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Abstract

In this paper, we investigate the local growth and oscilla-
tion, near the singular point z = 0, of solutions to the differ-
ential equation

f ′′+
(
A (z) exp

{ a

zn

}
+A0 (z)

)
f ′+

(
B (z) exp

{
b

zn

}
+B0 (z)

)
f = H (z) ,

where A (z) , A0 (z) , B (z) , B0 (z) , H (z) are analytic functions in

D (0, R) = {z ∈ C : 0 < |z| < R}

and a, b are non-zero complex constants.

Keywords: Growth and oscillation of solutions, linear differential equa-
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1 Introduction

Throughout this paper, we assume that the reader is familiar with the fun-
damental results of the Nevanlinna value distribution theory of meromorphic
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function f in the complex plane C, in particular the definitions and the stan-
dard notations N (r, f) ,m (r, f) , T (r, f) , σ (f) , etc., (see [14, 26, 19]). The
importance of this theory has inspired many authors to find modifications and
generalizations to different domains. Extensions of some results of Nevanlinna
Theory to annuli have been made by [3, 16, 17, 20]. Linear ordinary differ-
ential equations with singular points represents a rich and classical field for
which the symbolic computation of the solutions is a challenge for the capabil-
ities of Mathematics. Only the simplest differential equations admit solutions
given by explicit formula; however, some properties of solutions of a given dif-
ferential equation may be determined without finding their exact form. The
idea to study the growth of solutions of the linear differential equations near
a finite singular point by using the Nevanlinna theory has began by the pa-
per [10]; then after some publications have followed, see [12, 6, 7, 8]. The
principal tools used in these investigations is the estimates of the logarithmic

derivative
∣∣∣f (k)(z)f(z)

∣∣∣ for a meromorphic function f in C \ {z0} ,
(
C = C ∪ {∞}

)
.

A question was asked in [10, 12] about if we can get similar estimates near

z0 of
∣∣∣f (k)(z)f(z)

∣∣∣ where f is a meromorphic function in a region of the form

Dz0 (0, R) = {z ∈ C : 0 < |z − z0| < R} . This question is answered in [13] with
some applications.

First we recall the appropriate definitions for this paper [10, 20]. Suppose
that f (z) is meromorphic in D (0,+∞] = C\{0}. Define the counting function
near 0 by

N0 (r, f) =

∞∫
r

n (t, f)− n (∞, f)

t
dt− n (∞, f) log r, (1.1)

where n (t, f) counts the number of poles of f (z) in the region {z ∈ C : t ≤ |z|}∪
{∞} each pole according to its multiplicity; and the proximity function by

m0 (r, f) =
1

2π

2π∫
0

ln+
∣∣f (reiϕ)∣∣ dϕ. (1.2)

The characteristic function of f is defined by

T0 (r, f) = m0 (r, f) +N0 (r, f) . (1.3)

For a meromorphic function f (z) in D (0, R) = {z ∈ C : 0 < |z| < R} , we
define the counting function near 0 by

N0 (r, R′, f) =

R′∫
r

n (t, f)

t
dt, (1.4)
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where n (t, f) counts the number of poles of f (z) in the region {z ∈ C : t ≤ |z| ≤ R′}
(0 < R′ < R) , each pole according to its multiplicity; and the proximity func-
tion near the singular point 0 by (1.2). The characteristic function of f is
defined in the usual manner by

T0 (r, R′, f) = m0 (r, f) +N0 (r, R′, f) . (1.5)

In addition, the order of growth of a meromorphic function f (z) near 0 is
defined by

σT (f, 0) = lim sup
r→0

log+ T0 (r, R′, f)

− log r
. (1.6)

For an analytic function f (z) in D (0, R) , we have also the definition

σM (f, 0) = lim sup
r→0

log+ log+M0 (r, f)

− log r
, (1.7)

where M0 (r, f) = max {|f (z)| : |z| = r} .
By the usual manner, we define the hyper order near 0 as follows:

σ2,T (f, 0) = lim sup
r→0

log+ log+ T0 (r, f)

− log r
, (1.8)

σ2,M (f, 0) = lim sup
r→0

log+ log+ log+M0 (r, f)

− log r
. (1.9)

We will use λ (f, 0) , (resp. λ (f, 0)) to denote the exponent of convergence
of the zero-sequence (resp. the exponent of convergence of the distinct zero-
sequence) of the meromorphic function f (z) in D (0, R) and λ2 (f, 0) , (resp.
λ2 (f, 0)) to denote the hyper-exponent of convergence of the zero-sequence
(resp. the hyper-exponent of convergence of the distinct zero-sequence) of
f (z) , which are defined as follows:

λ (f, 0) = lim sup
r→0

log+N0

(
r, R′, 1

f

)
− log r

,

λ (f, 0) = lim sup
r→0

log+N0

(
r, R′, 1

f

)
− log r

,

λ2 (f, 0) = lim sup
r→0

log+ log+N0

(
r, R′, 1

f

)
− log r

,

λ2 (f, 0) = lim sup
r→0

log+ log+N0

(
r, R′, 1

f

)
− log r

,

where N0

(
r, R′, 1

f

)
is defined as N0

(
r, R′, 1

f

)
in (1.4) but instead of n (t, f)

we use n (t, f) which counts the number of distinct poles without multiplicity.
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Remark 1.1 The choice of R′ in (1.1) does not have any influence in the
values σT (f, 0) , σ2,T (f, 0) , λ (f, 0) , λ2 (f, 0) , λ (f, 0) , λ2 (f, 0) . In fact, if we
take two values of R′, namely 0 < R′1 < R′2 < R, then we have

R′
2∫

R′
1

n (t, f)

t
dt = p log

R′2
R′1
,

where p designates the number of poles of f (z) in the region {z ∈ C : R′1 ≤ |z| ≤ R′2}
which is bounded. Thus, N0 (r, R′1, f) = N0 (r, R′2, f)+C; and then T0 (r, R′1, f) =
T0 (r, R′2, f) + C where C is a real constant. So, we can write briefly T0 (r, f)
instead of T0 (r, R′, f) .

Remark 1.2 It is shown in [10] that σM (f, 0) = σT (f, 0) , σ2,T (f, 0) =
σ2,M (f, 0). So, we can use the notations σ (f, 0) , σ2 (f, 0) without any ambi-
guity.

Example 1.3 Consider the function f (z) = exp
{

1
z2

}
. We have

T0 (r, f) = m0 (r, f) =
1

πr2
,

then σT (f, 0) = 2. Also we have

M0 (r, f) = exp

{
1

r2

}
,

then σM (f, 0) = 2.

Example 1.4 For the function f (z) = exp exp
{

1
z3

}
, we have

M0 (r, f) = exp exp

{
1

r3

}
,

and then σ (f, 0) = +∞, σ2 (f, 0) = 3.

The linear differential equation

f ′′ + A (z) eazf ′ +B (z) ebzf = H (z) ,

where A (z) , B (z) and H (z) are entire functions, is investigated by many
authors; see [1, 2, 4, 5, 11, 18, 15, 23]. In [10], Fettouch and Hamouda studied
the local growth near the singular point z0 of solutions of the linear differential
equation

f ′′ + A (z) exp

{
a

(z0 − z)n

}
f ′ +B (z) exp

{
b

(z0 − z)n

}
f = 0,
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where A (z) , B (z) 6≡ 0 are analytic functions in C \ {z0} and arg a 6= arg b or
a = cb (0 < c < 1) . The case c > 1 has been completed recently by Cherief
and Hamouda in [6]. The question which arises here is how about the case
when the coefficients are analytic only in a punctured disc D (0, R)? In this
paper we will deal with this question.

2 Main results

In this work, we will investigate the order of growth and the exponent of
convergence of the zero-sequence of solutions of certain class of second order
linear differential equations where the coefficients are analytic in D (0, R). In
fact, we will prove the following results.

Theorem 2.1 Let A (z) 6≡ 0, B (z) 6≡ 0, F (z) be analytic functions in
D (0, R) such that max {σ (A, 0) , σ (B, 0) , σ (F, 0)} < n, n ∈ N\{0} ; let a, b be
complex constants such that ab 6= 0 and a 6= b. Then, every solution f (z) 6≡ 0
of the differential equation

f ′′ + A (z) exp
{ a

zn

}
f ′ +B (z) exp

{
b

zn

}
f = F (z) , (2.1)

satisfies σ (f, 0) =∞. Further, if F (z) 6≡ 0, we have

λ̄(f, 0) = λ(f, 0) = σ(f, 0) = +∞, λ̄2(f, 0) = λ2(f, 0) = σ2(f, 0) ≤ n.

Theorem 2.2 Let A (z) 6≡ 0, A0 (z) , B (z) 6≡ 0, B0 (z) , F (z) be analytic
functions in D (0, R) such that

max {σ (A0, 0) , σ (B0, 0) , σ (A, 0) , σ (B, 0) , σ (F, 0)} < n, n ∈ N \ {0} ;

let a, b be complex constants such that ab 6= 0 and a = cb, c < 0. Then, every
solution f (z) 6≡ 0 of the differential equation

f ′′ +
(
A (z) exp

{ a

zn

}
+ A0 (z)

)
f ′ +

(
B (z) exp

{
b

zn

}
+B0 (z)

)
f = F (z) ,

(2.2)
satisfies σ (f, 0) =∞. Further, if F (z) 6≡ 0, we have

λ̄(f, 0) = λ(f, 0) = σ(f, 0) = +∞, λ̄2(f, 0) = λ2(f, 0) = σ2(f, 0) ≤ n.

Theorem 2.3 Let A(z) 6≡ 0, B(z) 6≡ 0, F (z) 6≡ 0 be analytic functions
in D (0, R) such that max{ρ(A, 0), ρ(B, 0), ρ(F, 0)} < n, n ∈ N \ {0} and
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P (z) 6≡ 0, Q (z) 6≡ 0 are polynomials. Let a, b be complex numbers such that
ab 6= 0, a 6= b. Then, every solution f of the differential equations

f ′′ + P (z) exp{ a
zn
}f ′ +B(z) exp{ b

zn
}f = F (z) exp{ a

zn
}, (2.3)

f ′′ + A (z) exp{ a
zn
}f ′ +Q(z) exp{ b

zn
}f = F (z) exp{ b

zn
} (2.4)

satisfies

λ̄(f, 0) = λ(f, 0) = σ(f, 0) = +∞, λ̄2(f, 0) = λ2(f, 0) = σ2(f, 0) ≤ n.

If some conditions of the previous theorems are not satisfied, the equations
(2.1), (2.2), (2.3) and (2.4) may admit a solutions of finite order as shown in
the following examples.

Example 2.4 The function g (z) = exp
{

1
z

}
of order σ (g, 0) = 1 satisfies

the differential equations

f ′′ − exp

{
−1

z

}
f ′ − 1

z2
exp

{
−1

z

}
f =

(
2

z3
+

1

z4

)
exp

{
−1

z

}
,

f ′′ − exp

{
−1

z

}
f ′ −

(
2

z3
+

1

z4

)
f =

1

z2
;

f ′′ + exp

{
−1

z

}
f ′ +

(
1

z2
exp

{
−1

z

}
− 2

z3
− 1

z4

)
f = 0.

Example 2.5 The function h (z) = 1
z

of order σ (h, 0) = 0 satisfies the
differential equation

f ′′ − exp{ a
zn
}f ′ − 1

z2
exp{ b

zn
}f =

1

z2
exp{ a

zn
} − 1

z3
exp{ b

zn
}+

2

z3
,

where a, b (ab 6= 0) are arbitrary complex numbers.

3 Preliminary lemmas

To prove these results we need the following lemmas.

Lemma 3.1 [13] Let f be a non-constant meromorphic function in D (0, R)
with a singular point at the origin of finite order σ (f, 0) = σ <∞; let ε > 0 be
a given constant and k be a positive integer. Then the following two statements
hold.
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i) There exists a set F ⊂ (0, R′) that has finite logarithmic measure such that
for all r = |z| satisfying r ∈ (0, R′) \F , we have∣∣∣∣f (k) (z)

f (z)

∣∣∣∣ ≤ 1

rk(σ+1)+ε
. (3.1)

ii) There exists a set E ⊂ [0, 2π) that has a linear measure zero such that for
all θ ∈ [0, 2π) \E there exists a constant r0 = r0 (θ) > 0 such that for all z
satisfying arg (z) ∈ [0, 2π) \E and r = |z| < r0 the inequality (3.1) holds.

Lemma 3.2 [13] Let A (z) be a non-constant analytic function in D (0, R)

with σ (A, 0) < n. Set g (z) = A (z) exp
{ a

zn

}
, (n ≥ 1 is an integer) , a = α +

iβ 6= 0, z = reiϕ, δa (ϕ) = α cos (nϕ)+β sin (nϕ) , and E = {ϕ ∈ [0, 2π) : δa (ϕ) = 0} ,
(obviously, E is of linear measure zero). Then for any given ε > 0 and for any
ϕ ∈ [0, 2π) \E, there exists r0 > 0 such that for 0 < r < r0, the two following
statements hold.
(i) If δa (ϕ) > 0, then

exp

{
(1− ε) δa (ϕ)

1

rn

}
≤ |g (z)| ≤ exp

{
(1 + ε) δa (ϕ)

1

rn

}
.

(ii) If δa (ϕ) < 0, then

exp

{
(1 + ε) δa (ϕ)

1

rn

}
≤ |g (z)| ≤ exp

{
(1− ε) δa (ϕ)

1

rn

}
.

Lemma 3.3 Let f (z) be analytic function in D (0, R) and suppose that

G (z) := |zρ| log+
∣∣f (k) (z)

∣∣
is unbounded as z → 0 on some ray arg z = θ, where ρ > 0. Then there
exists an infinite sequence of points zm = rme

iθ (m ≥ 1) , rm → 0, such that
G (zm)→ +∞ and∣∣∣∣f (j) (zm)

f (k) (zm)

∣∣∣∣ ≤M, (M > 0) (j = 0, 1, ..., k − 1) ,

as m→ +∞.

Proof. Let M (r, θ,G) denotes the maximum modulus of G (z) on the
line segment

[
r1e

iθ, reiθ
]
. Clearly, we may construct a sequence of points

zm = rme
iθ (m ≥ 1) , rm → 0, such that M (r, θ,G) = G (zm) → +∞. Since

G (zm) → +∞ as rm → 0, we see immediately that
∣∣f (k) (zm)

∣∣ → +∞. For
each m, by (k − j)-fold iteration integration along the line segment [z1, zm] we
have

f (j) (zm) = f (j) (z1) + f (j+1) (z1) (zm − z1) + ..



34 Mazouz and Hamouda

..+
1

(k − j − 1)!
f (k−1) (z1) (zm − z1)k−j−1 +

zm∫
z1

...

y∫
z1

f (k) (x) dxdy...dt;

and by an elementary triangle inequality estimate we obtain∣∣f (j) (zm)
∣∣ ≤ ∣∣f (j) (z1)

∣∣+
∣∣f (j+1) (z1)

∣∣ |(zm − z1)|+ ...

+
1

(k − j − 1)!

∣∣f (k−1) (z1)
∣∣ |(zm − z1)|k−j−1 +

1

(k − j)!
∣∣f (k) (zm)

∣∣ |(zm − z1)|k−j . (3.2)

From (3.2) and taking account that when m→ +∞, f (k) (zm)→ +∞, zm →
0, we obtain ∣∣∣∣f (j) (zm)

f (k) (zm)

∣∣∣∣ ≤M, (M > 0) .

Lemma 3.4 Let f (z) be a non constant meromorphic function in D (0, R) .
Then σ

(
f (j), 0

)
= σ (f, 0) , (j = 1, 2, ...)

Proof. We have just to show that σ (f ′, 0) = σ (f, 0) . By Valiron’s decom-
position lemma, we have f (z) = zmφ (z)µ (z) , where
a) The poles and zeros of f in D (0, R′) are precisely the poles and zeros of
φ (z) . The poles and zeros of f in D (R′, R) are precisely the poles and zeros
of µ (z) .
b) φ (z) is meromorphic in D (0,∞] and analytic and nonzero in D [R′,∞] .
c) µ (z) is meromorphic in D (R) = {z ∈ C : |z| < R} and analytic and nonzero
in D (R′) .
d) m ∈ Z.

Set φ̃ (z) = zmφ (z) . Since µ (z) is analytic at zero, it is immediate to see

that T0 (r, f) = T0

(
r, φ̃
)

+ O (1) ; and then σ (f, 0) = σ
(
φ̃, 0
)

. Since φ̃ (z)

is meromorphic in D (0,∞] , the function g (w) = φ̃
(
1
w

)
is meromorphic in

C and σ (g) = σ
(
φ̃, 0
)
. It is well known that for a meromorphic function

in C we have σ (g′) = σ (g) , (see [25, 21]). We have φ̃′ (z) = −w2g′ (w).

Obviously, we have σ (−w2g′ (w)) = σ (g′) , and then σ (g′) = σ
(
φ̃′, 0

)
. So, we

get σ
(
φ̃′, 0

)
= σ

(
φ̃, 0
)
. In the other hand, we have

f ′ (z) = φ̃′ (z)µ (z) + φ̃ (z)µ′ (z) . (3.3)

Since µ (z) is analytic at zero, we have σ (µ, 0) = 0. By (3.3) and since

σ
(
φ̃′, 0

)
= σ

(
φ̃, 0
)
, we get

σ (f ′, 0) ≤ σ
(
φ̃′, 0

)
.
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For the inverse inequality, we have

φ̃′ (z) =
f ′ (z)µ (z)− f (z)µ′ (z)

µ2 (z)
;

and then
σ
(
φ̃′, 0

)
≤ max {σ (f ′, 0) , σ (f, 0)} ;

and by taking account that σ (f, 0) = σ
(
φ̃, 0
)

= σ
(
φ̃′, 0

)
, we obtain

σ
(
φ̃′, 0

)
≤ σ (f ′, 0) .

Thus, we conclude that
σ (f ′, 0) = σ (f, 0) .

Lemma 3.5 Let f be an analytic function in D (0, R) with finite order
σ (f, 0) = σ. Suppose that there exists a set E ⊂ [0, 2π) that has a linear
measure zero such that

log+
∣∣f (reiθ)∣∣ ≤ M

rα

for any θ ∈ [0, 2π) \E where M is a positive constant depending on θ, while α
is a positive constant independent of θ. Then σ (f, 0) ≤ α.

Proof. By Valiron’s decomposition lemma [22, 20], we have f (z) =
zmφ (z)µ (z) with the properties a)-d) cited in the proof of Lemma 3.4. Set

φ̃ (z) = zmφ (z) . As in the proof of Lemma 3.4, we have σ (f, 0) = σ
(
φ̃, 0
)

. If

σ (f, 0) = 0 there is nothing to prove; so we may assume that σ (f, 0) = σ > 0;
and then

∣∣f (reiθ)∣∣ > 1 for r small enough. We have

log
∣∣f (reiθ)∣∣ = log

∣∣∣φ̃ (reiθ)∣∣∣+ log
∣∣µ (reiθ)∣∣ ≤ M

rα
. (3.4)

Since µ (z) is analytic and nonzero in D (R′), log
∣∣µ (reiθ)∣∣ is bounded near

zero; and then by (3.4), for any θ ∈ [0, 2π) \E there exists M ′ > 0, such that

log
∣∣∣φ̃ (reiθ)∣∣∣ ≤ M ′

rα
. (3.5)

Since φ̃ (z) is analytic in D (0,∞] , by the change of variable z = 1
w

the function

g (w) = φ̃
(
1
w

)
is entire and σ (g) = σ

(
φ̃, 0
)

= σ. From (3.5), we have

log
∣∣g (Reiϕ)∣∣ ≤M ′Rα.

By [24, Lemma 2.6.], we deduce that σ ≤ α.
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Lemma 3.6 Let A0 (z) , A1 (z) , ..., Ak−1 (z) , H (z) be analytic functions in
D (0, R) such that

max {σ (A0, 0) , ..., σ (Ak−1, 0) , σ (H, 0)} = α <∞. (3.6)

If f is a solution of the differential equation

f (k) + Ak−1 (z) f (k−1) + ...+ A1 (z) f ′ + A0 (z) f = H (z) , (3.7)

then σ2 (f, 0) ≤ α.

Proof. By Valiron’s decomposition lemma [22, 20], we have f (z) =
zmφ (z)µ (z) with the properties a)-d) cited in the proof of Lemma 3.4. Set

φ̃ (z) = zmφ (z) . As in the proof of Lemma 3.4, we have σ (f, 0) = σ
(
φ̃, 0
)

.

Since f (z) is analytic function in D (0, R), φ̃ (z) is analytic in D (0,∞] . By [13,
Theorem 8], there exists a set E ⊂ (0, 1) that has finite logarithmic measure,
such that for all j = 0, 1, ..., k, we have

φ̃(j) (zr)

φ̃ (zr)
= (1 + o (1))

(
V0 (r)

zr

)j
, (3.8)

as r → 0, r /∈ E, where V0 (r) is the central index of φ̃ near the singular point

0, zr is a point in the circle |z| = r that satisfies
∣∣∣φ̃ (zr)

∣∣∣ = max
|z|=r

∣∣∣φ̃ (z)
∣∣∣ . Since

µ (z) is analytic and non zero in D (R′) , we have∣∣∣∣µ(j) (z)

µ (z)

∣∣∣∣ ≤M, (j = 1, ..., k) . (3.9)

We have f (z) = φ̃ (z)µ (z), and then

f (j) (z)

f (z)
=

i=j∑
i=0

(
j
i

)
φ̃(j−i) (z)

φ̃ (z)

µ(i) (z)

µ (z)
, j = 1, ..., k, (3.10)

where

(
j
i

)
= j!

i!(j−i)! is the binomial coefficient. From (3.7), we have

f (k) (z)

f (z)
= −Ak−1(z)

f (k−1) (z)

f (z)
− · · · − A1(z)

f ′ (z)

f (z)
− A0(z) +

H (z)

f (z)
. (3.11)

If σ (f, 0) <∞, then the result is trivial: σ2 (f, 0) = 0 ≤ α. So, we may assume
that σ (f, 0) =∞. Since σ (H, 0) <∞, we have∣∣∣∣H (zr)

f (zr)

∣∣∣∣ = o (1) , r → 0. (3.12)
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Set M0 (r) = max
|z|=r
{|Aj(z)| : j = 0, 1, ..., k − 1} . By combining (3.8), (3.9),

(3.10) and (3.12) in (3.11), we get

(V0 (r))k ≤ C (V0 (r))k−1M0 (r) , r → 0,

where C > 0, and then
V0 (r) ≤ CM0 (r) . (3.13)

By (3.13), we obtain σ2 (f, 0) ≤ α.
By the well known logarithmic derivative lemma of meromorphic functions

in C we can prove its new version in D (0, R) as the following.

Lemma 3.7 Let f be a non constant meromorphic function in D (0, R) ,
and let k ∈ N. Then

m0

(
r,
f (k)

f

)
= O

(
log T0 (r, f) + log

1

r

)
,

for all r ∈ (0, R) \ E, where
∫
E
dr
r
<∞.

Proof. By Valiron’s decomposition lemma [22, 20], we have f (z) = zmφ (z)µ (z)
with the properties a)-d) cited in the proof of Lemma 3.4. Set φ̃ (z) = zmφ (z) .
By property b) the function φ̃ (z) is meromorphic in D (0,∞]. By [9, Lemma
13], we have

m0

(
r,
φ̃(k)

φ̃

)
= O

(
log T0

(
r, φ̃
)

+ log
1

r

)
, (3.14)

for all r ∈ (0, R) \E, where
∫
E
dr
r
<∞. Since µ (z) analytic at zero, it is clear

that
T0 (r, f) = T0

(
r, φ̃
)

+O (1) . (3.15)

By (3.10), (3.14) and (3.15), there exists a set E of finite logarithmic measure
such that for all we r ∈ (0, R) \ E, we have

m0

(
r,
f (k)

f

)
= O

(
log T0 (r, f) + log

1

r

)
.

Lemma 3.8 Let A0 (z) , A1 (z) , ..., Ak−1 (z) , H (z) 6≡ 0 be meromorphic func-
tions in D (0, R) such that

max {σ (A0, 0) , ..., σ (Ak−1, 0) , σ (H, 0)} = α <∞.

If f (z) is meromorphic solution in D (0, R) of (3.7) with σ (f, 0) = ∞ and
σ2 (f, 0) = α, then f satisfies

λ̄(f, 0) = λ(f, 0) = ρ(f, 0) = +∞, λ̄2(f, 0) = λ2(f, 0) = ρ2(f, 0) = α.
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Proof. From (3.7), we can write

1

f
=

1

H

(
f (k)

f
+ Ak−1

f (k−1)

f
+ ...+ A0

)
. (3.16)

If f has a zero at z0 ∈ D (0, R) of order α > k, then H has a zero at z0 of
order α− k. Hence,

n0

(
r,

1

f

)
≤ kn0

(
r,

1

f

)
+ n0

(
r,

1

H

)
+

k−1∑
j=0

n0 (r, Aj)

and then

N0

(
r,

1

f

)
≤ kN0

(
r,

1

f

)
+N0

(
r,

1

H

)
+

k−1∑
j=0

N0 (r, Aj) . (3.17)

By (3.16), we have

m0

(
r,

1

f

)
≤

k∑
j=1

m0

(
r,
f (j)

f

)
+

k−1∑
j=0

m0 (r, Aj) +m0

(
r,

1

H

)
+O (1) . (3.18)

By Lemma 3.7, we have

m0

(
r,
f (j)

f

)
= O

(
log T0 (r, f) + log

1

r

)
(j = 1, ..., k − 1) (3.19)

holds for all r ∈ (0, R)\E where E is of finite logarithmic measure. By (3.17),
(3.18) and (3.19), we get

T0 (r, f) = T0

(
r,

1

f

)
+O (1)

≤ kN0

(
r,

1

f

)
+

k−1∑
j=0

T0 (r, Aj) + T0 (r,H) +

+O

(
log T0 (r, f) + log

1

r

)
, r /∈ E (3.20)

By (3.20) and by taking account that O
(
log T0 (r, f) + log 1

r

)
≤ 1

2
T0 (r, f), we

obtain
1

2
T0 (r, f) ≤ kN0

(
r,

1

f

)
+

k−1∑
j=0

T0 (r, Aj) + T0 (r,H) . (3.21)

By (3.21), we have

σn (f, 0) ≤ max
{
λn (f, 0) , σn (Aj, 0) , σn (H, 0)

}
(n = 1, 2) .
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Since
max {σn (H, 0) , σn (Aj, 0) ; j = 0, 1, ..., k − 1} < σn (f, 0) ,

we get σn (f, 0) ≤ λn (f, 0) (n = 1, 2) . Therefore λ (f, 0) = λ (f, 0) = σ (f, 0) =
+∞ and λ2 (f, 0) = λ2 (f, 0) = σ2 (f, 0) = α.

Lemma 3.9 [6] Let P (z) = anz
n + ... + a0 with an 6= 0 be a polynomial

and A (z) = P
(
1
z

)
. Then, for every ε > 0, there exists r0 > 0 such that for all

0 < r = |z| ≤ r0, the inequalities

(1− ε) |an|
rn
≤ |A (z)| ≤ (1 + ε)

|an|
rn

hold.

4 Proof of theorems

Proof of Theorem 2.1. It is clear that all solutions of (2.1) are analytic in
D(0, R). First we prove that every solution f of (2.3) satisfies σ (f, 0) ≥ n. We
assume that σ (f, 0) < n, and we prove that is failing. By Lemma 3.4, we have
σ (f ′, 0) = σ (f ′′, 0) = σ (f, 0) < n. From (2.1) we have

A1 (z) exp
{ a

zn

}
f ′ + A0 (z) exp

{
b

zn

}
f = F (z)− f ′′, (4.1)

By the properties of the order of growth, we have

σ

(
A1 (z) exp

{ a

zn

}
f ′ + A0 (z) exp

{
b

zn

}
f, 0

)
= n

and
σ (F (z)− f ′′, 0) < n;

contradiction with (4.1). So σ (f, 0) ≥ n. Now, we prove that σ (f, 0) = +∞.
We assume to the contrary that σ (f, 0) < +∞. Since σ (F, 0) = α < n then
for any given ε such that 0 < 2ε < n− α and r small enough, we have

|F (z)| ≤ exp

{
1

rα+ε

}
. (4.2)

Since a 6= b, it is clear that the set E1 of θ = arg (z) ∈ [0, 2π) such that
δa (θ) = 0, δb (θ) = 0 and δa (θ) = δb (θ) is of linear measure zero, where δa (θ)
is defined in Lemma 3.2. By Lemma 3.1, there exists a set E2 ∈ [0, 2π) of linear
measure zero such that if θ ∈ [0, 2π) \ E2, then there is a constant r0 (θ) < R′

such that for all z satisfying arg (z) = θ and |z| < r0 (θ) , we have∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤ 1

r2σ+3
, (0 ≤ j ≤ k ≤ 2) . (4.3)
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Set δ1 = max {δa (θ) , δb (θ)} and δ2 = min {δa (θ) , δb (θ)} . For any fixed θ ∈
[0, 2π) \ (E1 ∪ E2) there exist three cases:

Case 1. δ1 = δa (θ) > 0. By Lemma 3.2, for any given ε > 0, we get∣∣∣A (z) exp
{ a

zn

}∣∣∣ ≥ exp

{
(1− ε) δ1

rn

}
(4.4)

Now we prove that |zα+ε| log+ |f ′ (z)| is bounded on the ray arg (z) = θ.
We assume to the contrary that |zα+ε| log+ |f ′ (z)| is unbounded on the ray
arg (z) = θ and we prove that this leads to a contradiction. Then by Lemma
3.3, there is a sequence of points zm = rme

iθ (m ≥ 1) , rm → 0, such that

rα+εm log+ |f ′ (zm)| → +∞ (4.5)

and ∣∣∣∣ f (zm)

f ′ (zm)

∣∣∣∣ ≤M1, (M1 > 0) , (4.6)

as m→ +∞. From (4.5) for any c > 1 we have

rα+εm log+ |f ′ (zm)| > c;

then

|f ′ (zm)| > exp

{
2

rα+εm

}
, m→ +∞. (4.7)

From (4.2), and (4.7), we obtain∣∣∣∣F (zm)

f ′ (zm)

∣∣∣∣ < exp

{
−1

rα+εm

}
→ 0, m→ +∞. (4.8)

From (2.1), we can write∣∣∣A (z) exp
{ a

zn

}∣∣∣ ≤ ∣∣∣∣f ′′f ′
∣∣∣∣+

∣∣∣∣B (z) exp

{
b

zn

}∣∣∣∣ ∣∣∣∣ ff ′
∣∣∣∣+

∣∣∣∣F (z)

f ′

∣∣∣∣ . (4.9)

Since δb (θ) = δ2 < δ1 and σ(B, 0) < n, for 0 < 2ε < min
{

1, 1− δ2
δ1

}
, we have∣∣∣∣B (z) exp

{
b

zn

}∣∣∣∣ ≤ exp

{
(1− 2ε) δ1

rn

}
, r → 0. (4.10)

Using (4.4), (4.6), (4.8), (4.3) and (4.10) into (4.9), we obtain

exp

{
(1− ε) δ1

rnm

}
≤ M1

r2σ+3
m

exp

{
(1− 2ε) δ1

rnm

}
,
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as r → 0, where M1 > 0 is a constant, and then

r2σ+3
m exp

{
εδ1
rnm

}
≤M1. (4.11)

A contradiction in (4.11) as m→ +∞. So |zα+ε| log+ |f ′ (z)| is bounded on the
ray arg (z) = θ and we get

|f ′ (z)| ≤ exp

{
C1

rα+ε

}
, C1 > 0. (4.12)

By integration along the line segment [z0, z], where arg z0 = arg z = θ and
0 < |z| < |z0|, we obtain

f (z) = f (z0) +

z∫
z0

f ′ (u) du; (4.13)

and by using (4.12), we get

|f (z)| ≤ |f (z0)|+ |z0| exp

{
C1

rα+ε

}
, C1 > 0. (4.14)

By (4.14), as r → 0 with arg z = θ ∈ [0, 2π) \ (E1 ∪ E2) , we obtain

|f (z)| ≤ exp

{
C ′1
rα+ε

}
, C ′1 > C1. (4.15)

Case 2. δ1 = δb (θ) > 0. By Lemma 3.2, for any given ε > 0, we have∣∣∣∣B (z) exp

{
b

zn

}∣∣∣∣ ≥ exp

{
(1− ε) δ1

rn

}
. (4.16)

Now we prove that |zα+ε| log+ |f (z)| is bounded on the ray arg (z) = θ. We
assume that |zα+ε| log+ |f (z)| is unbounded on the ray arg (z) = θ; then, there
is a sequence of points zm = rme

iθ (m ≥ 1) , rm → 0, such that

rα+εm log+ |f (zm)| → +∞. (4.17)

which implies that for any c > 1 we have

rα+εm log+ |f (zm)| > c;

and then

|f (zm)| > exp

{
2

rα+εm

}
, m→ +∞. (4.18)
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From (4.2) and (4.18), we get∣∣∣∣F (zm)

f (zm)

∣∣∣∣ < exp

{
−1

rα+εm

}
→ 0, m→ +∞. (4.19)

From (2.1), we can write∣∣∣∣B (z) exp

{
b

zn

}∣∣∣∣ ≤ ∣∣∣∣f ′′ (z)

f (z)

∣∣∣∣+
∣∣∣A (z) exp

{ a

zn

}∣∣∣ ∣∣∣∣f ′ (z)

f (z)

∣∣∣∣+

∣∣∣∣F (z)

f (z)

∣∣∣∣ . (4.20)

Since δa (θ) = δ2 < δ1, for 0 < 2ε < min
{

1, 1− δ2
δ1

}
, we have

∣∣∣exp
{ a

zn

}∣∣∣ ≤ exp

{
(1− 2ε) δ1

rn

}
, r → 0. (4.21)

Combining (4.16), (4.3), (4.19) and (4.21) with (4.20), we obtain

exp

{
(1− ε) δ1

rnm

}
≤ M2

r2σ+3
exp

{
(1− 2ε) δ1

rnm

}
,

as r → 0, where M2 > 0 is a constant, and then

exp

{
εδ1
rnm

}
≤ M2

r2σ+3
. (4.22)

(4.22) leads to a contradiction as m→ +∞. So |zα+ε| log+ |f (z)| is bounded on
the ray arg (z) = θ and then, when r → 0 with arg z = θ ∈ [0, 2π) \ (E1 ∪ E2) ,
we have

|f (z)| ≤ exp

{
C2

rα+ε

}
, C2 > 0. (4.23)

Case 3. δ1 < 0. From (2.1), we can write

1 ≤
∣∣∣A (z) exp

{ a

zn

}∣∣∣ ∣∣∣∣ f ′ (z)

f ′′ (z)

∣∣∣∣+

∣∣∣∣B (z) exp

{
b

zn

}∣∣∣∣ ∣∣∣∣ f (z)

f ′′ (z)

∣∣∣∣+

∣∣∣∣ F (z)

f ′′ (z)

∣∣∣∣ . (4.24)

By Lemma 3.2, for any given 0 < ε < 1, we have∣∣∣∣B (z) exp

{
b

zn

}∣∣∣∣ ≤ exp

{
(1− ε) δ1

rn

}
(4.25)

and ∣∣∣exp
{ a

zn

}∣∣∣ ≤ exp

{
(1− ε) δ1

rn

}
. (4.26)

Now we prove that |zα+ε| log+ |f ′′ (z)| is bounded on the ray arg (z) = θ. We
assume that |zα+ε| log+ |f ′′ (z)| is unbounded on the ray arg (z) = θ; then by
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Lemma 3.3, there is a sequence of points zm = rme
iθ (m ≥ 1) , rm → 0, such

that
rα+εm log+ |f ′′ (zm)| → +∞, (4.27)

and ∣∣∣∣f (j) (zm)

f ′′ (zm)

∣∣∣∣ ≤M2, (M2 > 0) (j = 0, 1) . (4.28)

as m→ +∞. From (4.27), for any c > 1 we have

rα+εm log+ |f ′′ (zm)| > c;

and then

|f ′′ (zm)| > exp

{
2

rα+εm

}
, m→ +∞. (4.29)

From (4.2) and (4.29), we obtain∣∣∣∣ F (zm)

f ′′ (zm)

∣∣∣∣ < exp

{
−1

rα+εm

}
→ 0, m→ +∞. (4.30)

By combining (4.3), (4.25), (4.26), (4.28) and (4.30) with (4.24), we obtain

1 ≤ 2M2 exp

{
(1− ε) δ1

rnm

}
+ exp

{
−1

rα+εm

}
→ 0, m→ +∞; (4.31)

a contradiction; then |zα+ε| log+ |f ′′ (z)| is bounded on the ray arg (z) = θ. As
above when r → 0 with arg z = θ ∈ [0, 2π) \ (E1 ∪ E2) , we obtain

|f (z)| ≤ exp

{
C3

rα+ε

}
, C3 > 0. (4.32)

Now, we proved (4.32) on any ray arg z = θ ∈ [0, 2π)\(E1 ∪ E2) as |z| = r → 0.
By Lemma 3.5, we obtain σ (f, 0) ≤ α; which is a contradiction with α < n
and σ (f, 0) ≥ n; so we conclude that every solution f of (2.1) is of infinite
order. Now, we have

max

{
σ
(
A exp{ a

zn
}, 0
)
, σ

(
B(z) exp{ b

zn
}, 0
)
, σ
(
F (z) exp{ a

zn
}, 0
)}

= n;

and by applying Lemma 3.6, we get σ2 (f, 0) ≤ n. Since F (z) 6≡ 0, by Lemma
3.8, we obtain

λ̄(f, 0) = λ(f, 0) = σ(f, 0) = +∞, λ̄2(f, 0) = λ2(f, 0) = σ2(f, 0) ≤ n.

Proof of Theorem 2.2. First, we prove that every solution f of (2.2)
satisfies σ (f, 0) ≥ n. We assume that σ (f, 0) < n, and we prove that is failing.
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By Lemma 3.4, we have σ (f ′, 0) = σ (f ′′, 0) = σ (f, 0) < n. From (2.2) we can
write

A (z) exp
{ a

zn

}
f ′+B (z) exp

{
b

zn

}
f = F (z)−f ′′−A0 (z) f ′−B0 (z) f (4.33)

By the properties of the order of growth and since a 6= b, we have

σ

(
A (z) exp

{ a

zn

}
f ′ +B (z) exp

{
b

zn

}
f, 0

)
= n

and
σ (F (z)− f ′′ − A0 (z) f ′ −B0 (z) f, 0) < n;

a contradiction in (4.33). So σ (f, 0) ≥ n. Now, we prove that σ (f, 0) = +∞.
We suppose to the contrary that σ (f, 0) < +∞. Since σ (B0, 0) = σ (A0, 0) =
α < n then for any given ε such that 0 < 2ε < n− α and r small enough, we
have

max {|A0 (z)| , |B0 (z)|} ≤ exp

{
1

rα+ε

}
. (4.34)

It is clear that the set E3 of θ = arg (z) ∈ [0, 2π) such that δa (θ) = 0, δb (θ) = 0
is of linear measure zero. For any fixed θ ∈ [0, 2π) \ (E3 ∪ E2) there exist two
cases:

Case 1. δ = δa (θ) > 0. We will prove that |zα+ε| log+ |f ′ (z)| is bounded
on the ray arg (z) = θ. We assume to the contrary that |zα+ε| log+ |f ′ (z)| is
unbounded on the ray arg (z) = θ. Then by Lemma 3.3, there is a sequence of
points zm = rme

iθ (m ≥ 1) , rm → 0, such that we have (4.5) and (4.6); and
then, we have (4.8). From (2.2), we can write∣∣∣A (z) exp

{ a

zn

}∣∣∣ ≤ ∣∣∣∣f ′′f ′
∣∣∣∣+ A0 (z) +

∣∣∣∣B (z) exp

{
b

zn

}
+B0 (z)

∣∣∣∣ ∣∣∣∣ ff ′
∣∣∣∣+

∣∣∣∣F (z)

f ′

∣∣∣∣ .
(4.35)

Since δb (θ) = 1
c
δ < 0 and σ(B, 0) < n, by Lemma 3.2, for any ε > 0, we have∣∣∣∣B (z) exp

{
b

zn

}∣∣∣∣ ≤ exp

{
(1 + ε) 1

c
δ

rn

}
, r → 0. (4.36)

Using (4.4), (4.6), (4.8), (4.3), (4.36) and (4.34) into (4.35), we obtain

exp

{
(1− ε) δ
rnm

}
≤ M1

r2σ+3
m

exp

{
(1 + ε) 1

c
δ

rnm

}
, (4.37)

as r → 0, where M1 > 0 is a constant; a contradiction by taking 0 < ε < 1 :
the right side of (4.37) tends to 0 as m→ +∞ while the left side tends to +∞.
So |zα+ε| log+ |f ′ (z)| is bounded on the ray arg (z) = θ and we get

|f ′ (z)| ≤ exp

{
C1

rα+ε

}
, C1 > 0;
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and then, as above in the proof of Theorem 2.1, we get

|f (z)| ≤ exp

{
C

rα+ε

}
, C > 0. (4.38)

Case 2. δb (θ) = 1
c
δ > 0; (in this case δ < 0). We prove that |zα+ε| log+ |f (z)|

is bounded on the ray arg (z) = θ. We assume that |zα+ε| log+ |f (z)| is un-
bounded on the ray arg (z) = θ. From (2.2), we can write∣∣∣∣B (z) exp

{
b

zn

}∣∣∣∣ ≤ ∣∣∣∣f ′′ (z)

f (z)

∣∣∣∣+∣∣∣A (z) exp
{ a

zn

}
+ A0 (z)

∣∣∣ ∣∣∣∣f ′ (z)

f (z)

∣∣∣∣+B0 (z)+

∣∣∣∣F (z)

f (z)

∣∣∣∣ .
(4.39)

By Lemma 3.2, for any given ε > 0, we have∣∣∣∣B (z) exp

{
b

zn

}∣∣∣∣ ≥ exp

{
(1− ε) 1

c
δ

rn

}
(4.40)

and ∣∣∣∣B (z) exp

{
b

zn

}∣∣∣∣ ≤ exp

{
(1 + ε) δ

rn

}
. (4.41)

Combining (4.3), (4.19), (4.34), (4.40) and (4.41) with (4.20), we obtain

exp

{
(1− ε) 1

c
δ

rnm

}
≤ M2

r2σ+3
exp

{
(1 + ε) δ

rnm

}
, (4.42)

as r → 0, where M2 > 0 is a constant. Also (4.42) leads to a contradiction as
m → +∞. So |zα+ε| log+ |f (z)| is bounded on the ray arg (z) = θ and then,
when r → 0 with arg z = θ ∈ [0, 2π) \ (E3 ∪ E2) , we have

|f (z)| ≤ exp

{
C

rα+ε

}
, C > 0. (4.43)

We proved (4.43) on any ray arg z = θ ∈ [0, 2π) \ (E3 ∪ E2) as |z| = r → 0.
By Lemma 3.5, we obtain σ (f, 0) ≤ α; which is a contradiction with α < n
and σ (f, 0) ≥ n; so we conclude that every solution f of (2.2) is of infinite
order. Now, by applying Lemma 3.6 to the equation (2.2), we get σ2 (f, 0) ≤ n.
Furthermore, since F (z) 6≡ 0, by Lemma 3.8, we obtain

λ̄(f, 0) = λ(f, 0) = σ(f, 0) = +∞, λ̄2(f, 0) = λ2(f, 0) = σ2(f, 0) ≤ n.

Proof of Theorem 2.3. We prove the results for the solutions of (2.3)
and we can use the same method for (2.4). First, we prove that every solution
f of (2.3) satisfies σ (f, 0) ≥ n. We assume that σ (f, 0) < n, and we prove
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that is failing. By Lemma 3.4, we have σ (f ′, 0) = σ (f ′′, 0) = σ (f, 0) < n.
From (2.3) we can write

exp

{
−a
zn

}
f ′′ +B (z) exp

{
b− a
zn

}
f = F (z)− P

(
1

z

)
f ′. (4.44)

By the properties of the order of growth and since −a 6= b− a, we have

σ

(
exp

{
−a
zn

}
f ′′ +B (z) exp

{
b− a
zn

}
f, 0

)
= n

and

σ

(
F (z)− P

(
1

z

)
f ′, 0

)
< n;

a contradiction with (4.44). So σ (f, 0) ≥ n. Now, we prove that σ (f, 0) = +∞.
We suppose to the contrary that σ (f, 0) < +∞. Since σ (F, 0) = α < n then
for any given ε such that 0 < 2ε < n− α and r small enough, we have

|F (z)| ≤ exp

{
1

rα+ε

}
. (4.45)

Since −a 6= b− a, it is clear that the set E1 of θ = arg (z) ∈ [0, 2π) such that
δ−a (θ) = 0, δb−a (θ) = 0 and δ−a (θ) = δb−a (θ) is of linear measure zero. By
Lemma 3.1, there exists a set E2 ∈ [0, 2π) of linear measure zero such that
if θ ∈ [0, 2π) \ E2, then there is a constant r0 (θ) < R′ such that for all z
satisfying arg (z) = θ and |z| < r0 (θ) , we have∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤ 1

r2σ+3
, (0 ≤ j ≤ k ≤ 2) . (4.46)

Set δ1 = max {δ−a (θ) , δb−a (θ)} and δ2 = min {δ−a (θ) , δb−a (θ)} . For any fixed
θ ∈ [0, 2π) \ (E1 ∪ E2) there exist three cases:

Case 1. δ1 = δ−a (θ) > 0. By Lemma 3.2, for any given ε > 0, we get∣∣∣∣exp

{
−a
zn

}∣∣∣∣ ≥ exp

{
(1− ε) δ1

rn

}
. (4.47)

Now we prove that |zα+ε| log+ |f ′′ (z)| is bounded on the ray arg (z) = θ.
We assume to the contrary that |zα+ε| log+ |f ′′ (z)| is unbounded on the ray
arg (z) = θ and we prove that this leads to a contradiction. Then by Lemma
3.3, there is a sequence of points zm = rme

iθ (m ≥ 1) , rm → 0, such that

rα+εm log+ |f ′′ (zm)| → +∞ (4.48)

and ∣∣∣∣f (j) (zm)

f ′′ (zm)

∣∣∣∣ ≤M1, (M1 > 0) (j = 0, 1) , (4.49)
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as m→ +∞. From (4.48) for any c > 1 we have

rα+εm log+ |f ′′ (zm)| > c;

then

|f ′′ (zm)| > exp

{
2

rα+εm

}
, m→ +∞. (4.50)

From (4.45) and (4.50), we obtain∣∣∣∣ F (zm)

f ′′ (zm)

∣∣∣∣ < exp

{
−1

rα+εm

}
, m→ +∞. (4.51)

From (2.3), we can write∣∣∣∣exp

{
−a
zn

}∣∣∣∣ ≤ ∣∣∣∣P (1

z

)∣∣∣∣ ∣∣∣∣ f ′ (z)

f ′′ (z)

∣∣∣∣+

∣∣∣∣B (z) exp

{
b− a
zn

}∣∣∣∣ ∣∣∣∣ f (z)

f ′′ (z)

∣∣∣∣+

∣∣∣∣ F (z)

f ′′ (z)

∣∣∣∣ .
(4.52)

Since δb−a (θ) = δ2 < δ1 and σ(B, 0) < n, for 0 < 2ε < min
{

1, 1− δ2
δ1

}
, we

have ∣∣∣∣B (z) exp

{
b− a
zn

}∣∣∣∣ ≤ exp

{
(1− 2ε) δ1

rn

}
, r → 0. (4.53)

By Lemma 3.9, there exists λ > 0 such that for r small enough, we have∣∣∣∣P (1

z

)∣∣∣∣ ≤ λ

rdm
, d = degP. (4.54)

Using (4.47), (4.49), (4.51), (4.53) and (4.54) into (4.52), we obtain

exp

{
(1− ε) δ1

rnm

}
≤M1

λ

rdm
exp

{
(1− 2ε) δ1

rnm

}
,

as r → 0; and then

rdm exp

{
εδ1
rnm

}
≤M1λ. (4.55)

A contradiction in (4.55) as m → +∞. So |zα+ε| log+ |f ′′ (z)| is bounded on
the ray arg (z) = θ and we get

|f ′′ (z)| ≤ exp

{
C1

rα+ε

}
, C1 > 0. (4.56)

By two-fold iterated integration, along the line segment [z0, z], where arg z0 =
arg z = θ and 0 < |z| < |z0|, we obtain

f (z) = f (z0) + f ′ (z0) (z − z0) +

z∫
z0

w∫
z0

f ′′ (u) dudw; (4.57)
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and then

|f (z)| ≤ |f (z0)|+ |f ′ (z0)| |(z − z0)|+
z∫

z0

w∫
z0

|f ′′ (u)| dudw. (4.58)

From (4.56) and (4.58), we get

|f (z)| ≤ |f (z0)|+ |f ′ (z0)| |z0|+
|z0|2

2
exp

{
C1

rα+ε

}
, C1 > 0. (4.59)

By (4.59), as r → 0 with arg z = θ ∈ [0, 2π) \ (E1 ∪ E2) , we obtain

|f (z)| ≤ exp

{
C ′1
rα+ε

}
, C ′1 > 0. (4.60)

Case 2. δ1 = δb−a (θ) > 0. By Lemma 3.2, for any given ε > 0, we have∣∣∣∣B (z) exp

{
b− a
zn

}∣∣∣∣ ≥ exp

{
(1− ε) δ1

rn

}
. (4.61)

Now we prove that |zα+ε| log+ |f (z)| is bounded on the ray arg (z) = θ. We
assume that |zα+ε| log+ |f (z)| is unbounded on the ray arg (z) = θ; then, there
is a sequence of points zm = rme

iθ (m ≥ 1) , rm → 0, such that

rα+εm log+ |f (zm)| → +∞. (4.62)

which implies that for any c > 1 we have

rα+εm log+ |f (zm)| > c;

and then

|f (zm)| > exp

{
2

rα+εm

}
, m→ +∞. (4.63)

From (4.45) and (4.63), we get∣∣∣∣F (zm)

f (zm)

∣∣∣∣ < exp

{
−1

rα+εm

}
, m→ +∞. (4.64)

From (2.3), we can write∣∣∣∣B (z) exp

{
b− a
zn

}∣∣∣∣ ≤ ∣∣∣∣exp

{
−a
zn

}∣∣∣∣ ∣∣∣∣f ′′ (z)

f (z)

∣∣∣∣+

∣∣∣∣P (1

z

)∣∣∣∣ ∣∣∣∣f ′ (z)

f (z)

∣∣∣∣+

∣∣∣∣F (z)

f (z)

∣∣∣∣ .
(4.65)
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Since δ−a (θ) = δ2 < δ1, for 0 < 2ε < min
{

1, 1− δ2
δ1

}
, we have∣∣∣∣exp

{
−a
zn

}∣∣∣∣ ≤ exp

{
(1− 2ε) δ1

rn

}
, r → 0. (4.66)

Combining (4.61), (4.46), (4.64) and (4.66) with (4.65), we obtain

exp

{
(1− ε) δ1

rnm

}
≤ M2

rd+2σ+3
exp

{
(1− 2ε) δ1

rnm

}
,

as r → 0, where M2 > 0 is a constant, and then

rd+2σ+3 exp

{
εδ1
rnm

}
≤M2. (4.67)

(4.67) leads to a contradiction as m → +∞. So |zα+ε| log+ |f (z)| is bounded
on the ray arg (z) = θ and we get

|f (z)| ≤ exp

{
C2

rα+ε

}
, C2 > 0,

and then, when r → 0 with arg z = θ ∈ [0, 2π) \ (E1 ∪ E2) , we have

|f (z)| ≤ exp

{
C ′2
rα+ε

}
, C ′2 > 0. (4.68)

Case 3. δ1 < 0. From (2.3), we can write∣∣∣∣P (1

z

)∣∣∣∣ ≤ ∣∣∣∣exp

{
−a
zn

}∣∣∣∣ ∣∣∣∣f ′′ (z)

f ′ (z)

∣∣∣∣+

∣∣∣∣B (z) exp

{
b− a
zn

}∣∣∣∣ ∣∣∣∣ f (z)

f ′ (z)

∣∣∣∣+

∣∣∣∣F (z)

f ′ (z)

∣∣∣∣ .
(4.69)

By Lemma 3.2, for any given ε > 0, we have∣∣∣∣B (z) exp

{
b− a
zn

}∣∣∣∣ ≤ exp

{
(1− ε) δ1

rn

}
(4.70)

and ∣∣∣∣exp

{
−a
zn

}∣∣∣∣ ≤ exp

{
(1− ε) δ1

rn

}
. (4.71)

By Lemma 3.9, there exists λ′ > 0 such that for r small enough, we have

λ′

rdm
≤
∣∣∣∣P (1

z

)∣∣∣∣ (4.72)

Now we prove that |zα+ε| log+ |f ′ (z)| is bounded on the ray arg (z) = θ. We
assume that |zα+ε| log+ |f ′ (z)| is unbounded on the ray arg (z) = θ; then by
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Lemma 3.3, there is a sequence of points zm = rme
iθ (m ≥ 1) , rm → 0, such

that
rα+εm log+ |f ′ (zm)| → +∞, (4.73)

and ∣∣∣∣ f (zm)

f ′ (zm)

∣∣∣∣ ≤M2, (M2 > 0) . (4.74)

as m→ +∞. From (4.73), for any c > 1 we have

rα+εm log+ |f ′ (zm)| > c;

and then

|f ′ (zm)| > exp

{
2

rα+εm

}
, m→ +∞. (4.75)

From (4.45) and (4.75), we obtain∣∣∣∣F (zm)

f ′ (zm)

∣∣∣∣ < exp

{
−1

rα+εm

}
, m→ +∞. (4.76)

By combining (4.46), (4.70), (4.71), (4.72), (4.74) and (4.76) with (4.69), we
obtain

λ′

rdm
≤ exp

{
(1− ε) δ1

rnm

}(
1

r2σ+3
m

+M2

)
+ exp

{
−1

rα+εm

}
. (4.77)

Since the right side of (4.77) tends to zero as m→ +∞, a contradiction follows
and then |zα+ε| log+ |f ′ (z)| is bounded on the ray arg (z) = θ. As above, as
r → 0 with arg z = θ ∈ [0, 2π) \ (E1 ∪ E2) , we have

|f (z)| ≤ exp

{
C3

rα+ε

}
, C3 > 0. (4.78)

In all cases we proved

|f (z)| ≤ exp

{
C

rα+ε

}
, C > 0

on any ray arg z = θ ∈ [0, 2π) \ (E1 ∪ E2) as |z| = r → 0. By Lemma 3.5,
we obtain σ (f, 0) ≤ α; which is a contradiction with α < n and σ (f, 0) ≥ n;
so we conclude that every solution f of (2.3) is of infinite order. Now, the
maximum of the order of growth near 0 of the three terms:

P

(
1

z

)
exp

{ a

zn

}
, B(z) exp

{
b

zn

}
, F (z) exp

{ a

zn

}
;

is equal to n; and by applying Lemma 3.6, we get σ2 (f, 0) ≤ n. Since F (z) 6≡ 0,
by Lemma 3.8, we obtain

λ̄(f, 0) = λ(f, 0) = σ(f, 0) = +∞, λ̄2(f, 0) = λ2(f, 0) = σ2(f, 0) ≤ n
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5 Open Problem

In this work, the following questions remain open:
1) How about the case when σ (F, 0) > n?
2) How about the case when the coefficients are meromorphic in D (0, R)?
3) Can we generalize these results to the higher order linear differential equa-
tions?
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