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Abstract

In this paper we obtain sufficient condition for univalence of
analytic functions defined by differential operator.
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1 Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑
n=2

anz
n (1)

which are analytic in the open unit disc E = {z ∈ C : |z| < 1}.



Univalence criteria for analytic functions defined by differential operator 55

Let S denote the subclass of A, which consists of functions of the form (1)
that are univalent and normalized by the conditions f(0) = 0 and f ′(0) = 1 in
E.

In geometric function theory, the univalence of complex functions is an
important property, but it is difficult, and in many cases impossible, to show
directly that a certain complex function is univalent. For this reason, many
authors found different types of sufficient conditions of univalence. One of
the most important of these conditions of univalence in the domains E and
the exterior of a closed unit disc is the well-known criterion of Becker [5].
Becker’s work depends upon a clever use of the theory of Loewner chains and
the generalized Loewner differential equation. Extensions of this criterion were
given by Deniz and Orhan [8, 9, 10].

Let f be a function in the class A. We define the following differential
operator introduced by Deniz and Ozkan [11].

D0
λf(z) = f(z)

D1
λf(z) = Dλf(z) = λz3f ′′′(z) + (2λ+ 1)z2f ′′(z) + zf ′(z)

D2
λf(z) = Dλ(D

1
λf(z))

.

.

.

Dm
λ f(z) = Dλ(D

m−1
λ f(z))

where λ ≥ 0 and m ∈ N0 = N ∪ {0}. If f is given by (1), then from the
definition of the operator Dm

λ f(z), it is to see that

Dm
λ f(z) = z +

∞∑
n=2

ϕm(λ, n)anz
n (2)

where
ϕm(λ, n) = n2m[λ(n− 1) + 1]m (3)

Many differential operators studied by various authors can be seen in the
literature ( see [1, 2, 4, 6, 13]).

In this paper we derive sufficient conditions of univalence for the generalized
operator Dm

λ f(z). Also, a number of known univalent conditions would follow
upon specialization the parameters involved. In order to prove our results wee
need the following Lemmas.

Lemma 1.1 [5] Let f ∈ A. If for all z ∈ E

(1− |z|2)
∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1 (4)

then the function f is univalent in E.
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Lemma 1.2 [14] Let f ∈ A. If for all z ∈ E∣∣∣∣z2f ′(z)

f 2(z)
− 1

∣∣∣∣ ≤ 1 (5)

then the function f is univalent in E.

Lemma 1.3 [18] Let µ be a real number µ > 1
2
and f ∈ A. If for all z ∈ E

(1− |z|2µ)
∣∣∣∣zf ′′(z)

f ′(z)
+ 1− µ

∣∣∣∣ ≤ µ (6)

then the function f is univalent in E.

Lemma 1.4 [12] If f ∈ S ( the class of univalent functions ) and

z

f(z)
= 1 +

∞∑
n=1

bnz
n (7)

then
∞∑
n=1

(n− 1)|bn|2 ≤ 1.

Lemma 1.5 [15] Let ν ∈ C,Re{ν} ≥ 0 and f ∈ A. If for all z ∈ E

1−|z|2Re(ν)

Re(ν)

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1 (8)

then the function

Fν(z) =

ν

z∫
0

uν−1f ′(u)du

 1
ν

is univalent in E.

2 Main Results

In this section, we establish the sufficient conditions to obtain a univalence for
analytic functions involving the differential operator.

Theorem 2.1 Let f ∈ A. If for all z ∈ E

∞∑
n=1

ϕm(λ, n)[n(2n− 1)]|an| ≤ 1 (9)

then Dm
λ f(z) is univalent in E.
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Proof. Let f ∈ A. Then for all z ∈ E, we have

(1− |z|2)
∣∣∣∣z(Dm

λ f(z))
′′

(Dm
λ f(z))

′

∣∣∣∣ ≤ (1 + |z|2)
∣∣∣∣z(Dm

λ f(z))
′′

(Dm
λ f(z))

′

∣∣∣∣
≤

2
∞∑
n=2

n(n− 1)ϕm(λ, n)|an|

1−
∞∑
n=2

nϕm(λ, n)|an|

the last inequality is less than 1 if the assertion (9) is hold. Thus is view of
Lemma 1.1, Dm

λ f(z) is univalent in E.

Theorem 2.2 Let f ∈ A. If for all z ∈ E

ϕm(λ, n)|an| ≤
1√
7

(10)

then Dm
λ f(z) is univalent in E.

Proof. Let f ∈ A. It sufficient to show that∣∣∣∣∣z2(Dm
λµf(z))

′

2(Dm
λµf(z))

2

∣∣∣∣∣ ≤ 1.

Now∣∣∣∣∣z2(Dm
λµf(z))

′

2(Dm
λµf(z))

2

∣∣∣∣∣ ≤
1 +

∞∑
n=2

nBn(λ, µ,m)|an|

2(1− 2
∞∑
n=2

[Bn(λ, µ,m)])m|an| − (
∞∑
n=2

Bn(λ, µ,m)|an|2)
.

The last inequality is less than 1 if the assertion (10) is hold. Thus in view of
Lemma 1.2, Dm

λµf(z) is univalent in E.

Theorem 2.3 Let f ∈ A. If for all z ∈ E

∞∑
n=1

n[2(n− 1) + (2µ− 1)]ϕm(λ, n)|an| ≤ 2µ− 1, µ >
1

2
(11)

then Dm
λ f(z) is univalent in E.

Proof. Let f ∈ A. Then for all z ∈ E, we have

(1− |z|2µ)
∣∣∣∣z(Dm

λ f(z))
′′

(Dm
λ f(z))

′ + 1− µ

∣∣∣∣ ≤ (1 + |z|2)
∣∣∣∣z(Dm

λ f(z))
′′

(Dm
λ f(z))

′

∣∣∣∣+ |1− µ|

≤
2

∞∑
n=2

ϕm(λ, n)[n(n− 1)]|an|

1−
∞∑
n=2

nϕm(λ, n)|an|
+ |1− µ|
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the last inequality is less than µ if the assertion (11) is hold. Thus is view of
Lemma 1.3, Dm

λ f(z) is univalent in E.
As applications of Theorems 2.1, 2.2 and 2.3, we have the following Theo-

rem.

Theorem 2.4 Let f ∈ A. If for all z ∈ E one of the inequality (9-11) holds
then

∞∑
n=1

(n− 1)|bn|2 ≤ 1, (12)

where z
Dm

λ f(z)
= 1 +

∞∑
n=1

bnz
n.

Proof. Let f ∈ A. Then in view of Theorems 2.1, 2.2 or 2.3, Dm
λ f(z) is

univalent in E.
Hence by Lemma 1.4, we obtain the result.

Theorem 2.5 Let f ∈ A. If for all z ∈ E

∞∑
n=1

n[2(n− 1) +Re(v)]ϕm(λ, n)|an| ≤ Re(v), Re(v) > 0 (13)

then

Gv(z) =

v

z∫
0

uv−1[Dm
λ f(z)]

′du

 1
v

is univalent in E.

Proof. Let f ∈ A. Then for all z ∈ E,

1− |z|2Re(v)

Re(v)

∣∣∣∣z(Dm
λ f(z))

′′

(Dm
λ f(z))

′

∣∣∣∣ ≤ 1 + |z|2Re(v)

Re(v)

∣∣∣∣z(Dm
λ f(z))

′′

(Dm
λ f(z))

′

∣∣∣∣
≤

2
∞∑
n=2

n(n− 1)ϕm(λ, n)|an|

1−
∞∑
n=2

nϕm(λ, n)|an|

the least inequality is less than 1 if the assertion (13) is hold. Thus is view of
Lemma 1.5, Gv(z) is univalent in E.

3 Open problems

One can define another class by using another linear operator or an integral
operator the same way as in this paper and hence new results can be obtained.
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