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Abstract

In this work, we introduce a new subclass of analytic func-
tions of composition operators and establish some properties
namely, sufficient inclusion conditions, integral representa-
tions, univalency condition, coefficient inequalities and Fekete-
Szegö problems.
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1 Introduction

Let A denote the class of analytic functions in the unit disk

U = {z ∈ C : |z| < 1}

that have the form
f(z) = z + a2z

2 + a3z
3 + · · · . (1)

Let p denote the class of the functions

p(z) = 1 + c1z + c2z
2 + · · · (2)

analytic in U , satisfying Rep(z) > 0. Further, let P (β) denote the subclass of
P with Rep(z) > β for some real number 0 ≤ β < 1.



2 A. A. Yusuf

It is well-known that f ∈ A is a starlike function of order β (See [7]) denoted
as S∗(β) if

Re
zf

′
(z)

f(z)
> β.

Also, the class of bounded turning of order β (see [15]) denoted as R(β), if

Ref
′
(z) > β.

Using the Salagean differential operator introduced in [2], denoted by Dn

on f(z), we have

Df(z) = z +
∞∑
k=2

knakz
k. (3)

On the other hand, the integral operator [6] of Salagean type is

Lσ,γf(z) =
(λ+ γ)−σtγ−1

zγΓ− σ

∫ z

0
(log

z

t
)−σ−1f(t)dt

on f . So, we have

Lσ,γf(z) = z +
∞∑
k=2

(
γ + k

γ + 1

)σ
akz

k. (4)

We denote
Lσ,γ(Dnf(z)) = Dn(Lσ,γf(z)) = Lnσ,γf(z). (5)

Then

Lnσ,γf(z) = z +
∞∑
k=2

(
γ + k

γ + 1

)σ
knakz

k. (6)

n ∈ N ∪ {0} , σ > 0, γ > −1.

Note that Ln1,0 = Dn+1f(z), L0
1,0 = D1f(z) = zf

′
(z). then L0

1,0 = zf
′
(z).

From the series expansions of the operator Lσ,γ on f(z), we have the recursive
relation

z(Lσ,γf(z)′ = (γ + 1)Lσ,γf(z)− γLσ+1,γf(z). (7)

Applying Dn on (7), we have

Ln+1
σ,γ f(z) = (γ + 1)Lnσ,γf(z)− γLnσ+1,γf(z). (8)

Using the Salagean anti-derivative (see [2]) define as

In = I(In−1f(z)) =
∫ z

0

In−1f(t)

t
dt

on f , we obtain

In = I(In−1f(z)) = z +
∞∑
k=2

ak
kn
zk (9)
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and

Jσ,γf(z) =
(λ+ γ)σtγ−1

zγΓσ

∫ z

0
(log

z

t
)σ−1f(t)dt.

on f (see [6]).

Therefore

Jσ,γf(z) = z +
∞∑
k=2

(
γ + 1

γ + k

)σ
akz

k. (10)

We denote

In(Jσ,γf(z)) = Jσ,γ(Inf(z)) = Jnσ,γf(z). (11)

Then

Jnσ,γf(z) = z +
∞∑
k=2

(
γ + 1

γ + k

)σ
ak
kn
zk. (12)

It can be seen that

Lnσ,γ(J
n
σ,γf(z)) = Jnσ,λ(L

n
σ,γf(z)) = f(z). (13)

The construction of new operator using composition and some other methods
for subclasses of analytic and meromorphic functions in theory of geometric
function has been considered by many researchers (see [8],[9],[10],[11],[12],[13],[14]).

Using the operator Lnσ,γ, we introduce a new class defined as follows.
Definition 1. An analytic function f ∈ A is said to belong to the class
Bn
σ,γ(β) if it satisfies the geometric condition

Re
Lnσ,γf(z)

z
> β, 0 ≤ β < 1. (14)

Remark 1: If n = 0, σ = 1 and γ = 0, we have

Ref
′
(z) > β.

The purpose of this paper is to study the subclass of analytic functions define
by the composition of two operator denoted as Bn

σ,γ(β) and investigate some
properties namely, sufficient inclusion conditions, integral representations, uni-
valency condition, coefficient inequalities and Fekete-Szegö problems.

The paper is organized as follows: in Section 2, relevant lemmas are stated,
the main results are stated and proved in Section 3. Finally, Section 4 proposes
suggestions for more results in this direction.
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2 Preliminary Lemmas

Lemma 1 [4]. Let p(z) be analytic in U with p(0) = 1. Suppose that

Re

(
1 +

zp
′
(z)

p(z)

)
>

3β − 1

2β
.

Then

Rep(z) > 21− 1
β ,

1

2
≤ β < 1, z ∈ U. (15)

and the constant 21− 1
β is the best possible.

Lemma 2 [1]. Let p ∈ P , then

|pk| ≤ 2, k = 1, 2, 3, (16)

Lemma 3[5]. Let p ∈ P . Then for any real or complex number µ, we have
sharp inequalities ∣∣∣∣∣p2 − µp212

∣∣∣∣∣ ≤ 2 max{1, |1− µ|}. (17)

Lemma 4[3]. Let u = u1 + u2i, v = v1 + v2i and Φ(u, v) a complex valued
function satisfying
(i) Φ(u, v) is continuous in a domain Ω of C2.
(ii) (1, 0) ∈ Ω and ReΦ(1, 0) > 0.
(iii) ReΦ(β + (1− β)u2i, v1) ≤ β when (β + (1− β)u2i, v1) ∈ Ω and

2v1 ≤ −(1− β)(1 + u22)

for 0 ≤ β < 1. If p ∈ P such that (p(z), zp
′
(z)) ∈ Ω and Re(p(z), zp

′
(z)) > β

for z ∈ U . Then Rep(z) > β in U .

3 Main Results

Theorem 1. Bn+1
σ,γ (β) ⊂ Bn

σ,γ(β).
Proof. Let

Lnσ,γf(z)

z
= p(z) (18)

Lnσ,γf(z) = zp(z)) (19)

(Lnσ,γf(z))
′
= p(z) + zp

′
(z) (20)

z(Lnσ,γf(z))
′
= zp(z) + z2p

′
(z) (21)

Ln+1
σ,γ f(z) = z2p

′
(z) + zp(z) (22)
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which becomes
Ln+1
σ,γ f(z) = z

(
zp

′
(z) + p(z)

)
(23)

so that if f ∈ Bn+1
σ,γ (λ) then

Re
Ln+1
σ,γ f(z)λ

z
= Re

(
zp

′
(z) + p(z)

)
> β. (24)

Now define Φ(u, v) = u + v. Noting that Rep(z) > β, then Φ satisfies all the
conditions of Lemma 4, it follows that

Re
Ln+1
σ,γ f(z)

z
= Rep(z) > β. (25)

meaning that f ∈ Bn
σ,γ(λ).

Theorem 2. Let f ∈ Bn
σ,γ(β). Then f has the integral representation

f(z) = Jnσ,λ{zp(z)}. (26)

Proof. Since f ∈ Bn
σ,γ(β), there exists p(z) ∈ P (β) such that

Lnσ,γf(z)

z
= p(z) (27)

which becomes
Lnσ,γf(z) = zp(z). (28)

By applying the inverse operatorJnσ,γf(z), we have

f(z) = Jnσ,λ{zp(z)}. (29)

Theorem 3. If f ∈ A satisfies

Re

(
Ln+1
σ,γ f(z)

Lnσ,γf(z)

)
>

3β − 1

2β
(30)

then

Re
Lnσ,γf(z)

z
> 21−1/β,

where 1/2 ≤ β < 1, z ∈ U.
Proof. Let

p(z) =
Lnσ,γf(z)

z
.

Then

p
′
(z) =

z(Lnσ,γf(z))
′ − Lnσ,γf(z)

z2
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zp
′
(z)

p(z)
=
Ln+1
σ,γ f(z)

Lnσ,γf(z)
− 1.

By the condition of the theorem, we have

Re

(
1 +

zp
′
(z)

p(z)

)
= Re

(
1 +

Ln+1
σ,γ f(z)

Lnσ,γf(z)
− 1

)
>

3β − 1

2β

which is equivalent to

Re

(
1 +

zp
′
(z)

p(z)

)
= Re

(
Ln+1
σ,γ f(z)

Lnσ,γf(z)

)
>

3β − 1

2β
.

By Lemma 1, Rep(z) > 21− 1
β , 1/2 ≤ β < 1 and the result follows.

Corollary 4. If f ∈ A, satisfies the condition (30), then f(z) ∈ Bn
σ,γ(2

1−1/β).

By letting n = 0 and β = 1/2, we have
Corollary 5. Suppose

Re

(
zf

′′
(z)

f(z)
+ 1

)
>

1

2
.

Then Ref
′
(z) > 1/2.

Theorem 6. Let f ∈ Bn
σ,γ(λ), then

|a2| ≤ 2(1− β)

|a3| ≤
2(1− β)(γ + 1)σ

2n(γ + 2)σ
. (31)

The bounds are best possible. Equalities are obtained also by

f(z) =
{
Jnσ,γz

(
1+(1−2β)z

1−z

)}
f(z) = z + 2(1− β)z2 +

(
γ + 1

γ + 2

)σ
2(1− β)

2n
z3 +

(
γ + 1

γ + 3

)σ
2(1− β)

3n
z4 + · · · .

(32)

Proof. Let f ∈ Bn
σ,λ(β)), then there exists p ∈ P (β) such that

Lnσ,λf(z) = z(β + (1− β)p(z) (33)

then
f(z) = Jnσ,λ{z(β + (1− β)p(z)} (34)
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f(z) = Jnσ,λ{z + (1− β)c1z
2 + (1− β)c2z

3 + (1− β)c3c
4 + · · ·} (35)

f(z) = z

{
1 +

(
γ + 1

γ + 1

)σ
(1− β)c1 +

(
γ + 1

γ + 2

)σ
1− β

2n
c2z

2 +

(
γ + 1

γ + 3

)σ
1− β

3n
c3z

3 + · · ·
}

(36)

f(z) = z+

(
γ + 1

γ + 1

)σ
(1−β)c1z

2+

(
γ + 1

γ + 2

)σ
1− β

2n
c2z

3+

(
γ + 1

γ + 3

)σ
1− β

3n
c3z

4+· · ·

(37)
Since

f(z) = z + a2z
2 + a3z

3 + a4z
4 + · · · (38)

and by comparing with respect to the power of z, we have that

a2 =

(
γ + 1

γ + 1

)σ
(1− β)c1 (39)

and

a3 =

(
γ + 1

γ + 2

)σ
1− β

2n
c2. (40)

By Lemma 2, we obtain the bound of a2 and a3.
Theorem 7. Let f ∈ Bn

σ,λ(β), then for any real or complex number λ

|a3 − λa22| =
2(1− β)(γ + 1)σ

2n(γ + 2)σ
max{1, |1− α|} (41)

where

α =
2(1− β)(γ + 1)σ

2n(γ + 2)σ
.

Proof. From Theorem 6, we have

a2 = (1− β)c1. (42)

and

a3 =

(
γ + 1

γ + 2

)σ
1− β

2n
c2. (43)

then

a3 − λa22 =

(
γ + 1

γ + 2

)σ
1− β

2n
c2 − λ((1− β)c1)

2. (44)

equation becomes

a3 − λa22 =
2(1− β)(γ + 1)σ

2n(γ + 2)σ

[
c2 − α

c21
2

]
. (45)

By Lemma 2, [
c2 − α

c21
2

]
≤ 2 max{1, |1− α|}

and the bound is obtained as desired.
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4 Open Problem

The author suggests studying more classes defined by the composition of two
operators as

Lnσ,γf(z) = z +
∞∑
k=2

(
γ + k

γ + 1

)σ
knakz

k.
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