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Abstract

In this work, we investigate the iterated type of growth of so-
lutions to linear differential equations with entire coefficients to
provide further precise on their growth. For that, we use Nevan-
linna theory of meromorphic functions in the complex plane and
Wiman-Valiron theory for entire functions.
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1 Introduction

Throughout this work, we use the fundamental results and the standard
notations of the Nevanlinna value distribution theory (see [13, 16, 26]). In
addition, for a non-constant entire function f : C → C, we will use the nota-
tions σn,M (f) , σn,T (f) to denote the n-iterated order and τn,M (f) , τn,T (f)
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to denote the n-iterated type of f defined by

σn,M (f) = lim sup
r→+∞

logn+1M (r, f)

log r
, σn,T (f) = lim sup

r→+∞

logn T (r, f)

log r
,

τn,M (f) = lim sup
r→+∞

lognM (r, f)

rσn
, τn,T (f) = lim sup

r→+∞

logn−1 T (r, f)

rσn

where M (r, f) = max
|z|=r
|f (z)| and T (r, f) is the Nevanlinna characteristic func-

tion, σn = σn,M (f) = σn,M (f) and logn+1 x = log logn x, n ∈ N, with log1 x =
log x and log0 x = x. It is well known that σn,M (f) = σn,T (f) for n ≥ 1 and
τn,M (f) = τn,T (f) for n ≥ 2, while the equality τ1,M (f) = τ1,T (f) is not valid:
for example, if f (z) = ez then τ1,M (f) = 1 and τ1,T (f) = 1

π
. If there is no

ambiguity we use the notations σn (f) , τn (f) and for n = 1 we write briefly
σ (f) , τM (f) , τT (f). By the well known inequality T (r, f) ≤ log+M (r, f) ,
we get τT (f) ≤ τM (f) . In the other side, in [4] Goldberg and Ostrovskii proved
the following inequalities

τM (f) ≤ πσ csc (πσ) τT (f) if 0 < σ = σ (f) ≤ 1/2;

τM (f) ≤ πστT (f) if 1/2 < σ <∞;

while τM (f) and τT (f) are equal to 0 and +∞ simultaneously.
Nevanlinna theory of meromorphic functions and Wiman-Valiron theory

for entire functions are a powerful tool in the field of complex differential
equations. For an introduction to the theory of differential equations in the
complex plane by using Nevanlinna theory and Wiman-Valiron theory; see, for
example, [16, 17, 18]. Active research in this field was started by Wittich [25]
and his students in the 1950s and 1960s. The order of growth of solutions to
the differential equation

f (k) + Ak−1 (z) f
(k−1)

+ ...+ A0 (z) f = 0, (1)

is one of the aims in studying complex differential equations. It is well known
that all solutions of (1) are entire functions when all the coefficients A0 6≡
0, A1, ..., An−1 are entire. It can be observed in many results that the studying
of the order of growth of non trivial solutions of (1) is based on the domination
of one coefficient on the others and essentially when A0 is the dominant coef-
ficient, see, for example, [1, 5, 20]. In general, when the domination is weak,
the study becomes more difficult and requires new methods. Many researchers
have recently tried to investigate the case when the coefficients have the same
order of growth, see for example [2, 3, 8, 9, 11, 12, 21]. On the other hand, the
results obtained concerning the growth of the solutions are only on the order.
In this paper, we will investigate the type of solutions to certain class of linear
differential equations to provide further precise on their growth.
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2 Main results

Theorem 2.1 Let A (z) be an entire function of finite order 0 < σ (A) =
σ < ∞ and of finite type 0 < τM (A) = τ < ∞. Then every solution f 6≡ 0 of
the differential equation

f (k) + A (z) f = 0, k ≥ 1, (2)

satisfies σ2 (f) = σ and τ2 (f) = τ
k
.

Corollary 2.2 Let n be a positive integer; a, b be complex numbers such
that |b| < |a| and A (z) 6≡ 0, B (z) be entire functions with max {σ (A) , σ (B)} <
m (m ∈ N \ {0}) . Then every solution f 6≡ 0 of the differential equation

f (k) +
(
B (z) ebz

m

+ A (z) eaz
m)
f = 0, k ≥ 1,

satisfies σ2 (f) = m and τ2 (f) = |a|
k
.

Example 2.3 f1 (z) = exp {ez} and f2 (z) =
∫

exp {−2ez} dz form the
fundamental system of solutions of the differential equation

f ′′ −
(
ez + e2z

)
f = 0. (3)

We have τM (−ez − e2z) = 2, τ2 (f1) = 1, τ2 (f2) = τ2 (f ′2) = 1. Then, every
solution f 6≡ 0 of (3), satisfies σ2 (f) = 1 and τ2 (f) = 1.

Theorem 2.4 Let P (z) = anz
n+...+a0 be a polynomial of degree n (an 6= 0) .

Then, every solution f 6≡ 0 of the differential equation

f (k) + P (z) f = 0, k ≥ 1, (4)

satisfies lim sup
r→+∞

νf (r)

rσ
= |an|

1
k and τM (f) ≥ log 2

2σ
|an|

1
k , where σ = σ (f) = 1 + n

k

and νf (r) is the central index of f.

Theorem 2.5 Let A (z) , B (z) be entire functions satisfying 0 < σ (A) =
σ < ∞, 0 < τM (A) = τ < ∞, σ (B) ≤ σ (A) and τM (B) < τM (A) if
σ (B) = σ (A) . Then every solution f 6≡ 0 of the differential equation

f ′′ +B (z) f ′ + A (z) f = 0, (5)

satisfies σ2 (f) = σ and τ2 (f) = τ
2
.

Corollary 2.6 Let A (z) 6≡ 0, B (z) be entire functions satisfying max{σ (A) , σ (B)} <
m, (m ∈ N \ {0}). Then every solution f 6≡ 0 of the differential equation

f ′′ +B (z) f ′ + A (z) exp {azm} f = 0

satisfies σ2 (f) = m and τ2 (f) = |a|
2
, (a ∈ C \ {0}) .



4 S. Hamouda

Theorem 2.7 Let Aj (z) (j = 0, 1, ..., k − 1) be entire functions satisfying
0 < σ (A0) = σ < ∞, 0 < τ (A0) = τ < ∞, σ (Aj) ≤ σ (A0) and τ (Aj) <
τ (A0) if σ (Aj) = σ (A0) (j = 1, ..., k − 1) . Then every solution f 6≡ 0 of the
differential equation

f (k) + Ak−1 (z) f
(k−1)

+ ...+ A0 (z) f = 0, k ≥ 3, (6)

satisfies σ2 (f) = σ and τ−τ∗
k
≤ τ2 (f) ≤ τ, where τ ∗ = max {τ (Aj) : σ (Aj) = σ (A0)} .

Theorem 2.8 Let Aj (z) (j = 0, 1, ..., k − 1) be entire functions satisfying
0 < σn (A0) = σ <∞, 0 < τn (A0) = τ <∞, σn (Aj) ≤ σn (A0) and τn (Aj) <
τn (A0) if σn (Aj) = σn (A0) (j = 1, ..., k − 1) (n ≥ 2) . Then every solution
f 6≡ 0 of the differential equation

f (k) + Ak−1 (z) f
(k−1)

+ ...+ A0 (z) f = 0, k ≥ 1, (7)

satisfies σn+1 (f) = σ, τn+1 (f) = τ.

3 Preliminary lemmas

Lemma 3.1 Let h (z) be an entire function of finite n-iterated order 0 <
σn (h) = σ < ∞ and of finite n-iterated type 0 < τn,M (h) = τ < ∞, where
n ≥ 1 is an integer. Then, for any given ε > 0 there exists a set F ⊂ [1,∞) of
infinite logarithmic measure such that for all z satisfying |z| = r ∈ F we have

expn {(τ − ε) rσ} ≤M (r, h) ≤ expn {(τ + ε) rσ} ; (8)

where expn = exp exp ... exp, n times.

Proof. By the definition of τn,M (h) = τ, for any ε > 0 there exists r0 such
that for r ≥ r0 we have

M (r, h) ≤ expn {(τ + ε) rσ} . (9)

Now by [21, 2], for any given ε > 0 there exists a set F ⊂ [1,∞) of infinite
logarithmic measure such that for all z satisfying |z| = r ∈ F we have

expn {(τ − ε) rσ} ≤M (r, h) . (10)

By combining (9) and (10), we obtain (8).

Lemma 3.2 If f (z) is an entire function of finite n-iterated order 0 <
σn (f) <∞ (n ≥ 1) , then τn,M (f ′) = τn,M (f) .
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Proof. It is well known that σ (f ′) = σ (f) (see [24, 19]); and then σn (f ′) =
σn (f) for every n ≥ 1. The equalities

f (z) =

z∫
0

f ′ (t) dt+ f (0) , f ′ (t) =
1

2πi

∫
Γ

f (t)

(t− z)2dt,

where Γ is the circle |t− z| = 1, yield the inequalities

1

r
(M (r, f)− |f (0)|) ≤M (r, f ′) ≤M (r + 1, f) . (11)

From the first inequality of (11), we get

τn,M (f) = lim sup
r→+∞

lognM (r, f)

rσn
≤ lim sup

r→+∞

lognM (r, f ′)

rσn
= τn,M (f ′) , (12)

where σn = σn (f) = σn (f ′) . In the other side, from the second inequality of
(11), we obtain

lim sup
r→+∞

lognM (r, f ′)

rσn
(
1 + 1

r

)σn ≤ lim sup
r→+∞

lognM (r + 1, f)

(r + 1)σn
= τn,M (f) ;

which implies τn,M (f ′) ≤ τn,M (f) . So, we conclude that τn,M (f ′) = τn,M (f) .
We signal here that Lemma 3.2 is provided in [22] by the same method but

instead of r + 1 they have taken βr with β → 1 which leads to a mistake in
the proof by taking, for example, β = 1 + exp {−er} .

Lemma 3.3 [22] Let f and g be entire functions satisfying 0 < σn (f) <
σn (g) <∞ or σn (f) = σn (g) with 0 < τn (f) < τn (g) <∞. Then
i) σn (f + g) = σn (f) and τn (f + g) = τn (g) for n ≥ 1.
ii) σn (f.g) = σn (f) and τn (f.g) = τn (g) for n ≥ 2.

Lemma 3.4 [14] Let f(z) be an entire function, and let z be a point with
|z| = r at which |f(z)| = M(r, f). Then for all |z| outside a set E of finite
logarithmic measure, we have

f (k) (z)

f (z)
=

(
νf (r)

z

)k
(1 + o (1)) , k ∈ N,

where νf (r) is the central index of f(z).

Lemma 3.5 [15, 20] Let f(z) be a transcendental entire function with 0 <
σn+1 (f) = σ <∞, 0 < τn+1 (f) = τ <∞, n ≥ 1. Then

lim sup
r→+∞

logn νf (r)

rσ
= τ,

where νf (r) is the central index of f(z).



6 S. Hamouda

Lemma 3.6 [6] Let g be a meromorphic function; let α > 0 be given real
constants and k ∈ N; then there exists a set E ⊂ (1,∞) that has a finite
logarithmic measure and a constant A > 0 that depends only on α and k such
that for all r = |z| satisfying r /∈ E, we have∣∣∣∣g(k) (z)

g (z)

∣∣∣∣ ≤ A [T (αr, g)]2k .

Lemma 3.7 [16] Let P (z) = anz
n + ... + a0 be a polynomial of degree n.

Then, for any given ε > 0 there exists n0 > 0 such that for all r = |z| > n0

the inequalities

(1− ε) |an| rn ≤ |P (z)| ≤ (1 + ε) |an| rn

hold.

4 Proof of Theorems

Proof of Theorem 2.1. By [21, Theorem 1], every solution f 6≡ 0 of (2)
satisfies σ2 (f) = σ. We have to prove τ2 (f) = τ

k
. For k = 1, it is well known

that every non trivial solution of (2) has the form f (z) = c exp {F (z)} where
c 6= 0 and F ′ (z) = −A (z) . We have τM (F ) = τM (F ′) = τM (A) = τ, and
then τ2 (f) = τ. Now, for k ≥ 2, from (2), we can write

f (k) (z)

f (z)
= −A (z) (13)

By Lemma 3.1, for any given ε > 0 there exists a set F ⊂ [1,∞) of infinite
logarithmic measure such that for all z satisfying |z| = r ∈ F we have

exp {(τ − ε) rσ} ≤M (r, A) ≤ exp {(τ + ε) rσ} . (14)

By Lemma 3.4, we have

f (k) (z)

f (z)
=

(
νf (r)

z

)k
(1 + o (1)) , (15)

where |z| = r is outside a set E of finite logarithmic measure and f (z) =
M (r, f) . By (13)-(15), we get

exp {(τ − ε) rσ} ≤
(
νf (r)

r

)k
(1 + o (1)) ≤ exp {(τ + ε) rσ} . (16)

From (16) and since ε > 0 is arbitrary, we get

lim sup
r→+∞

log νf (r)

rσ
=
τ

k
;
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and by Lemma 3.5, we obtain

τ2 (f) =
τ

k
.

Proof of Theorem 2.4. By [7], every solution f 6≡ 0 of (4) satisfies
σ (f) = 1 + n

k
, (k ≥ 2) . Also for k = 1, it is clear that σ (f) = 1 + n. From

(4), we can write

f (k) (z)

f (z)
= −P (z) . (17)

By Lemma 3.7, for any given ε > 0 there exists n0 > 0 such that for all
r = |z| > n0, we have

(1− ε) |an| rn ≤ |P (z)| ≤ (1 + ε) |an| rn. (18)

By (15), (17) and (18), we get

(1− ε) |an| rn ≤
(
νf (r)

r

)k
(1 + o (1)) ≤ (1 + ε) |an| rn. (19)

From (19) and since ε > 0 is arbitrary, then

lim sup
r→+∞

νf (r)

rσ
= |an|

1
k . (20)

where σ = σ (f) = 1 + n
k
. Now we proceed to prove τM (f) ≥ log 2

2σ
|an|

1
k . By

[20, formula 3.8], we have

νf (r) log 2 ≤ logM (2r, f) + c, c > 0, (21)

which implies
log 2

2σ
νf (r)

rσ
≤ logM (2r, f)

(2r)σ
+

c

(2r)σ
. (22)

By (20) and (22), we obtain

τM (f) ≥ log 2

2σ
|an|

1
k .

Proof of Theorem 2.5. Suppose that f 6≡ 0 is a solution of (5). Set
f = g.h, where g and h are entire functions. We have f ′ = g′.h + g.h′ and
f ′′ = g′′.h+ 2g′.h′ + g.h′′. Substituting f, f ′, f ′′ in (5), we get

h.g′′ + (2h′ +B.h) g′ + (h′′ +Bh′ + Ah) g = 0.
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By taking h (z) = exp
{
−B(z)

2

}
as a solution of 2h′ + B.h = 0, the equation

(5) becomes

g′′ +

(
(B′)2

4
− B′′

2
− B′B

2
+ A

)
g = 0. (23)

By Lemma 3.2 and Lemma 3.3, (B′)2

4
− B′′

2
− B′B

2
+ A is an entire function of

order σ = σ (A) and of type τ = τM (A) ; and by Theorem 2.1, every solution
g 6≡ 0 of (23) satisfies σ2 (g) = σ and τ2 (g) = τ

2
. From the assumptions, Lemma

3.3 and by taking account that σ2 (h) = σ (B) and τ2 (h) = τ (B) , we conclude
that σ2 (f) = σ2 (g.h) = σ2 (g) = σ and

τ2 (f) = τ2 (g.h) = τ2 (g) =
τ

2
.

Proof of Theorem 2.7. Suppose that f 6≡ 0 is a solution of (6). Then
by [21], we have σ2 (f) = σ. We start to prove τ2 (f) ≤ τ. From (6), we can
write∣∣∣∣f (k) (z)

f (z)

∣∣∣∣ ≤ |Ak−1 (z)|
∣∣∣∣f (k−1) (z)

f (z)

∣∣∣∣+ ...+ |A1 (z)|
∣∣∣∣f ′ (z)

f (z)

∣∣∣∣+ |A0 (z)| . (24)

By the assumptions, for all j = 0, 1, ..., k − 1 and for any given ε > 0 there
exists r0 such that for all |z| = r ≥ r0, we have

|Aj (z)| ≤ exp {(τ + ε) rσ} . (25)

By Lemma 3.4 and (24)-(25), for |f(z)| = M(r, f) and for all |z| = r outside
a set E of finite logarithmic measure, we obtain(

νf (r)

r

)k
(1 + o (1)) ≤ k exp {(τ + ε) rσ}

(
νf (r)

r

)k−1

(1 + o (1)) ,

which implies
νf (r) (1 + o (1)) ≤ kr exp {(τ + ε) rσ} . (26)

By Lemma 3.4 and (26), we obtain

τ2 (f) ≤ τ. (27)

In the other hand, From (7), we can write

|A0 (z)| ≤
∣∣∣∣f (k) (z)

f (z)

∣∣∣∣+ |Ak−1 (z)|
∣∣∣∣f (k−1) (z)

f (z)

∣∣∣∣+ ...+ |A1 (z)|
∣∣∣∣f ′ (z)

f (z)

∣∣∣∣ . (28)

By Lemma 3.1, for any given ε > 0 there exists a set F ⊂ [1,∞) of infinite
logarithmic measure such that for all z satisfying |z| = r ∈ F, we have

expn {(τ − ε) rσ} ≤ |A0 (z)| . (29)
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By the assumptions, for all j = 1, ..., k − 1 and τ−τ∗
2

> ε > 0, there exists r1

such that for all |z| = r ≥ r1, we have

|Aj (z)| ≤ exp {(τ ∗ + ε) rσ} . (30)

By Lemma 3.4, (28) and (30), for r ∈ F \ E, we have

exp {(τ − ε) rσ} ≤ c1 exp {(τ ∗ + ε) rσ}
(
νf (r)

r

)k
(1 + o (1)) ,

where c1 > 0; which implies

τ − τ ∗

k
≤ τ2 (f) .

Proof of Theorem 2.8. Suppose that f 6≡ 0 is a solution of (7). Then by
[21, 2], we have σn+1 (f) = σ. We have to prove τn+1 (f) = τ, for n ≥ 2. From
(7), we can write∣∣∣∣f (k) (z)

f (z)

∣∣∣∣ ≤ |Ak−1 (z)|
∣∣∣∣f (k−1) (z)

f (z)

∣∣∣∣+ ...+ |A1 (z)|
∣∣∣∣f ′ (z)

f (z)

∣∣∣∣+ |A0 (z)| . (31)

By the assumptions, for all j = 0, 1, ..., k − 1 and for any given ε > 0 there
exists r0 such that for all |z| = r ≥ r0, we have

|Aj (z)| ≤ expn {(τ + ε) rσ} . (32)

By Lemma 3.4 and (31)-(32), for |f(z)| = M(r, f) and for all |z| = r outside
a set E of finite logarithmic measure, we obtain(

νf (r)

r

)k
(1 + o (1)) ≤ k expn {(τ + ε) rσ}

(
νf (r)

r

)k−1

(1 + o (1)) ,

and so
νf (r) (1 + o (1)) ≤ kr expn {(τ + ε) rσ} . (33)

By Lemma 3.4 and (33), we get the inequality

τn+1 (f) ≤ τ. (34)

In the other hand, From (7), we can write

|A0 (z)| ≤
∣∣∣∣f (k) (z)

f (z)

∣∣∣∣+ |Ak−1 (z)|
∣∣∣∣f (k−1) (z)

f (z)

∣∣∣∣+ ...+ |A1 (z)|
∣∣∣∣f ′ (z)

f (z)

∣∣∣∣ . (35)

By Lemma 3.1, for any given ε > 0 there exists a set F ⊂ [1,∞) of infinite
logarithmic measure such that for all z satisfying |z| = r ∈ F, we have

expn {(τ − ε) rσ} ≤ |A0 (z)| . (36)
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By the assumptions, for all j = 1, ..., k − 1 and for ε > 0 such that τ − 3ε >
max {τn (Aj) : σn (Aj) = σn (A0)} , there exists r1 such that for all |z| = r ≥ r1,
we have

|Aj (z)| ≤ expn {(τ − 3ε) rσ} . (37)

By Lemma 3.6, (35) and (37), for r ∈ F \ E, we have

expn {(τ − ε) rσ} ≤ c2 expn {(τ − 3ε) rσ}T (r, f)2k (1 + o (1)) , (38)

where c2 > 0 and n ≥ 2; which implies

expn {(τ − 2ε) rσ} ≤ c2T (r, f)2k (1 + o (1)) ;

from which, we obtain the second inequality

τn+1 (f) ≥ τ. (39)

From (34) and (39), we conclude that τn+1 (f) = τ.

5 Open Problem

To our knowledge, this is the first work that investigates the type of growth of
solutions to linear differential equations with entire coefficients and it remains
some open questions:
1) Can we get the exact value of τM (f) in Theorem 2.4 and study equations
more general than (4)?
2) Can we improve the result of Theorem 2.7 by precising τ2 (f)? We expect
that τ2 (f) = τ

k
as in Theorem 2.1 and Theorem 2.5.

3) The case of meromorphic coefficients remains to be studied.
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