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Abstract

In the present article, we introduce a new subclass of bi-
close-to-convex functions in the open unit disk U defined by
means of the Horadam polynomials. Estimates upper bounds
for the coefficients |a2| and |a3| for functions belonging to this
subclass are derived. Also, Fekete-Szegö inequalities of func-
tions belonging to this subclass are also discussed. Further,
several new special cases of our results are pointed out.
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1 Introduction and Preliminaries

Let A denote the class of all functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit open disk U = {z : z ∈ C, |z| < 1}. Also,
let S be the subclass of all functions in A which are univalent and normalized
by the conditions

f(0) = 0 = f
′
(0)− 1
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in U .
If f1 and f2 are analytic in U , then we call that f1 is subordinate to f2,

denoted by f1 ≺ f2, if there exists Schwarz function

$(z) =
∞∑
n=1

cnz
n ($ (0) = 0, |$ (z)| < 1) , (2)

analytic in U such that

f1 (z) = f2 ($ (z)) (z ∈ U) . (3)

It is known that |cn| ≤ 1 (see [20]) for $ (z).

Beside, it is known that

f(z) ≺ g(z) (z ∈ U) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

It is well known that every univalent function f has an inverse f−1, defined
by

f−1(f(z)) = z (z ∈ U),

and

f−1(f(w)) = w (|w| < r0(f); r0(f) ≥ 1

4
),

where

f−1(w) = w + a2w
2 + (2a22 − 3a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (4)

If f and f−1 are univalent in U , then a function f ∈ A is called bi-univalent.
In 1967, the class Σ of bi-univalent functions was first discussed by Lewin

[28] and that the bound |a2| < 1.51 was obtained for f(z). Brannan and Taha
[19] also considered certain subclasses of bi-univalent functions, and derived
estimates for the initial coefficients. In 2010, the work of Srivastava et al. [32]
have actually revived the investigation of holomorphic and bi-univalent func-
tions in recent year. Also, many researchers investigated and studied various
subclasses of analytic and bi-univalent functions, one can refer to the works of
[1], [2], [3], [4], [5], [6], [7], [8], [9], [12], [33], [34], [35], and [36].

By S∗(φ) and C(φ) we denote the following classes of functions

S∗(φ) =

{
f : f ∈ A, zf

′
(z)

f(z)
≺ φ(z)

}
, z ∈ U,

and

C(φ) =

{
f : f ∈ A, 1 +

zf
′′
(z)

f ′(z)
≺ φ(z)

}
, z ∈ U,
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where S∗(φ) and C(φ) are the class of starlike and convex functions, respec-
tively, were investigated by Ma and Minda [30]. So, if f(z) ∈ C(φ), then
zf

′
(z) ∈ S∗(φ).

A function f ∈ A belongs to K, the class of close-to-convex domain, if,
and only if, there exist 0 ≤ δ ≤ π and g ∈ S∗ such that for z ∈ U ,

<
(
eiδ
zf

′
(z)

g(z)

)
> 0 z ∈ U.

The class K was defined and studied by Kaplan [25]. Note that, C ⊂ S∗ ⊂
K ⊂ S.

Next, by follows the definition of Kaplan, Ozaki [31] considered functions
in A satisfying the following condition

<
(

1 +
zf

′′
(z)

f ′(z)

)
> −1

2
z ∈ U,

whose members are known to be close-to-convex, and therefore univalent.
Recently, Kargar and Ebadian [26] considered the generalization of Ozaki’s
condition as the following.

Definition 1.1 Let f ∈ A be locally univalent for z ∈ U and let −1
2
≤ λ ≤

1. Then f ∈ F (λ) if and only if

<
(

1 +
zf

′′
(z)

f ′(z)

)
>

1

2
− λ z ∈ U,

where F (λ) is the class of locally univalent normalized analytic functions f in
the unit disk U. It is clear that, for −1

2
≤ λ ≤ 1

2
, we have F (λ) ⊂ K ⊂ S∗.

By extending the class F (λ), Allu et al. [11] defined new class F (λ, α) for
strongly Ozaki-close-to-convex as follows.

Definition 1.2 Let f ∈ A. Then f is called strongly Ozaki-close-to-convex
if and only if∣∣∣∣∣arg

(
2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf
′′
(z)

f ′(z)

))∣∣∣∣∣ < απ

2
(z ∈ U, 1

2
≤ λ ≤ 1, 0 < α ≤ 1).

The Horadam polynomials hn(x) are given by the following recurrence relation
(see [23])

hn(x) = pxhn−1(x) + qhn−2(x), (n ∈ N > 2), (5)
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with h1(x) = a, h2 = bx, and h3 = pbx2 + aq where a, b, p, q are some real
constants.
The characteristic equation of recurrence relation (5) is

t2 − pxt− q = 0. (6)

This equation has two real roots;

α =
px+

√
p2x2 + 4q

2
,

and

β =
px−

√
p2x2 + 4q

2
.

Some particular cases regarding of Horadam polynomials sequence can be
found in [12]. For more information related to Horadam polynomials see ([21],
[22], [27], [29]).

Remark 1.3 [22] The generating function of the Horadam polynomials Ω(x, z)
is given by

Ω(x, z) =
a+ (b− ap)xt
1− pxt− qt2

=
∞∑
n=1

hn(x)zn−1. (7)

In this paper, we introduce a new subclass of bi-close-to-convex functions
by using the Horadam polynomials hn(x) and the generating function Ω(x, z).
Moreover, we find the initial coefficients and the Fekete-Szegö inequality for
functions belonging to the class F (λ, α, x). Several special cases were obtained
to our results.

2 Coefficient Bounds for the Function Class

F (λ, α, x)

Definition 2.1 A function f ∈ Σ given by (1) is said to be in the class
F (λ, α, x), if the following conditions are satisfied:

2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf
′′
(z)

f ′(z)

)
≺ Ω(x, z) + 1− α (8)

and
2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

wg
′′
(w)

g′(w)

)
≺ Ω(x,w) + 1− α (9)

where the real constants a, b and q are as in (5) and g(w) = f−1(z) is given
by (4).
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We first state and prove the following result.

Theorem 2.2 Let the function f ∈ Σ given by (1) be in the class F (λ, α, x).
Then

|a2| ≤
(2λ+ 1)|bx|

√
bx√

|2[[(2λ+ 1)b− 4p]bx2 − 4aq]|
(10)

|a3| ≤
(2λ+ 1)|bx|

12
+

[(2λ+ 1)bx]2

16
, (11)

and for some η ∈ R,

|a3 − ηa22| =


(2λ+1)|bx|

12
, |η − 1| ≤ 1

24
(2λ+1)2|bx|3|1−η|

|4(2λ+1)][h2(x)]2−16h3(x)| , |η − 1| ≥ 1
24
.

(12)

Proof. Let f ∈ Σ be given by the Taylor-Maclaurin expansion (1). Then, for
some analytic functions Ψ and Φ such that Ψ(0) = Φ(0) = 0, |ψ(z)| < 1 and
|Φ(w)| < 1, z, w ∈ U and using Definition 2.1, we can write

2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf
′′
(z)

f ′(z)

)
= ω(x,Φ(z)) + 1− α

and
2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

wg
′′
(w)

g′(w)

)
= ω(x, ψ(w)) + 1− α

or, equivalently,

2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf
′′
(z)

f ′(z)

)
= 1+h1(x)−a+h2(x)Φ(z)+h3(x)[Φ(z)]3+ · · ·

(13)
and

2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

wg
′′
(w)

g′(w)

)
= 1+h1(x)−a+h2(x)ψ(w)+h3(x)[ψ(w)]3+· · · .

(14)
From (13) and (14), we obtain

2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf
′′
(z)

f ′(z)

)
= 1+h2(x)p1z+[h2(x)p2+h3(x)p21]z

2+· · · (15)

and

2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

wg
′′
(w)

g′(w)

)
= 1 +h2(x)p1w+ [h2(x)q2 +h3(x)q21]w2 + · · · .

(16)
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Notice that if

|Φ(z)| = |p1z + p2z
2 + p3z

3 + · · · | < 1 (z ∈ U)

and

|ψ(w)| = |q1w + q2w
2 + q3w

3 + · · · | < 1 (w ∈ U),

then

|pi| ≤ 1 and |qi| ≤ 1 (i ∈ N).

Thus, upon comparing the corresponding coefficients in (15) and (16), we have

4

2λ+ 1
a2 = h2(x)p1, (17)

12

2λ+ 1
a3 −

8

2λ+ 1
a22 = h2(x)p2 + h3(x)p21, (18)

− 4

2λ+ 1
a2 = h2(x)q1 (19)

and
16

2λ+ 1
a22 −

12

2λ+ 1
a3 = h2(x)q2 + h3(x)q21. (20)

From (17) and (19), we find that

p1 = −q1 (21)

and
32

(2λ+ 1)2
a22 = h22(x)(p21 + q21). (22)

Also, by using (20) and (18), we obtain

8

2λ+ 1
a22 = h2(x)(p2 + q2) + h3(x)(p21 + q21). (23)

By using (22) in (23), we get[
8

2λ+ 1
− 32h3(x)

(2λ+ 1)2[h2(x)]2

]
a22 = h2(x)(p2 + q2). (24)

From (5), and (23), we have the desired inequality (10).
Next, in order to find the bound on |a3|, by subtracting (20) from (18) and
using (21) and (22), we get

a3 =
h2(x)(p2 − q2)(2λ+ 1)

24
+
h2(x)(p21 + q21)(2λ+ 1)2

32
. (25)
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Hence using (21) and applying (5), we get desired inequality (12).
Now, by using (23) and (25) for some η ∈ R, we get

a3 − ηa22 =
(2λ+ 1)2[h2(x)]3(1− η)(p2 + q2)

8(2λ+ 1)][h2(x)]2 − 32h3(x)
+

(2λ+ 1)h2(x)(p2 − q2)
24

= (2λ+ 1)h2(x)
[(

Θ(η, x) +
1

24

)
p2 +

(
Θ(η, x)− 1

24

)
q2

]
,

where

Θ(η, x) =
(2λ+ 1)[h2(x)]2(1− η)

8(2λ+ 1)][h2(x)]2 − 32h3(x)
.

So, we conclude that

|a3 − ηa22| =
{

(2λ+1)h2(x)
12

, |Θ(η, x)| ≤ 1
24

2(2λ+ 1)|h2(x)||Θ(η, x)| , |Θ(η, x)| ≥ 1
24
.

This proves Theorem 2.2. For λ = 1
2

the class F (λ, α, x) reduced to the class
F (1

2
, α, x) as follows.

Corollary 2.3 Let the function f ∈ Σ given by (1) be in the class F (1
2
, α, x).

Then

|a2| ≤
|bx|
√
bx√

|2(b− 2p)bx2 − 4aq|
, (26)

|a3| ≤
|bx|
6

+
[bx]2

4
, (27)

and for some η ∈ R,

|a3 − ηa22| =


|bx|
6

, |η − 1| ≤ 1
24

|bx|3|1−η|
2([h2(x)]2−2h3(x))| , |η − 1| ≥ 1

24
.

(28)

For λ = 1 the class F (λ, α, x) reduced to the class F (1, α, x) as follows.

Corollary 2.4 Let the function f ∈ Σ given by (1) be in the class F (1, α, x).
Then

|a2| ≤
3|bx|

√
bx√

|2[(3b− 4p)bx2 − 4aq]|
, (29)

|a3| ≤
|bx|
4

+
9[bx]2

16
, (30)

and for some η ∈ R,

|a3 − ηa22| =


|bx|
4

, |η − 1| ≤ 1
24

9|bx|3|1−η|
4(3[h2(x)]2−4h3(x))| , |η − 1| ≥ 1

24
.

(31)
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3 Conclusion and open problems

This research paper has introduced a new subclass of bi-close-to-convex func-
tions associated with the Horadam Polynomials. For this subclass, coefficient
bounds and Fekete-Szegö inequalities have been investigated. More investiga-
tion can be made on other types of polynomials, see [37],[16],[24],[13],[14],[10],[15],[17],
and [18].
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inequality for bi-univalent functions by means of Horadam polynomials.
Boletin de la Sociedad Matematica Mexicana, 27(3), 1-12.

[11] Allu V., Thomas D., and Tuneski N. (2019). On Ozaki close-to-convex
functions. Bulletin of the Australian Mathematical Society, 99, 89–100.
doi: 10.1017/S0004972718000989
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