5, 34, 48] and others).

Very recently, many authors have been investigating the behavior of the Dunkl wavelet
transform to several problems already studied for the classical wavelet transform; for
instance, Uncertainty principles [22, 34], Localization theory [39], Reproducing kernel
theory [56], and so on.

We recall that the classical quantitative uncertainty principles is just another name
for some special inequalities. These inequalities give us information about how a function
and its Fourier transform relate. They are called uncertainty principles since they are
similar to the classical Heisenberg uncertainty principle, which has had a big part to play
in the development and understanding of quantum physics.

The quantitative uncertainty principles have been studied by many authors for various
Fourier transforms, for examples (cf. [3, 31, 33, 62]) and others.

To date, several generalizations, modifications and variations of the harmonic based
uncertainty principles have appeared in the open literature, for instance, the logarithmic
uncertainty principles, Benedick’s uncertainty principle, Amrein’s and Berthier’s uncer-
tainty principles, local uncertainty principles and much more [2, 6, 17, 18, 19, 28, 45, 46,
47, 53, 54, 55]. Thus, it is therefore interesting and worthwhile to investigate these kinds
of uncertainty principles for the Dunkl wavelet transforms in arbitrary space dimensions.

The aim of this article is to formulate some novel uncertainty principles for the Dunkl
wavelet transform. Firstly, we derive an analogue of Pitt’s inequality for the Dunkl
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wavelet transform, then we formulate Beckner’s uncertainty principle for this transform
via two approaches: one based on a sharp estimate from Dunkl Pitt’s inequality and the
other from Dunkl Beckner’s inequality. Secondly, we consider the logarithmic Sobolev
inequalities for the Dunkl wavelet transforms which has a dual relation with Beckner’s
inequality. Thirdly, we derive Benedick-Amrein-Berthier’s uncertainty principle for the
Dunkl wavelet transforms which shows that it is impossible for a non-trivial function and
its Dunkl wavelet transform to be both supported on sets of finite measure. Towards the
culmination, we formulate local uncertainty principles for the continuous Dunkl wavelet
transforms in arbitrary space dimensions.

The remaining part of the paper is organized as follows. In §2 we recall the main
results about the harmonic analysis associated with the Dunkl operators. The §3 is
devoted to proving an analogue of the Pitt inequality for the Dunkl wavelet transform. In
§4 we derive the Beckner uncertainty principle for this transform. In §5 we present two
concentration uncertainty principles for the Dunkl wavelet transform such as Benedick-
Amrein-Berthier’s uncertainty principle and local uncertainty principle. The last Section
is devoted to proving the Dunkl logarithm Sobolev uncertainty principles for the Dunkl
wavelet transform.

2 Preliminaries

This section gives an introduction to the Dunkl theory. Main references are [14, 15, 16,
50, 58, 60].

2.1 The Dunkl operators

We consider Rd with the Euclidean scalar product 〈, 〉 for which the basis {ei, i = 1, ..., d}
is orthogonal and ||x|| =

√
〈x, x〉. For α in Rd\

{
0
}

, let σα be the reflection in the
hyperplane Hα ⊂ Rd orthogonal to α, i.e.

σα(x) = x− 2
〈α, x〉
||α||2

α. (2.1)

A finite set R ⊂ Rd\
{

0
}

is called a root system if σα(R) = R for all α ∈ R. For a
given root system R the reflections σα, α ∈ R, generate a finite group W ⊂ O(d), called
the reflection group associated with R.

We fix a positive root system R+ =
{
α ∈ R : 〈α, β〉 > 0

}
for some β ∈ Rd\

⋃
α∈R

Hα.

We will assume that 〈α, α〉 = 2 for all α ∈ R+. A function k : R −→ [0,∞) is called a
multiplicity function if it is invariant under the action of the associated reflection group
W . For abbreviation, we introduce the index

γ = γ(k) =
∑
α∈R+

k(α). (2.2)

Moreover, let ωk denotes the weight function

ωk(x) =
∏
α∈R+

|〈α, x〉|2k(α), (2.3)
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which is W -invariant and homogeneous of degree 2γ. We introduce the Mehta-type con-
stant

ck =

∫
Rd
e−
||x||2

2 ωk(x) dx. (2.4)

In the following we denote by
Cp(Rd) the space of functions of class Cp on Rd.
E(Rd) the space of C∞-functions on Rd.
S(Rd) the Schwartz space of rapidly decreasing functions on Rd.
D(Rd) the space of C∞-functions on Rd which are of compact support.
S ′(Rd) the topological dual of the Schwartz space S(Rd).

The Dunkl operators Tj, j = 1 , ..., d, on Rd associated with the finite reflection
group W and multiplicity function k are given by

Tjf(x) :=
∂f

∂xj
(x) +

∑
α∈R+

k(α)αj
f(x)− f(σα(x))

〈α, x〉
, f ∈ C1(Rd), (2.5)

where αj = 〈α, ej〉.
We define the Dunkl-Laplacian operator 4k on Rd by

4kf(x) :=
d∑
j=1

T 2
j f(x) = 4f(x) + 2

∑
α∈R+

k(α)
(〈∇f(x), α〉
〈α, x〉

− f(x)− f(σα(x))

〈α, x〉2
)
,

where 4 and ∇ are the usual Euclidean Laplacian and the gardient operators on Rd

respectively.
For y ∈ Rd, the system{

Tju(x, y) = yju(x, y), j = 1, ..., d,
u(0, y) = 1,

(2.6)

admits a unique analytic solution on Rd, which will be denoted by K(x, y) and called
Dunkl kernel. This kernel has a unique holomorphic extension to Cd × Cd.

The function K(x, z) admits for all x ∈ Rd and z ∈ Cd the following Laplace type
integral representation

K(x, z) =

∫
Rd
e〈y,z〉dµx(y), (2.7)

where µx is the positive probability measure on Rd, with support in the closed ball
Bd(0, ||x||) of center 0 and radius ||x||.

2.2 The Dunkl transform

Notation. We denote by Lpk(Rd) the space of measurable functions on Rd such that

||f ||Lpk(Rd) :=
(∫

Rd
|f(x)|p dγk(x)

) 1
p
<∞, if 1 ≤ p <∞,

||f ||L∞k (Rd) := ess sup
x∈Rd
|f(x)| <∞,
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where

dγk(x) := ωk(x)dx.

For p = 2, we provide this space with the scalar product

〈f, g〉L2
k(Rd) :=

∫
Rd
f(x)g(x)dγk(x).

If F is a space of a C-valued functions on Rd, denote by

Frad :=
{
f ∈ F : f ◦ A = f for all A ∈ O(d,R)

}
the subspace of those f ∈ F which are radial. For f ∈ Frad there exists a unique function
F : R+ → C such that f(x) = F (||x||) for all x ∈ Rd.

Remark 2.1. By using the homogeneity of ωk it is shown in [50] that for a radial function
f ∈ L1

k(Rd) the function F defined on [0,∞) by f(x) = F (||x||), for all x ∈ Rd is integrable
with respect to the measure r2γ+d−1dr. More precisely,∫

Rd
f(x)dγk(x) = dk

∫ ∞
0

F (r)r2γ+d−1dr, (2.8)

where

dk :=
ck

2γ+ d
2 Γ(γ + d

2
)
. (2.9)

The Dunkl transform of a function f in L1
k(Rd) is given by

FD(f)(y) =
1

ck

∫
Rd
f(x)K(−ix, y)dγk(x), for all y ∈ Rd. (2.10)

In the following we give some properties of this transform (cf. [14, 16]).

i) For f in L1
k(Rd) we have

||FD(f)||L∞k (Rd) ≤
1

ck
||f ||L1

k(Rd). (2.11)

ii) Inversion formula: Let f be a function in L1
k(Rd), such that FD(f) ∈ L1

k(Rd). Then

F−1
D (f)(x) = FD(f)(−x), a.e. x ∈ Rd. (2.12)

Proposition 2.1. The Dunkl transform FD is a topological isomorphism from S(Rd) onto
itself. If we put for f in S(Rd)

FD(f)(y) = FD(f)(−y), y ∈ Rd, (2.13)

we have

FDFD = FDFD = Id.
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Proposition 2.2. i) Plancherel’s formula for FD.
For all f in S(Rd) we have∫

Rd
|f(x)|2dγk(x) =

∫
Rd
|FD(f)(ξ)|2dγk(ξ). (2.14)

ii) Plancherel’s theorem for FD.
The Dunkl transform f 7→ FD(f) can be uniquely extended to an isometric isomorphism
on L2

k(Rd).
iii) Parseval’s formula for FD.

For all f, g in S(Rd) we have∫
Rd
f(x)g(x)dγk(x) =

∫
Rd
FD(f)(ξ)FD(g)(ξ)dγk(ξ). (2.15)

Definition 2.1. ([50]) Let x ∈ Rd. The Dunkl translation operator f 7→ τxf is defined
on L2

k(Rd) by
FD(τxf) = K(ix, .)FD(f). (2.16)

Using the Dunkl translation operator, we define the Dunkl convolution product of
functions as follows (see [58, 60]).

Definition 2.2. For f, g in D(Rd), we define the Dunkl convolution product by

∀x ∈ Rd, f ∗D g(x) =
1

ck

∫
Rd
τxf(−y)g(y)dγk(y). (2.17)

2.3 Basic Dunkl wavelet theory

In this subsection we recall some results introduced and proved by Trimèche in [61].
Let a > 0. The dilation operator ∆a of a measurable function h, is defined by

∀x ∈ Rd, ∆a(h)(x) :=
1

aγ+ d
2

h(
x

a
). (2.18)

This operator satisfies.

Proposition 2.3. (i) For all a, b in (0,∞), we have

∆a∆b = ∆ab. (2.19)

(ii) Let a > 0. For all h in L2
k(Rd), the function ∆a(h) belongs to L2

k(Rd) and we have

||∆ah||L2
k(Rd) = ||h||L2

k(Rd), (2.20)

and
FD(∆ah)(y) = aγ+ d

2FD(h)(ay), y ∈ Rd. (2.21)

(iii) Let a > 0. For all h, g in L2
k(Rd), we have

〈∆ah, g〉L2
k(Rd) = 〈h,∆ 1

a
g〉L2

k(Rd). (2.22)

(iv) Let a > 0 and x ∈ Rd. We have

∆aτx = τax ∆a. (2.23)
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Definition 2.3. A Dunkl wavelet on Rd is a measurable function h on Rd satisfying for
almost all x ∈ Rd\{0}, the condition

0 < Ch =

∫ ∞
0

|FD(h)(λx)|2dλ
λ
<∞. (2.24)

Example 2.1. The function αt, t > 0, defined on Rd by

αt(x) =
1

(2t)γ+ d
2

e−
||x||2

4t , (2.25)

satisfies
∀ y ∈ Rd, FD(αt)(y) = e−t||y||

2

. (2.26)

The function h(x) = − d

dt
αt(x) is a Dunkl wavelet on Rd in S(Rd), and we have Ch =

1

8t2
.

Let a > 0 and h be a Dunkl wavelet in L2
k(Rd). We consider the family ha,x, x ∈ Rd,

of functions on Rd in L2
k(Rd) defined by

ha,x(y) := τx(∆ah)(y), y ∈ Rd, (2.27)

where τx, x ∈ Rd, are the Dunkl translation operators given by (2.16).
We note that we have

∀ a > 0, ∀x ∈ Rd, ||ha,x||L2
k(Rd) ≤ ||h||L2

k(Rd). (2.28)

Notation. We denote by

• Rd+1
+ =

{
(a, x) = (a, x1, ..., xd) ∈ Rd+1, a > 0

}
.

• Lpµk(R
d+1
+ ), p ∈ [1,∞], the space of measurable functions f on Rd+1

+ such that

‖f‖Lpµk (Rd+1
+ ) :=

(∫
Rd+1

+

|f(a, x)|pdµk(a, x)

) 1
p

<∞, 1 ≤ p <∞,

‖f‖L∞µk (Rd+1
+ ) := ess sup

(a,x)∈Rd+1
+

|f(a, x)| <∞,

where the measure µk is defined by

∀ (a, x) ∈ Rd+1
+ , dµk(a, x) =

dγk(x)da

a2γ+d+1
.

Definition 2.4. Let h be a Dunkl wavelet on Rd in L2
k(Rd). The Dunkl continuous wavelet

transform ΦD
h on Rd is defined for regular functions f on Rd by

ΦD
h (f)(a, x) =

1

ck

∫
Rd
f(y)ha,x(y)ωk(y)dy =

1

ck
〈f, τx∆ah〉L2

k(Rd), a > 0, x ∈ Rd. (2.29)

This transform can also be written in the form

ΦD
h (f)(a, x) = f̆ ∗D ∆ah(x), (2.30)

where f̆(y) := f(−y), and ∗D is the Dunkl convolution product given by (2.17).
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Remark 2.2. Let h be a Dunkl wavelet in L2
k(Rd). Then from the relation (2.30), for all

f in L2
k(Rd) we have

‖ΦD
h (f)‖L∞µk (Rd+1

+ ) ≤
1

ck
‖f‖L2

k(Rd)‖h‖L2
k(Rd). (2.31)

Theorem 2.1. (Plancherel’s formula for ΦD
h ). Let h be a Dunkl wavelet on Rd in L2

k(Rd).
For all f in L2

k(Rd) we have∫
Rd
|f(x)|2ωk(x)dx =

1

Ch

∫ ∞
0

∫
Rd
|ΦD

h (f)(a, x)|2dµk(a, x). (2.32)

Corollary 2.1. (Parseval’s formula for ΦD
h ). Let h be a Dunkl wavelet on Rd in L2

k(Rd)
and f1, f2 in L2

k(Rd). Then, we have∫
Rd
f1(x)f2(x)ωk(x)dx =

1

Ch

∫ ∞
0

∫
Rd

ΦD
h (f1)(a, x)ΦD

h (f2)(a, x)dµk(a, x). (2.33)

By Riesz-Thorin’s interpolation theorem we obtain the following.

Proposition 2.4. Let h be a Dunkl wavelet on Rd in L2
k(Rd), f ∈ L2

k(Rd) and p belongs
in [2,∞]. We have

‖ΦD
h (f)‖Lpµk (Rd+1

+ ) ≤ (Ch)
1
p (
‖h‖L2

k(Rd)

ck
)
p−2
p ‖f‖L2

k(Rd). (2.34)

Theorem 2.2. (Inversion formula for ΦD
h ). Let h be a Dunkl wavelet on Rd in L2

k(Rd).
For all f in L1

k(Rd) (resp. L2
k(Rd)) such that FD(f) belongs to L1

k(Rd) (resp. L1
k(Rd)

⋂
L∞k (Rd))

we have

f(y) =
1

ck Ch

∫ ∞
0

∫
Rd

ΦD
h (f)(a, x)ha,y(x)dµk(a, x), a.e., (2.35)

where for each y ∈ Rd, both the inner integral and the outer integral are absolutely con-
vergent, but possible not the double integral.

3 Pitt’s inequality for the Dunkl wavelet transform

The Pitt inequality in the Dunkl setting expresses a fundamental relationship between a
sufficiently smooth function and the corresponding Dunkl transform. This subject was
firstly studied by Soltani [57]. Next Gorbachev et all in [25] have improved the result of
Soltani and have given the Sharp Pitt inequality and logarithmic uncertainty principle for
Dunkl transform on Rd. More precisely they proved that, for every f ∈ S(Rd) ⊆ L2

k(Rd)∫
Rd
||ξ||−2λ|FD(f)(ξ)|2dγk(ξ) ≤ Ck(λ)

∫
Rd
||x||2λ|f(x)|2dγk(x), 0 ≤ λ <

2γ + d

2
, (3.36)

where

Ck(λ) := 2−2λ
[Γ(2γ+d−2λ

4
)

Γ(2γ+d+2λ
4

)

]2

(3.37)

and Γ denotes the well known Euler’s Gamma function.
The main objective of this section is to formulate an analogue of Pitt’s inequality

(3.36) for the Dunkl wavelet transform. Formally, we start our investigation with the
following lemma.
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Lemma 3.1. Let h be a Dunkl wavelet on Rd in L2
k(Rd), then for any f ∈ L2

k(Rd), we
have

FD
(

ΦD
h (f)(a, .)

)
(ξ) = aγ+ d

2FD(h)(aξ)FD(f)(−ξ). (3.38)

We are now in a position to establish the Pitt inequality for the Dunkl wavelet trans-
forms.

Theorem 3.1. Let h be a Dunkl wavelet on Rd in L2
k(Rd). For any arbitrary f ∈ S(Rd) ⊆

L2
k(Rd), the Pitt inequality for the Dunkl wavelet transform is given by:

Ch

∫
Rd
||ξ||−2λ

∣∣FD(f)(ξ)
∣∣2dγk(ξ) ≤ Ck(λ)

∫
Rd+1

+

||t||2λ
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t), 0 ≤ λ <

2γ + d

2
,

(3.39)
where Ck(λ) is given by (3.37).

Proof. As a consequence of the inequality (3.36), we can write∫
Rd
||ξ||−2λ

∣∣FD[ΦD
h (f)(a, .)](ξ)

∣∣2dγk(ξ) ≤ Ck(λ)

∫
Rd
||t||2λ

∣∣ΦD
h (f)(a, t)

∣∣2dγk(t), for all a ∈ (0,∞)

(3.40)
which upon integration with respect to the Haar measure da

a2γ+d+1 yields∫ ∞
0

∫
Rd
||ξ||−2λ

∣∣FD[ΦD
h (f)(a, .)](ξ)

∣∣2dµk(a, ξ) ≤ Ck(λ)

∫
Rd+1

+

||t||2λ
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t).

(3.41)
Invoking Lemma 3.1, we can express the inequality (3.41) in the following manner:∫ ∞

0

∫
Rd
||ξ||−2λ|FD(f)(ξ)|2a2γ+d|FD(h)(−aξ)|2dµk(a, ξ) ≤ Ck(λ)

∫
Rd+1

+

||t||2λ
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t).

Equivalently, we have∫
Rd
||ξ||−2λ

∣∣FD(f)(ξ)
∣∣2{∫ ∞

0

|FD(h)(−aξ)|2da
a

}
dγk(ξ) ≤ Ck(λ)

∫
Rd+1

+

||t||2λ
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t).

Using the hypothesis on h, we obtain

Ch

∫
Rd
||ξ||−2λ

∣∣FD(f)(ξ)
∣∣2dγk(ξ) ≤ Ck(λ)

∫
Rd+1

+

||t||2λ
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t) (3.42)

which establishes the Pitt inequality for the Dunkl wavelet transform in arbitrary space
dimensions.

Remark 3.1. For λ = 0, equality holds in (3.39), which is in consonance with Plancherel’s
formula (2.32).

Theorem 3.2. Let h be a Dunkl wavelet on Rd in L2
k(Rd). For any function f ∈ S(Rd),

the following inequality holds:∫
Rd+1

+

log ||t|| |ΦD
h (f)(a, t)|2dµk(a, t) + Ch

∫
Rd

log ||ξ|| |FD(f)(ξ)|2dγk(ξ) ≥

[Γ′(2γ+d
4

)

Γ(2γ+d
4

)
+ log 2

]
Ch||f ||2L2

k(Rd).

(3.43)
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Proof. For every 0 ≤ λ < 2γ+d
2
, we define

P (λ) = Ch

∫
Rd
||ξ||−2λ

∣∣FD(f)(ξ)
∣∣2dγk(ξ)− Ck(λ)

∫
Rd+1

+

||t||2λ
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t).

(3.44)
On differentiating (3.44) with respect to λ, we obtain

P ′(λ) = −2Ch

∫
Rd
||ξ||−2λ log ||ξ||

∣∣FD(f)(ξ)
∣∣2dγk(ξ)

−2Ck(λ)

∫
Rd+1

+

||t||2λ log ||t|| |ΦD
h (f)(a, t)|2dµk(a, t)− C ′k(λ)

∫
Rd+1

+

||t||2λ
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t),
(3.45)

where

C ′k(λ) = −Ck(λ)
(

2 log 2 +
Γ′( 2γ+d−2λ

4
)

Γ( 2γ+d−2λ
4

)
+

Γ′( 2γ+d+2λ
4

)

Γ( 2γ+d+2λ
4

)

)
. (3.46)

For λ = 0, equation (3.46) yields

C ′k(0) = −2
[

log 2 +
Γ′(2γ+d

4
)

Γ(2γ+d
4

)

]
. (3.47)

By virtue of Dunkl Pitt’s inequality (3.39), it follows that P (λ) ≤ 0, for all λ ∈ [0, 2γ+d
2

)
and

P (0) = Ch

∫
Rd

∣∣FD(f)(ξ)
∣∣2dγk(ξ)− Ck(0)

∫
Rd+1

+

∣∣ΦD
h (f)(a, t)

∣∣2dµk(a, t) (3.48)

= Ch||f ||2L2
k(Rd) − Ch||f ||

2
L2
k(Rd) = 0. (3.49)

Therefore,

−2Ch

∫
Rd

log ||ξ||
∣∣FD(f)(ξ)

∣∣2dγk(ξ)− 2Ck(0)

∫
Rd+1

+

log ||t|| |ΦD
h (f)(a, t)|2dµk(a, t)

−C ′k(0)

∫
Rd+1

+

∣∣ΦD
h (f)(a, t)

∣∣2dµk(a, t) ≤ 0.

(3.50)
Applying Plancherel’s formula (2.32) and the obtained estimate (3.47) of C ′k(0), we get

−2Ch

∫
Rd

log ||ξ||
∣∣FD(f)(ξ)

∣∣2dγk(ξ)− 2

∫
Rd+1

+

log ||t||
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t)

+2
[

log 2 +
Γ′(2γ+d

4
)

Γ(2γ+d
4

)

]
Ch||f ||2L2

k(Rd) ≤ 0

or equivalently,∫
Rd+1

+

log ||t||
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t) + Ch

∫
Rd

log ||ξ|| |FD(f)(ξ)|2dγk(ξ) ≥

[Γ′(2γ+d
4

)

Γ(2γ+d
4

)
+ log 2

]
Ch||f ||2L2

k(Rd).

(3.51)

Inequality (3.51) is the desired Beckner’s uncertainty principle for the Dunkl wavelet
transform in arbitrary space dimensions.
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4 Beckner’s type inequalities for the Dunkl wavelet

transforms

The Dunkl Beckner’s inequality [25] is given by∫
Rd

log ||t|| |f(t)|2dγk(t)+
∫
Rd

log ||ξ|| |FD(f)(ξ)|2dγk(ξ) ≥
[Γ′(2γ+d

4
)

Γ(2γ+d
4

)
+log 2

] ∫
Rd
|f(t)|2dγk(t)

(4.52)
for all f ∈ S(Rd). This inequality is related to the Heisenberg’s uncertainty principle and
for that reason it is often referred as the logarithmic uncertainty principle. Considerable
attention has been paid to this inequality for its various generalizations, improvements,
analogues, and their applications [30].

We now present an alternate proof of Theorem 3.2. The strategy of the proof is
different of given in the previous section and is obtained directly from the Dunkl Beckner’s
inequality (4.52).

Proof. of Theorem 3.2. We replace f in (4.52) with ΦD
h (f)(a, .), so that∫

Rd
log ||t|| |ΦD

h (f)(a, t)|2dγk(t) +

∫
Rd

log ||ξ||
∣∣FD[ΦD

h (f)(a, .)](ξ)
∣∣2dγk(ξ) ≥(

Γ′( 2γ+d
4

)

Γ( 2γ+d
4

)
+ log 2

)∫
Rd

∣∣ΦD
h (f)(a, t)

∣∣2dγk(t), for all a ∈ (0,∞).
(4.53)

Integrating (4.53) with respect to the measure da
a2γ+d+1 , we obtain∫

Rd+1
+

log ||t|| |ΦD
h (f)(a, t)|2dµk(a, t) +

∫
Rd+1

+

log ||ξ||
∣∣FD[ΦD

h (f)(a, .)](ξ)
∣∣2dµk(a, ξ) ≥(

Γ′( 2γ+d
4

)

Γ( 2γ+d
4

)
+ log 2

)∫
Rd+1

+

∣∣ΦD
h (f)(a, t)

∣∣2dµk(a, t).
(4.54)

Using Plancherel’s formula (2.32), we get∫
Rd+1

+

log ||t|| |ΦD
h (f)(a, t)|2dµk(a, t) +

∫
Rd+1

+

log ||ξ|| |FD[ΦD
h (f)(a, .)](ξ)|2dµk(a, ξ) ≥[Γ′(2γ+d

4
)

Γ(2γ+d
4

)
+ log 2

]
Ch||f ||2L2

k(Rd).

(4.55)
We shall now simplify the second integral of (4.55). By using Lemma 3.1 we infer that∫

Rd+1
+

log ||ξ|| |FD[ΦD
h (f)(a, .)](ξ)|2dµk(a, ξ) = Ch

∫
Rd

log ||ξ|| |FD(f)(ξ)|2dγk(ξ). (4.56)

Plugging the estimate (4.56) in (4.55) gives the desired inequality for the Dunkl wavelet
transforms as∫

Rd+1
+

log ||t|| |ΦD
h (f)(a, t)|2dµk(a, t) + Ch

∫
Rd

log ||ξ|| |FD(f)(ξ)|2dγk(ξ) ≥[Γ′(2γ+d
4

)

Γ(2γ+d
4

)
+ log 2

]
Ch||f ||2L2

k(Rd).

This completes the second proof of Theorem 3.2.
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Corollary 4.1. Let h be a Dunkl wavelet on Rd in L2
k(Rd), such that Ch = 1. For any

function f ∈ S(Rd), the following inequality holds:{∫
Rd+1

+

||t||2
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t)}1/2{∫

Rd
||ξ||2|FD(f)(ξ)|2dγk(ξ)

}1/2

≥ exp
([Γ′(2γ+d

4
)

Γ(2γ+d
4

)
+ log 2

]
||f ||2L2

k(Rd)

)
.

Proof. Involoving Jensen’s inequality in (3.43) and the fact that Ch = 1, we obtain an ana-
logue of the classical Heisenberg’s uncertainty inequality for the Dunkl wavelet transforms
as

log
{∫

Rd+1
+

||t||2
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t)∫

Rd
||ξ||2|FD(f)(ξ)|2dγk(ξ)

}1/2

= log
{∫

Rd+1
+

||t||2
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t)}1/2

+ log
{∫

Rd
||ξ||2|FD(f)(ξ)|2dγk(ξ)

}1/2

≥
∫
Rd+1

+

log ||t||
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t) +

∫
Rd

log ||ξ|| |FD(f)(ξ)|2dγk(ξ)

≥
[Γ′(2γ+d

4
)

Γ(2γ+d
4

)
+ log 2

]
Ch||f ||2L2

k(Rd),

which yields the result.

5 Concentration uncertainty principles for the Dunkl

wavelet transforms

In this Section, we derive two concentration uncertainty principles for the Dunkl wavelet
transforms as an analog of the Benedick-Amrein-Berthier and local uncertainty principles
in the time-frequency analysis.

5.1 Benedick-Amrein-Berthier’s uncertainty principle for the
Dunkl wavelet transforms

Recently Ghobber and Jaming in [21] have proved the Benedicks-Amrein-Berthier uncer-
tainty principle for the Dunkl transform which states that if E1 and E2 are two subsets
of Rd with finite measure, then there exist a positive constant Ck(E1, E2) such that for
any f ∈ L2

k(Rd)∫
Rd
|f(t)|2dγk(t) ≤ Ck(E1, E2)

{∫
Rd\E1

|f(t)|2dγk(t) +

∫
Rd\E2

|FD(f)(ξ)|2dγk(ξ)
}
. (5.57)

In this Subsection, our primary interest is to establish the Benedick-Amrein-Berthier
uncertainty principle for the Dunkl wavelet transforms in arbitrary space dimensions by
employing the inequality (5.57). In this direction, we have the following main theorem.
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Theorem 5.1. Let h be a Dunkl wavelet on Rd in L2
k(Rd). For any arbitrary function

f ∈ L2
k(Rd), we have the following uncertainty inequality

∫ ∞
0

∫
Rd\E1

∣∣ΦD
h (f)(a, t)

∣∣2dµk(a, t) + Ch

∫
Rd\E2

|FD(f)(ξ)|2dγk(ξ) ≥
Ch||f ||2L2

k(Rd)

Ck(E1, E2)
(5.58)

where Ck(E1, E2) the constant given in relation (5.57), E1 and E2 are two subsets of Rd

such that γk(Ei) <∞, i = 1, 2.

Proof. Since for all a ∈ (0,∞), ΦD
h (f)(a, .) ∈ L2

k(Rd), whenever f ∈ L2
k(Rd), so we can

replace the function f appearing in (5.57) with ΦD
h (f)(a, .) to get∫

Rd

∣∣ΦD
h (f)(a, t)

∣∣2dγk(t) ≤
Ck(E1, E2)

{∫
Rd\E1

∣∣ΦD
h (f)(a, t)

∣∣2dγk(t) +

∫
Rd\E2

∣∣FD[ΦD
h (f)(a, t)

]
(ξ)
∣∣2dγk(ξ)}. (5.59)

By integrating (5.59) with respect the measure da
a2γ+d+1 , we obtain∫ ∞

0

∫
Rd

∣∣ΦD
h (f)(a, t)

∣∣2dµk(a, t) ≤
Ck(E1, E2)

{∫ ∞
0

∫
Rd\E1

∣∣ΦD
h (f)(a, t)

∣∣2dµk(a, t) +

∫ ∞
0

∫
Rd\E2

|FD
[
ΦD
h (f)](a, .)

]
(ξ)
∣∣2dµk(a, ξ)}.

Using Lemma 3.1 together with Plancherel’s formula (2.32), the above inequality becomes

Ch||f ||2L2
k(Rd)

Ck(E1, E2)
≤

∫ ∞
0

∫
Rd\E1

∣∣ΦD
h (f)(a, t)

∣∣2dµk(a, t) +

∫
Rd\E2

∫ ∞
0

a2γ+d|FD(f)(ξ)|2|FD(h)(−aξ)|2dµk(a, ξ)

which further implies

Ch||f ||2L2
k(Rd)

Ck(E1, E2)
≤

∫ ∞
0

∫
Rd\E1

∣∣ΦD
h (f)(a, t)

∣∣2dµk(a, t) +

∫
Rd\E2

|FD(f)(ξ)|2
{∫ ∞

0

|FD(h)(−aξ)|2da
a

}
dγk(ξ).

Thus using the fact that h is Dunkl wavelet on Rd, we obtain∫ ∞
0

∫
Rd\E1

∣∣ΦD
h (f)(a, t)

∣∣2dµk(a, t) + Ch

∫
Rd\E2

|FD(f)(ξ)|2dγk(ξ) ≥
Ch||f ||2L2

k(Rd)

Ck(E1, E2)

which is the desired Benedick-Amrein-Berthier’s uncertainty principle for the Dunkl wavelet
transforms in arbitrary space dimensions.
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5.2 Local-type Uncertainty Principle for the Dunkl wavelet Trans-
forms

We begin this subsection by recalling the local uncertainty principle for the Dunkl trans-
form.

Proposition 5.1. ([21]). Let E be a subset of Rd with finite measure 0 < γk(E) <∞.
For 0 < s < 2γ+d

2
, there exist a positive constant C(k, s) such that for any f ∈ L2

k(Rd)∫
E

∣∣FD(f)(ξ)
∣∣2dγk(ξ) ≤ C(k, s)

(
γk(E)

) 2s
2γ+d || ||x||sf ||2L2

k(Rd). (5.60)

The main objective of this Subsection is to establish the local uncertainty principles
for the Dunkl wavelet transforms in arbitrary space dimensions by employing the previous
inequalities.

Theorem 5.2. Let h be a Dunkl wavelet on Rd in L2
k(Rd). Let E ⊂ Rd such that 0 <

γk(E) <∞.
Let 0 < s < 2γ+d

2
. For any f ∈ L2

k(Rd), we have∫
E

|FD(f)(ξ)|2dγk(ξ) ≤
C(k, s)(γk(E))

2s
2γ+d

Ch

∫
Rd+1

+

||x||2s
∣∣ΦD

h (f)(a, x)
∣∣2dµk(a, x). (5.61)

where C(k, s), the constant given in Proposition 5.1.

Proof. Since ΦD
h (f)(a, .) ∈ L2

k(Rd), whenever f ∈ L2
k(Rd), so we can replace the function

f appearing in (5.60) with ΦD
h (f)(a, .), to get for all a ∈ (0,∞),∫

E

∣∣FD[ΦD
h (f)(a, x)

]
(ξ)
∣∣2dγk(ξ) ≤ C(k, s)

(
γk(E)

) 2s
2γ+d || ||x||sΦD

h (f)(a, .)||2L2
k(Rd). (5.62)

For explicit expression of (5.62), we shall integrate this inequality with respect to the
measure da

a2γ+d+1 to get∫ ∞
0

∫
E

∣∣FD[ΦD
h (f)(a, t)

]
(ξ)
∣∣2dµk(a, ξ) ≤ C(k, s)

(
γk(E)

) 2s
2γ+d

∫
Rd+1

+

||x||2s
∣∣ΦD

h (f)(a, x)|2dµk(a, x)

which together with Lemma 3.1 and Fubini’s theorem gives∫
E

|FD(f)(ξ)|2
(∫ ∞

0

|FD(h)(−aξ)|2da
a

)
dγk(ξ) ≤

C(k, s)
(
γk(E)

) 2s
2γ+d

∫
Rd+1

+

||x||2s
∣∣ΦD

h (f)(a, x)|2dµk(a, x).
(5.63)

Using the hypothesis on h, inequality (5.63) reduces to

Ch

∫
E

∣∣FD(f)(ξ)
∣∣2dγk(ξ) ≤ C(k, s)

(
γk(E)

) 2s
2γ+d

∫
Rd+1

+

||x||2s
∣∣ΦD

h (f)(a, x)|2dµk(a, x).

Or equivalently,∫
E

∣∣FD(f)(ξ)
∣∣2dγk(ξ) ≤ C(k, s)

(
γk(E)

) 2s
2γ+d

Ch

∫
Rd+1

+

||x||2s
∣∣ΦD

h (f)(a, x)|2dµk(a, x).

This completes the proof of (5.61).
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6 Dunkl logarithmic Sobolev inequalities and appli-

cations

This Section is devoted to establish new Dunkl logarithmic Sobolev inequalities. Next
we use these inequalities to obtain Dunkl logarithm Sobolev type uncertainty inequalities
for the Dunkl wavelet transform. To facilitate our intention, we start with the following
definitions:

Definition 6.1. (i) The Dunkl transform of a distribution u in S ′(Rd) is defined by

〈FD(u), φ〉 = 〈u,F−1
D (φ)〉, for all φ ∈ S(Rd). (6.64)

(ii) Let u be in S ′(Rd). We recall that

FD(Tju) = iξjFD(u), j = 1, ..., d. (6.65)

Definition 6.2. [37] Let s ∈ R. The Dunkl Sobolev space Hs
k(Rd) of order s on Rd is

defined by

Hs
k(Rd) =

{
f ∈ S ′(Rd) : (1 + ||ξ||2)

s
2FD(f) ∈ L2

k(Rd)
}
. (6.66)

Remark 6.1. Using Parseval’s formula (2.14) and relation (6.65) we can see that

H1
k(Rd) =

{
f ∈ L2

k(Rd) : ∇kf ∈ L2
k(Rd)

}
, (6.67)

where ∇k denotes the Dunkl nabla operator given by ∇k =
(
T1, ..., Td

)
. Fore more details

on the Dunkl Sobolev spaces we refer the reader to [36].

Definition 6.3. For 1 ≤ p <∞ and b > 0, the weighted Lebesgue space on Rd is defined
by

Lpk,b(R
d) =

{
f ∈ Lpk(R

d) : 〈t〉bf ∈ Lpk(R
d)
}
, (6.68)

where 〈t〉 is the weight function given by 〈t〉 = (1 + ||t||2)1/2, t ∈ Rd.

Theorem 6.1. Let 1 < b <∞. For any f ∈ L1
k,b(Rd)\{0} we have

−
∫
Rd
|f(x)| log

|f(x)|
‖f‖L1

k(Rd)

dγk(x) ≤ (d+ 2γ)

∫
Rd
|f(x)| log(C(d, k, b)(1 + ||x||b)dγk(x),

(6.69)
where

C(d, k, b) =
(dkΓ(d+2γ

b
)Γ(d+2γ

b′
)

bΓ(2γ + d)

) 1
d+2γ

is the best possible and 1/b+ 1/b′ = 1. Moreover, it is attained up to conformal automor-
phism by

f(x) = (1 + ||x||b)−(d+2γ).
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Proof. It suffices to prove that this inequality (6.69) holds for f belongs to L1
k,b(Rd)

with ‖f‖L1
k(Rd) = 1. We first show that the right-hand side is well-defined. In fact, for

f ∈ L1
k,b(Rd), set a measure dλk by

dλk(x) = |f(x)|dγk(x).

We note that

∫
Rd
dλk(x) = 1. By Jensen’s inequality,

∫
Rd
|f(x)| log(1 + ||x||b)dγk(x) =

∫
Rd

log(1 + ||x||b)dλk(x)

≤ log

∫
Rd

(1 + ||x||b)dλk(x)

= log

∫
Rd

(1 + ||x||b)|f(x)|dγk(x)

≤ log

∫
Rd
〈x〉b|f(x)|dγk(x) <∞.

Let φ be given by
φ(x) = C(d, k, b)(1 + ||x||b)−(d+2γ),

where

C(d, k, b) =
bΓ(2γ + d)

dkΓ(d+2γ
b

)Γ(d+2γ
b′

)

so that ‖φ‖L1
k(Rd) = 1. Then, considering the relative entropy of f and φ, by Jensen’s

inequality, then we have∫
Rd
|f(x)| log

φ(x)

|f(x)|
dγk(x) =

∫
Rd

log
φ(x)

|f(x)|
dλk(x)

≤ log

∫
Rd

φ(x)

|f(x)|
dλk(x)

≤ log

∫
Rd
φ(x)dγk(x) = 0.

Thus, we have

−
∫
Rd
|f(x)| log |f(x)|dγk(x) ≤ −

∫
Rd
|f(x)| log |φ(x)|dγk(x).

Hence we obtain the desired result

−
∫
Rd
|f(x)| log |f(x)|dγk(x) ≤ (d+ 2γ)

∫
Rd
|f(x)| log(1 + ||x||b)dγk(x)− log C(d, k, b).

Moreover, since the equality can be valid in this inequality depends only when the equality
holds in Jensen’s inequality, the equality holds if and only if

f(x) = C(d, k, b)(1 + ||x||b)−(d+2γ).
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Motivated by Beckner’s method and by simple argument based on a sharp form of
Dunkl Pitt’s inequality we obtain the following logarithmic estimate of uncertainty.

Theorem 6.2. For any arbitrary f ∈ S(Rd) there exist a constant Bd,k independent of f
such that we have∫

Rd
log |f(x)| |f(x)|2dγk(x) ≤ d+ 2γ

2

∫
Rd

log(||ξ||) |FD(f)(ξ)|2dγk(ξ)−Bd,k||f ||2L2
k(Rd).

(6.70)

Proof. The Dunkl Hardy-Littlewood-Sobolev inequality on Rd (cf. [27]) state that:

|
∫
Rd
Ikλf(x) g(x)dγk(x)| ≤ A(p, λ)||f ||Lpk(Rd)||g||Lpk(Rd), (6.71)

where Ikλ designate the Dunkl Riesz potentials given by

Ikλf(x) =
1

dk

∫
Rd

τyf(x)

||y||2γ+d−λdγk(y),

λ = (2γ + d)(2
p
− 1) and A(p, λ) > 0 depends only on p and λ. So using (6.71) we deduce

the following sharp form of Dunkl Pitt’s inequality∣∣ ∫
Rd
||ξ||(2γ+d)(1− 2

p
)|FDf(ξ)|2dγk(ξ)

∣∣ ≤ A(p, λ)||f ||2Lpk(Rd). (6.72)

Using (6.72) is an equality at the point p = 2, we deduce that we can be differentiated
with respect p to produce inequality (6.70).

Remark 6.2. Motivated by Beckner’s method we note that if |f | is radial decreasing and
C denoting a generic constant

|f(x)| ≤ C

||x||γ+ d
2

or
d+ 2γ

2
log ||x|| ≤ − log |f(x)|+ logC.

Then by (4.52) we infer ∫
Rd

log |f(x)| |f(x)|2dγk(x) ≤

d+ 2γ

2

∫
Rd

log(||ξ||) |FD(f)(ξ)|2dγk(ξ) +
[

log(
C

2
)−

Γ′(2γ+d
4

)

Γ(2γ+d
4

)

]
||f ||2L2

k(Rd).

Now we state that logarithmic Beckner’s inequality (6.70) and the main result (6.69)
is a dual relation in the following sense.

Theorem 6.3. For any f ∈ H1
k(Rd) ∩ L1

k,1(Rd),

Γ′(2γ+d
2

)

Γ(2γ+d
2

)
‖f‖2

L2
k(Rd) ≤

∫
Rd
|f(x)|2 log(C(k, d)〈x〉2)dγk(x)+

∫
Rd

log(K(k, d)||ξ||) |FD(f)(ξ)|2dγk(ξ),

(6.73)
where

C(k, d) = C(d, k, 2) =
(dkΓ2(d+2γ

2
)

2Γ(2γ + d)

) 1
2γ+d

and K(k, d) := exp
(Γ′(2γ+d

2
)

Γ(2γ+d
2

)
− 2Bd,k

2γ + d

)
.
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Proof. Clearly, the inequality (6.73) holds for f ≡ 0. Let f be in H1
k(Rd)∩L1

k,1(Rd) \ {0}.
The inequality (6.69) with b = 2, f → |f |2 is

−
∫
Rd
|f(x)|2 log

|f(x)|2

‖f‖2
L2
k(Rd)

dγk(x) ≤ (d+ 2γ)

∫
Rd
|f(x)|2 log(C(k, d)〈x〉2)dγk(x). (6.74)

This inequality corresponds with the logarithmic Beckner’s inequality (6.70) can be
written as:∫
Rd

log
|f(x)|2

‖f‖2
L2
k(Rd)

|f(x)|2dγk(x) ≤ d+ 2γ

2

∫
Rd

log(||ξ||2) |FD(f)(ξ)|2dγk(ξ)−2Bd,k||f ||2L2
k(Rd).

(6.75)
Combining the inequalities (6.74) and (6.75), we obtain

2Bd,k
d+2γ
‖f‖2

L2
k(Rd)

≤
∫
Rd
|f(x)|2 log(C(k, d)〈x〉2)dγk(x) +

1

2

∫
Rd

log(||ξ||2)|FD(f)(x)|2dγk(ξ).

Finally by simple calculations we infer that

Γ′(2γ+d
2

)

Γ(2γ+d
2

)
‖f‖2

L2
k(Rd) ≤

∫
Rd
|f(x)|2 log(C(k, d)〈x〉2)dγk(x) +

∫
Rd

log(K(k, d)||ξ||)|FD(f)(x)|2dγk(ξ).

Corollary 6.1. For any f ∈ H1
k(Rd) ∩ L1

k,1(Rd),∫
Rd
|f(x)|2dγk(x) ≤ 2C(k, d)K(k, d)e

−Γ′( 2γ+d
2 )

Γ(
2γ+d

2 )

(∫
Rd
||x||2|f(x)|2dγk(x)

) 1
2
(∫

Rd
|∇kf(x)|2dγk(x)

) 1
2
.

(6.76)

Proof. By the inequality (6.73), Jensen’s inequality and (6.65), we get

Γ′(2γ+d
2

)

Γ(2γ+d
2

)
≤ log

(
C(k, d)

∫
Rd

(1 + ||x||2)
|f(x)|2

||f ||2
L2
k(Rd)

dγk(x)
)

+
1

2
log
(
K2(k, d)

∫
Rd
||ξ||2 |FD(f)(ξ)|2

||f ||2
L2
k(Rd)

dγk(ξ)
)

≤ log
{C(k, d)K(k, d)

‖f‖3
L2
k(Rd)

∫
Rd

(1 + ||x||2)|f(x)|2dγk(x)
(∫

Rd
|∇kf(x)|2dγk(x)

) 1
2
}
,

that is,

‖f‖3
L2
k(Rd) ≤ C(k, d)K(k, d)e

−Γ′( 2γ+d
2 )

Γ(
2γ+d

2 )

(
||f ||2L2

k(Rd) + ‖ ||x||f‖2
L2
k(Rd)

)
‖∇kf‖L2

k(Rd). (6.77)

If we define fλ by

fλ(x) := λ
d+2γ

2 f(λx) for x ∈ Rd, λ > 0,

then we have

‖fλ‖L2
k(Rd) = ‖f‖L2

k(Rd), ‖ ||x||fλ‖L2
k(Rd) = λ−1‖ ||x||f‖L2

k(Rd), ‖∇kf‖L2
k(Rd) = λ‖∇kf‖L2

k(Rd).
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Applying (6.77) to fλ, we get

‖f‖3
L2
k(Rd) ≤ C(k, d)K(k, d)e

−Γ′( 2γ+d
2 )

Γ(
2γ+d

2 )

(
λ||f ||2L2

k(Rd) + λ−1‖ ||x||f‖2
L2
k(Rd)

)
‖∇kf‖L2

k(Rd).

Optimizing the right-hand side with

λ =
‖ ||x||f‖L2

k(Rd)

‖f‖L2
k(Rd)

,

we obtain the desired inequality (6.76).

In the following we prove another version of uncertainty inequalities for the Dunkl
wavelet transform:

Theorem 6.4. Let h be a Dunkl wavelet on Rd in L2
k(Rd). For any arbitrary function

f ∈ H1
k(Rd) ∩ L1

k,1(Rd) we have

Γ′( 2γ+d
2

)

Γ( 2γ+d
2

)
Ch||f ||2L2

k(Rd)
≤

∫
Rd+1

+

∣∣ΦD
h (f)(a, t)

∣∣2 log
(
C(k, d)(1 + ||t||2)

)
dµk(a, t)

+ Ch

∫
Rd
|FD(f)(ξ)|2 log(K(k, d)||ξ||)dγk(ξ)

(6.78)

whenever the L.H.S of (6.78) is defined.

Proof. As a consequence of inequality (6.73), we have for all a ∈ (0,∞)

Γ′( 2γ+d
2

)

Γ( 2γ+d
2

)

∫
Rd

∣∣ΦD
h (f)(a, t)
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∣∣2 log
(
C(k, d)(1 + ||t||2)

)
dγk(t)

+

∫
Rd

∣∣FD[ΦD
h (f)(a, .)](ξ)

∣∣2 log(K(k, d)||ξ||)dγk(ξ),

which upon integration yields with the measure da
a2γ+d+1

Γ′( 2γ+d
2

)

Γ( 2γ+d
2

)

∫
Rd+1

+

∣∣ΦD
h (f)(a, t)

∣∣2dµk(a, t) ≤ ∫
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+
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h (f)(a, t)

∣∣2 log
(
C(k, d)(1 + ||t||2)

)
dµk(a, t)

+

∫
Rd+1

+

log(K(k, d)||ξ||)
∣∣FD[ΦD

h (f)(a, .)](ξ)
∣∣2dµk(a, ξ).
(6.79)

Using Lemma 3.1, for the second integral on the L.H.S of (6.79) and invoking (2.32), we
get∫

Rd+1
+

∣∣ΦD
h (f)(a, t)

∣∣2 log
(
C(k, d)(1 + ||t||2)

)
dµk(a, t) + Ch

∫
Rd
|FD(f)(ξ)|2 log(K(k, d)||ξ||)dγk(ξ)

≥ Γ′( 2γ+d
2

)

Γ( 2γ+d
2

)
Ch||f ||2L2

k(Rd)
.

This completes the proof of Theorem 6.4.
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Based on the Dunkl logarithm Sobolev type uncertainty inequality (6.78), we shall
derive another uncertainty principle for the Dunkl wavelet transform in arbitrary space
dimensions.

Theorem 6.5. Let h be a Dunkl wavelet on Rd in L2
k(Rd), such that Ch = 1. Then, for

any arbitrary function f ∈ H1
k(Rd) ∩ L1

k,1(Rd) \ {0}, we have

∫
Rd+1

+

||t||2
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t) ≥ exp

(
Γ′( 2γ+d

2
)

Γ( 2γ+d
2

)

)
C(k, d)K(k, d)‖∇kf‖L2

k(Rd)

‖f‖3
L2
k(Rd) − ||f ||

2
L2
k(Rd).

(6.80)

Proof. Let f be in H1
k(Rd) ∩ L1

k,1(Rd) \ {0}. For Ch = 1, we infer from (6.78) that

Γ′( 2γ+d
2

)

Γ( 2γ+d
2

)
||f ||2

L2
k(Rd)

≤
∫
Rd+1

+

∣∣ΦD
h (f)(a, t)

∣∣2 log(C(k, d)(1 + ||t||2))dµk(a, t)

+

∫
Rd

log(K(k, d)||ξ||) |FD(f)(ξ)|2dγk(ξ).
(6.81)

Using Jensen’s inequality in (6.81), we can deduce that

Γ′( 2γ+d
2

)

Γ( 2γ+d
2

)
≤ log C(k, d)

(∫
Rd+1

+

∣∣ΦD
h (f)(a, t)

∣∣2
||f ||2

L2
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(1 + ||t||2)dµk(a, t)
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+ 1
2

∫
Rd

log(K2(k, d)||ξ||2)
|FD(f)(ξ)|2

||f ||2
L2
k(Rd)

dγk(ξ).

(6.82)

To obtain a fruitful estimate of the second integral of (6.82), we set

d%k(ξ) =
|FD(f)(ξ)|2

||f ||2
L2
k(Rd)

dγk(ξ), so that

∫
Rd
d%k(ξ) = 1. (6.83)

Again by employing the Jensen’s inequality, we obtain∫
Rd

log(K2(k, d)||ξ||2)|FD(f)(ξ)|2dγk(ξ) = ‖f‖2
L2
k(Rd)

∫
Rd

log(K2(k, d)||ξ||2)|dρk(ξ)
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k(Rd) log
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∫
Rd
|∇kf(t)|2dγk(t)

}
. (6.84)

Using the expression (6.84) in (6.82), we infer
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)

Γ( 2γ+d
2

)
≤ log
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||f ||3
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)
.

(6.85)
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Expression (6.85) can be rewritten in a lucid manner as

{∫
Rd+1

+

∣∣ΦD
h (f)(a, t)

∣∣2(1+||t||2
)
dµk(a, t)

}{∫
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}1/2

≥
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(
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2
)

Γ( 2γ+d
2

)

)
C(k, d)K(k, d)

||f ||3L2
k(Rd).

(6.86)
Applying Plancherel’s formula (2.32) with Ch = 1, we get

{∫
Rd+1

+

||t||2
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t)}{∫
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|∇kf(t)|2dγk(t)

}1/2

≥
exp

(
Γ′( 2γ+d

2
)

Γ( 2γ+d
2

)

)
C(k, d)K(k, d)

||f ||3L2
k(Rd)

−||f ||2
L2
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which upon simplification gives the desired inequality

∫
Rd+1

+

||t||2
∣∣ΦD

h (f)(a, t)
∣∣2dµk(a, t) ≥ exp

(
Γ′( 2γ+d

2
)

Γ( 2γ+d
2
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)
C(k, d)K(k, d)‖∇kf‖L2

k(Rd)

||f ||3L2
k(Rd) − ||f ||

2
L2
k(Rd).

This completes the proof of the theorem.

Remark 6.3. We note that we have studied these types of uncertainty principles and
others for some integral transforms as the Dunkl Gabor transform, the (k, a)-generalized
wavelet transform, the k-Hankel Gabor transform and others integral transforms. These
studies have given some papers. We cite as examples [41, 42, 43]. We mention also
that Shah et al. in [1, 52], have been studying the same uncertainty principles studied
in this paper for the continuous Shearlet transform and non-isotropic angular Stockwell
transform.

7 Open Problem

In the present paper, we have successfully studied new uncertainty principles associated
with the Dunkl wavelet transforms. The obtained results have a novelty and contribution
to the literature. It is our hope that this work motivate the researchers to find explicitly
expression of the constant A(p, λ) given in the Dunkl Hardy-Littlewood-Sobolev inequality
(6.71).
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[28] V. Havin and B. Jöricke. The uncertainty principle in harmonic analysis. Volume 24.
Berlin: Springer Verlag, 1994.

[29] M. Holschneider, Wavelets : An Analysis Tool, Clarendon Press, Oxford, 1995.

[30] TR. Johansen, Weighted inequalities and uncertainty principles for the (k, a)-
generalized Fourier transform. Int. J. Math. 27(3), 1650019 (2016).

[31] T. Kawazoe, and H. Mejjaoli, Uncertainty principles for the Dunkl transform. Hi-
roshima Math. J., 2010; 40(2): 241-268.

[32] T. H. Koornwinder, The continuous wavelet transform, in Wavelets: An Elementary
Treatment of Theory and Applications, (World Scientific, Singapore, 1993, 27–48.

[33] R. Ma, Heisenberg inequalities for Jacobi transforms. J. Math. Anal. Appl., 2007;
332(1): 155-163.

[34] H. Mejjaoli, N. Sraieb, Uncertainty principles for the continuous Dunkl wavelet trans-
form and the Dunkl continuous Gabor transform, Mediterr. J. Math., 2008; 5: 443-466.
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