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Abstract

In this paper, we introduce a new subclass of harmonic
meromorphic functions using a new differential operator as-
sociated with q-calculus. We obtain coefficient conditions, ex-
treme points for functions f belong to this subclass. In addi-
tion, the convolution conditions, closure and convex combina-
tions are also obtained.
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1 Introduction

The field of quantum calculus, also known as q-calculus, has garnered signifi-
cant attention from scholars owing to its numerous applications across various
domains of mathematics and physics, with a particular emphasis on geometric
function theory. The utilization of q-calculus structure amplifies the efficacy
of traditional complements in diverse modules of orthogonal polynomials and
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functions. The linkage between equilibriums of differential formulae (including
equations, operators, and inequalities) and their solutions is a highly effective
and meticulously crafted mechanism for scrutinizing the attributes of special
functions in the domains of mathematical analysis and mathematical physics.
The field of q-calculus was first introduced by prominent mathematicians Euler
and Jacobi during the 18th century. The systematic development and initia-
tion of q-calculus was carried out by Jackson [1, 2]. Aral and Gupta ([3, 4])
introduced a q-analogue of the Baskakov and Durmeyer operator that is con-
tingent upon quantum calculus. Aral et al. [5] and Elhaddad et al. [6] have
conducted research on additional uses of the q-operator. The scholarly lit-
erature has identified the harmonic variety of q-analogues calculus in several
works, including [7]-[10]. Various issues pertaining to q-calculus have been
observed in recent times, as documented in ([11]-[27]). It is anticipated that
the derivation of operators on q-analogues within the category of harmonic
functions will become increasingly significant in the coming years.

We present some notations and concepts of q-calculus that are used in this
paper. For 0 < q < 1, ϑ ∈ N and any non-negative integer i, the q-binomial
coefficients denoted by Cq(ϑ, i) is defined by (see Gasper [28]) as follows:

Cq(ϑ, i) =
[
ϑ
i

]
q

=
[ϑ− 1 + i]q!

[ϑ]q![i− 1]q!
=

[ϑ]q[ϑ− 1]q · · · [ϑ− i+ 1]q
[i]q!

(1)

where the q-analogue of [i]q! is defined by:

[i]q! =


[i]q[i− 1]q · · · [2]q[1]q , i = 2, 3, 4, · · ·

1 , i = 1 ,
(2)

where [i]q known as the q-number, defined by

[i]q =



1−qi

1−q
, if 0 < q < 1, i ∈ C\{0}

1 , if q → 0+, i ∈ C\{0}
i , if q → 1−, i ∈ C\{0}

1 + q + · · ·+ qκ−1 =
κ−1∑
ℓ=0

qℓ , if 0 < q < 1, i = κ ∈ N.

The q-derivative, also known as the q-difference operator, of a function f is

defined by

∂qf(z) =



f(z)−f(qz)
z−qz

, if 0 < q < 1, z ̸= 0,

1, if q → 1−, z = 0,

f ′(z), if q → 1−, z ̸= 0.

,
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as referenced in [29].

The harmonic function is very important function in geometric function
theory. The first study of harmonic functions was conducted by Clunie and
Sheil Small [31], then followed by several researchers whom include Jahangiri
and Silverman [32] and Yadav [34]. Aldweby and Darus [11] introduced new
class of harmonic meromorphic functions depends on q-calculus. More recent
work, Abdulahi and Darus [35] introduced a new class of concave meromorphic
harmonic functions using integral operator and others [36, 37].

Let U∗ = {z : 0 < |z| < 1} denotes the punctured unit disk in C, and let
MH denotes the family of meromorphic harmonic functions of the form f =
h + g that are univalent and sense preserving such that |h′(z)| > |g′(z)| in
U∗. Subsequently, we may express the analytic functions h and g in U∗ and
U = U∗ ∪ {0}, respectively, by

h(z) =
1

z
+

∞∑
i=1

aiz
i, g(z) =

∞∑
i=1

biz
i, (3)

where h(z) has a simple pole at z = 0. Note that if g(z) = 0, then the class
MH is reduced to Σ, the class of meromorphic functions which are analytic
in U∗. The harmonic meromorphic starlike functions has been studied by Ja-
hangiri and Silverman [32], and Jahangiri [33]. Many other authors followed
the same steps for different classes of functions (see for example: [34] and [37]).

The authors in [13] introduced a q-differential operator Dn,ϑ
q f(z) : Σ → Σ

by

Dn,ϑ
q f(z) =

(−1)n

z
+

∞∑
i=1

qn[i]nqCq(ϑ, i)aizi, (n, ϑ ∈ N0). (4)

For f = h+ g as in (3), we define the operator Dn,ϑ
q f(z) : MH → MH, where

Dn,ϑ
q f(z) as in (4) by

Dn,ϑ
q f(z) = Dn,ϑ

q h(z) + (−1)nDn,ϑ
q g(z), z ∈ U∗, (5)

where

Dn,ϑ
q h(z) =

(−1)n

z
+

∞∑
i=1

qn[i]nqCq(ϑ, i)aizi, (6)

and

Dn,ϑ
q g(z) =

∞∑
i=1

qn[i]nqCq(ϑ, i)bizi. (7)

Remarks
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� When n = 0 and q → 1−, then Dn,ϑ
q f(z) := In,µf(z) was introduced by

Yuan et al. [38].

� When ϑ = 0 and q → 1−, then Dn,ϑ
q f(z) := Dnf(z) was introduced by

Bostanci and Oztürk [30].

It is clear that

∂qD
n,ϑ
q h(z) =

(−1)n+1

qz2
+

∞∑
i=1

qn[i]n+1
q Cq(ϑ, i)aizi−1, (8)

and

∂qD
n,ϑ
q g(z) =

∞∑
i=1

qn[i]n+1
q Cq(ϑ, i)bizi−1.

Next, we define MHS(k)
s (n, ϑ, q, α) as a new subfamily of harmonic meromor-

phic functions using Dn,ϑ
q f(z) as follows:

Definition 1.1 Let 0 ≤ α < 1, k ≥ 1 and n, ϑ ∈ N0. A function f =
h + g given by (3) belong the class of meromorphic starlike function of order
α denoted by MHS(k)

s (n, ϑ, q, α). If the following inequality holds true

Re
{−qz∂q(D

n,ϑ
q f(z))

Dn,ϑ
q fk(z)

}
⩾ α, z ∈ U∗, (9)

where

Dn,ϑ
q fk(z) = Dn,ϑ

q hk(z) + (−1)nDn,ϑ
q gk(z), k ∈ N, z ∈ U∗, (10)

hk(z) =
(−1)n

z
+

∞∑
i=1

ai∆iz
i, gk(z) =

∞∑
i=1

bi∆iz
i, (11)

and

∆i =
1

k

k−1∑
ι=0

ξ(i−1)ι, (ξ = e
2πi
k , k ≥ 1). (12)

Note that when q → 1−, then we have MHS(k)
s (n, ϑ, q, α) := MHS(k)

s (n, ϑ, α)
which was introduced by Alshaqsi and Darus [37].

Finally, Let MHS(k)
s (n, ϑ, q, α) denotes the subclass of MHS(k)

s (n, ϑ, q, α)
consisting of all functions fn(z) = hn + gn where hn and gn are given by

hn(z) =
(−1)n

z
+

∞∑
i=1

|ai|zi, gn(z) = (−1)n
∞∑
i=1

|bi|zi, ai, bi ≥ 0, (z ∈ U∗).

(13)
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Also, let fkn(z) = hkn + gkn where hkn and gkn is given by

hkn(z) =
(−1)n

z
+

∞∑
i=1

∆i|ai|zi, gkn(z) = (−1)n
∞∑
i=1

∆i|bi|zi, (14)

where ∆i is given by (12).

In this paper, we obtain the sufficient coefficient conditions for functions

f belong to the subclasses MHS(k)
s (n, ϑ, q, α) and MHS(k)

s (n, ϑ, q, α), respec-
tively. Furthermore, the extreme points, the convolution conditions, closure

and convex combinations are also obtained for the subclassMHS(k)
s (n, ϑ, q, α).

2 Coefficient Bounds

In this section, we determine the sufficient coefficient bound for functions f in

the classes MHS(k)
s (n, ϑ, q, α) and MHS(k)

s (n, ϑ, q, α), respectively.

Theorem 2.1 For n, ϑ ∈ N0 and 0 ≤ α < 1, If f = h+ g and fk = hk + gk
defined in (3) and (10), respectively, and satisfies the condition

∞∑
i=1

[(q[(i− 1)k + 1]q + α)

1− α
|a(i−1)k+l|+

(q[(i− 1)k + 1]q − α)

1− α
|b(i−1)k+1|

]
Γq

+
∞∑
i=2

i ̸=lk+1

qn+1[i]n+1
q Cq(ϑ, i)
1− α

(
|ai|+ |bi|

)
≤ 1− α,

(15)
where Γq = Γq(n, ϑ, i, k) = qn[(i − 1)k + 1]nqCq(ϑ, ik + 1), then f is harmonic

sense-preserving, univalent in U∗ and f ∈ MHS(k)
s (n, ϑ, q, α).
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Proof. For |z| = r ∈ (0, 1), we have

q|∂qh(z)| ≥
1

|z|2
−

∞∑
i=1

q[i]q|ai||zi−1|

=
1

r2
−

∞∑
i=1

q[i]q|ai|ri−1 > 1−
∞∑
i=1

q[i]q|ai|

≥ 1−
∞∑
i=1

[
(q[(i− 1)k + 1]q + α)|a(i−1)k+l|

]
× Γq −

∞∑
i=2

i ̸=lk+1

qn+1[i]n+1
q Cq(ϑ, i)|ai|

≥
∞∑
i=1

[
(q[(i− 1)k + 1]q − α)|b(i−1)k+l|

]
× Γq +

∞∑
i=2

i ̸=lk+1

qn+1[i]n+1
q Cq(ϑ, i)|bi|

≥
∞∑
i=1

q[2i]q|b2i|+
∞∑
i=1

q[2i− 1]q|b2i−1|

>
∞∑
i=1

q[i]q|bi|ri−1 = q|∂qg(z)|.

Therefore, h′(z) = limq→1 |q∂qh(z)| > limq→1 |q∂qg(z)| = g′(z), then f is sense-
preserving in U∗.

To show that f is univalent in U∗, for 0 < |z1| < |z2| < 1, we want to show
that M = |f(z2)− f(z1)| > 0.

M ≥ |z2 − z1|
|z1||z2|

−
∞∑
i=1

(|ai|+ |bi|)|zi2 − zi1|

≥ |z1 − z2|
|z1z2|

(
1− |z2|2

∞∑
i=1

(|ai|+ |bi|)
|z2i − z1

i|
|z2 − z1|

)

≥ |z1 − z2|
|z1z2|

(
1−

∞∑
i=1

q[i]q(|aj|+ |bj|)

)

≥ |z1 − z2|
|z1z2|

(
1−

∞∑
i=1

q[i]q(|aj|+ |bj|)−
∞∑
i=1

(q[(i− 1)k + 1]q)
[
|a(i−1)k+l|+ |b(i−1)k+l|

])

≥ |z1 − z2|
|z1z2|

(
1−

∞∑
i=1

[
(q[(i− 1)k + 1]q + α)|a(i−1)k+l|

+(q[(i− 1)k + 1]q − α)|b(i−1)k+l|
]
× Γq −

∞∑
i=2

i ̸=lk+1

qn+1[i]n+1
q Cq(ϑ, i)(|ai|+ |bi|)

 .
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The last expression is non-negative by (15), hence f is univalent in U∗.
In order to show that f belong to MHS(k)

s (n, ϑ, q, α), we must show that the
inequality (9) holds, that is equivalent to∣∣∣∣∣1 + α +

qz∂q(D
n,ϑ
q f(z))

Dn,ϑ
q fk(z)

∣∣∣∣∣ ≤
∣∣∣∣∣1− α−

qz∂q(D
n,ϑ
q f(z))

Dn,ϑ
q fk(z)

∣∣∣∣∣ . (16)

It suffices to show that∣∣∣(1−α)Dn,ϑ
q fk(z)−qz∂q(D

n,ϑ
q f(z))

∣∣∣− ∣∣∣(1+α)Dn,ϑ
q fk(z)+qz∂q(D

n,ϑ
q f(z))

∣∣∣ ≥ 0.

(17)
Substitute the value of Dn,ϑ

q fk(z) and ∂q(D
n,ϑ
q f(z)) in (17) we have

Ω =
∣∣(1− α)Dn,ϑ

q fk(z)− qz∂q(D
n,ϑ
q f(z))

∣∣− ∣∣(1 + α)Dn,ϑ
q fk(z) + qz∂q(D

n,ϑ
q f(z))

∣∣∣∣∣∣∣(−1)n(2− α)

z
+

∞∑
i=1

qn[i]nqCq(ϑ, i)
[(

(1− α)Θi − q[i]q

)
aiz

i + (−1)n
(
(1− α)Θi + q[i]q

)
bizi
]

− α(−1)n

z
+

∞∑
i=1

qn[i]nqCq(ϑ, i)
[(

(1 + α)Θi + q[i]q

)
aiz

i + (−1)n
(
(1 + α)∆i − q[i]q

)
bizi
]∣∣∣∣∣

≥ 2(1− α)

|z|

{
1−

∞∑
i=1

qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

1− α
|ai||z|i+1

−
∞∑
i=1

qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

1− α
|bi||z|i+1

}
.

For |z| = r < 1, then we have

Ω ≥ 2(1−α)

{
1−

∞∑
i=1

qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

1− α
|ai| −

∞∑
i=1

qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

1− α
|bi|

}
.

(18)
From the definition of ∆i, we know that

∆i =


1 , i = lk + 1

(i ⩾ 2, k, l ⩾ 1),
o , i ̸= lk + 1

(19)

Therefor, the expression (18), become

Ω ≥ 2(1− α)

{
1−

∞∑
i=1

[(q[(i− 1)k + 1]q + α)

1− α
|a(i−1)k+l|

+
(q[(i− 1)k + 1]q − α)

1− α
|b(i−1)k+1|

]
Γq −

∞∑
i=2

i ̸=lk+1

qn+1[i]n+1
q Cq(ϑ, i)
1− α

(
|ai|+ |bi|

) .
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This expression is positive by condition (15) and this completes the proof.
Next, we show that the condition (15) is necessary and sufficient condition for

the functions f in the class MHS(k)
s (n, ϑ, q, α).

Theorem 2.2 If fn = hn + gn where hn and gn are of the form (12), and

fkn = hkn+gkn where hkn and gkn of the form (14), then fn ∈ MHS(k)
s (n, ϑ, q, α),

if and only if the condition (15) holds.

Proof. Since MHS(k)
s (n, ϑ, q, α) ⊂ MHS(k)

s (n, ϑ, q, α) then the “if part” holds
by Theorem 2.1 It is enough to prove the ’only if’ part.

We assume the condition (15) does not hold, since fn ∈ MHS(k)
s (n, ϑ, q, α)

then

Re

{
−qz∂q(D

n,ϑ
q fn(z))

Dn,ϑ
q fkn(z)

}
⩾ α, (z ∈ U∗) .

This equivalent to

1−α
r

−
∑∞

i=1 q
n[i]nqCq(ϑ, i)(q[i]q + α∆i)|ai|ri +

∑∞
i=1 q

n[i]nqCq(ϑ, i)(q[i]q − α∆i)|bi|ri
1
r
+
∑∞

i=1 q
n[i]nqCq(ϑ, i)∆i|ai|ri +

∑∞
i=1 q

n[i]nqCq(ϑ, i)∆i|bi|zi
.

(20)
For sufficiently r close to 1−, then the numerator of last equation is negative.
This meaning there exist r1 ∈ (0, 1) for which (20) is negative and this is

contradicts with assumption for fn ∈ MHS(k)
s (n, ϑ, q, α) and this complete

the proof.

3 Extreme points and distortion bounds

Throughout this section, we provide extreme points and obtain distortion

bounds for the class MHS(k)
s (n, ϑ, q, α).

Theorem 3.1 For |z| = r ∈ (0, 1) and if fn = hn+gn ∈ MHS(k)
s (n, ϑ, q, α),

then

1

r
− r(1− α)

qn[2]nq [ϑ+ 1]q(q[2]q − α)
≤
∣∣∣fn(z)∣∣∣ ≤ 1

r
+

r(1− α)

qn[2]nq [ϑ+ 1]q(q[2]q − α)
. (21)

Proof. It is enough to prove the right sides, we omit the proof of the left side

because it is similar to the right. Let fn = hn + gn ∈ MHS(k)
s (n, ϑ, q, α).
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Taking the absolute value of fn, we have

∣∣∣fn(z)∣∣∣ =
∣∣∣∣∣1z +

∞∑
i=1

aiz
i + (−1)n

∞∑
i=1

bizi

∣∣∣∣∣
≤ 1

r
+

∞∑
i=1

|ai + bi|ri ≤
1

r
+ r

∞∑
i=1

|ai + bi|

≤ 1

r
+

r(1− α)

qn[2]nq [ϑ+ 1]q(q[2]q − α∆2)

∞∑
i=1

qn[2]nq [ϑ+ 1]q(q[2]q − α∆2)

1− α

∣∣∣ai + bi

∣∣∣
≤ 1

r
+

r(1− α)

qn[2]nq [ϑ+ 1]q(q[2]q − α)

∞∑
i=1

(
qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

1− α

∣∣∣ai∣∣∣
+
qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

1− α

∣∣∣bi∣∣∣)
≤ 1

r
+

r(1− α)

qn[2]nq [ϑ+ 1]q(q[2]q − α)
.

Thus, the proof is complete.

Corollary 3.2 If fn = hn + gn ∈ MHS(k)
s (n, ϑ, q, α) then

fn(U∗) ⊂
{
qn[2]nq [ϑ+ 1]q(q[2]q − α)− (1− α)

qn[2]nq [ϑ+ 1]q(q[2]q − α)

}
. (22)

Next, we provide the extreme points of the class of the closed convex halls of

MHS(k)
s (n, ϑ, q, α) denoted by clcoMHS(k)

s (n, ϑ, q, α).

Theorem 3.3 Let fn = hn+ gn where hn and gn are of the form (13), then

fn ∈ MHS(k)
s (n, ϑ, q, α) if and only if fni

can be written as

fni
=

∞∑
i=0

(
Φihni

(z) + Ψigni
(z)
)

where
∑∞

i=0 Φi +Ψi = 1, (Φi,Ψi ≥ 0) and

hn0 =
(−1)n

z
, hni

=
(−1)n

z
+
( 1− α

qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

)
zi, i = 1, 2, 3, · · · ,

gn0 =
(−1)n

z
, gni

=
(−1)n

z
+ (−1)n

( 1− α

qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

)
zi, i = 1, 2, 3, · · · ,

where hni
and gni

are the extreme points of MHS(k)
s (n, ϑ, q, α).
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Proof. Let fn ∈ clcoMHS(k)
s (n, ϑ, q, α). Set for i = 1, 2, 3, · · ·

Φi =
qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

1− α
|ai|, 0 ≤ Φi ≤ 1,

and

Ψi =
qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

1− α
|bi|, 0 ≤ Ψi ≤ 1. (23)

Then fni
can be written as

fni
=

(−1)n

z
+

∞∑
i=1

|ai|zi + (−1)n
∞∑
i=1

|bi|zi

=
(−1)n

z
+

∞∑
i=1

(1− α)Φi

qn[i]nqCq(ϑ, i)(q[i]q + α∆i)
zi + (−1)n

∞∑
i=1

(1− α)Ψi

qn[i]nqCq(ϑ, i)(q[i]q − α∆i)
zi

=
∞∑
i=1

(Φihni
+Ψigni

) +
(−1)n

z

(
1−

∞∑
i=1

(Φi +Ψi)

)

=
∞∑
i=1

(Φihni
+Ψigni

) +
(−1)n

z
(Φ0 +Ψ0) =

∞∑
i=0

(Φihni
+Ψigni

) .

Conversely, for fn = hn + gn as in (13), we have

fni
=

∞∑
i=0

(
Φihni

(z) + Ψigni
(z)
)

= Φ0hn0(z) + Ψ0gn0(z) +
∞∑
i=1

(
Φihni

(z) + Ψigni
(z)
)

= (Φ0 +Ψ0)
(−1)n

z
+

∞∑
i=1

(−1)n

z
Φi +

∞∑
i=1

( 1− α

qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

)
Φiz

i

+
∞∑
i=1

(−1)n

z
Ψi + (−1)n

∞∑
i=1

( 1− α

qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

)
Ψizi

=
(−1)n

z
+

∞∑
i=1

( 1− α

qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

)
Φiz

i

+ (−1)n
∞∑
i=1

( 1− α

qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

)
Ψizi.
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since fni
∈ MHS(k)

s (n, ϑ, q, α), and applying Theorem 2.2, we have

∞∑
i=1

(
qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

1− α

qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

)
Φi

+
∞∑
i=1

(
qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

1− α

qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

)
Ψi

= (1− α)
∞∑
i=1

Φi +Ψi ≤ 1− α.

4 Convolutions and Convex combinations

In this section, we show that the classMHS(k)
s (n, ϑ, q, α) is closed under convo-

lution and convex combination of its member. For the harmonic meromorphic
functions

fn(z) =
(−1)n

z
+

∞∑
i=1

|ai|zi + (−1)n
∞∑
i=1

|bi|zi

and

βn(z) =
(−1)n

z
+

∞∑
i=1

|ηi|zi + (−1)n
∞∑
i=1

|νi|zi,

then, the Hadamard product (or convolution) of fn(z) and βn(z) is given by

(fn ∗ βn)(z) = (βn ∗ fn)(z) =
(−1)n

z
+

∞∑
j=1

|ai||ηi|zi + (−1)n
∞∑
i=1

|bi||νi|zi.

Theorem 4.1 For 0 ≤ γ ≤ α < 1, let f ∈ MHS(k)
s (n, ϑ, q, α) and β ∈

MHS(k)
s (n, ϑ, q, γ), then fn ∗ βn ∈ MHS(k)

s (n, ϑ, q, α) ⊂ MHS(k)
s (n, ϑ, q, γ).

Proof. It is enough to show that fn ∗βn satisfies the condition of Theorem 2.2.

Since βn ∈ MHS(k)
s (n, ϑ, q, α) and |ηi| ≤ 1, |νi| ≤ 1, we have

∞∑
i=1

(qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

1− γ

)
|ai||ηi|+

∞∑
i=1

(qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

1− γ

)
|bi||νi|

≤
∞∑
i=1

(qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

1− γ

)
|ai|+

∞∑
i=1

(qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

1− γ

)
|bi|

≤
∞∑
i=1

(qn[i]nqCq(ϑ, i)(q[i]q + α∆i)

1− α

)
|ai|+

∞∑
i=1

(qn[i]nqCq(ϑ, i)(q[i]q − α∆i)

1− α

)
|bi|

≤ 1− α,
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for 0 ≤ γ ≤ α < 1 and fn ∈ MHS(k)
s (n, ϑ, q, α), therefore, fn ∗ βn ∈

MHS(k)
s (n, ϑ, q, α) ⊂ MHS(k)

s (n, ϑ, q, γ).

In the last theorem, we examine the convex combination of the classMHS(k)
s (n, ϑ, q, α).

Theorem 4.2 let fnχ ∈ MHS(k)
s (n, ϑ, q, α) for every χ = 1, 2, · · · , ϱ, where

fnχ defined by

fnχ =
(−1)n

z
+

∞∑
i=1

|anχ |zi + (−1)n
∞∑
i=1

|bnχ|zi, χ = 1, 2, · · · , ϱ. (24)

Then, the function

Ωχ(z) =

ϱ∑
χ=1

ζχfnχ , , (0 ≤ ζχ ≤ 1), (25)

are also in the class MHS(k)
s (n, ϑ, q, α), where

∑ϱ
χ=1 ζχ = 1 .

Proof. According to the given Ωχ(z), we have

Ωχ(z) =

ϱ∑
χ=1

ζχfnχ

=
(−1)n

z
+

∞∑
i=1

[
ϱ∑

χ=1

ζχanχ

]
zi + (−1)n

∞∑
i=1

[
ϱ∑

χ=1

ζχbnχ

]
zi.

(26)

For every χ = 1, 2, · · · , ϱ, we have fnχ ∈ MHS(k)
s (n, ϑ, q, α), then by (18), we

get

∞∑
i=1

qn[i]nqCq(ϑ, i)
1− α

[
(q[i]q + α∆i)

( ϱ∑
χ=1

ζχanχ

)
+ (q[i]q − α∆i)

( ϱ∑
χ=1

ζχbnχ

)]

=

ϱ∑
χ=1

ζχ

[
∞∑
i=1

qn[i]nqCq(ϑ, i)
1− α

{
(q[i]q + α∆i)anχ + (q[i]q − α∆i)bnχ

}]

≤
ϱ∑

χ=1

ζχ(1) ≤ 1.

Hence, the proof is complete.

Corollary 4.3 The class MHS(k)
s (n, ϑ, q, α) is closed under convex linear

combination.
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Proof. Let the functions fnχ(z), (χ = 1, 2) defined by (24) be in the class

MHS(k)
s (n, ϑ, q, α), then the function Υ(z) defined by

Υ(z) = ρfn1(z) + (1− ρ)fn2(z), (0 ≤ ρ ≤ 1), (27)

is in the class MHS(k)
s (n, ϑ, q, α). Also, by taking ϱ = 2, χ1 = ρ and χ2 = 1−ρ

in Theorem 4.2, so the proof is complete.
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classes of Analytic Functions Defined by Differential Operator Involv-
ing q-Ruscheweyh Operator, Journal of function space, 2019, Article ID:
8459405, 2019, 8 pages.

[17] A. Alsoboh, M. Darus, A q-Starlike Class of Harmonic Meromorphic Func-
tions Defined by q-Derivative Operator. In: Mathematics and Compu-
tation: IACMC 2022, Zarqa, Jordan, May 11–13. Singapore: Springer
Nature Singapore, 2023. p. 257-269.

[18] A. Alsoboh, M. Darus, New subclass of analytic functions defined by
q-differential operator with respect to k-symmetric points. International
Journal of Mathematics and Computer Science, 14(4), 2019, 761–773.

[19] A. Alsoboh, M, Darus. On subclasses of harmonic univalent functions
defined by Jackson (p,q)-derivative, Journal of Mathematical Analysis,
10(3), 2019, 123–130.

[20] A. Alsoboh, M. Darus, On q-starlike functions with respect to k-symmetric
points. Acta Universitatis Apulensis, 60, 2019, 61–73.

[21] A. Amourah, M. Alomari, , F. Yousef, , A. Alsoboh, Consolidation of a
Certain Discrete Probability Distribution with a Subclass of Bi-Univalent
Functions Involving Gegenbauer Polynomials.Math. Probl. Eng. 2022,
2022, 6354994.



A Certain Subclass of Harmonic Meromorphic Functions with Respect... 15

[22] A. Alsoboh, A. Amourah, M. Darus, C.A. Rudder, Studying the Har-
monic Functions Associated with Quantum Calculus. Mathematics 2023,
11, 2220. https://doi.org/10.3390/math11102220

[23] A. Amourah, , A. Alsoboh, , O. Ogilat, G.M. Gharib, R. Saadeh, M.
Al Soudi, A Generalization of Gegenbauer Polynomials and Bi-Univalent
Functions. Axioms 2023, 12, 128.

[24] A. Alsoboh, A. Amourah, M. Darus, R.I.A Sharefeen. Applications
of Neutrosophic q-Poisson distribution Series for Subclass of Ana-
lytic Functions and Bi-Univalent Functions.Mathematics 2023, 11, 868.
https://doi.org/10.3390/math11040868

[25] A. Alsoboh, A. Amourah, M. Darus, C.A. Rudder, Investigating New
Subclasses of Bi-Univalent Functions Associated with q-Pascal Distribu-
tion Series Using the Subordination Principle. Symmetry 2023, 15, 1109.
https://doi.org/10.3390/sym15051109

[26] T. Al-Hawary, A. Amourah, A. Alsoboh, O.Alsalhi. A New
Comprehensive Subclass of Analytic Bi-Univalent Functions Re-
lated to Gegenbauer Polynomials. Symmetry 2023, 15, 576.
https://doi.org/10.3390/sym15030576

[27] A. Alsoboh, A. Amourah, F.M. Sakar, O. Ogilat, G.M. Gharib,
N. Zomot, Coefficient Estimation Utilizing the Faber Polynomial
for a Subfamily of Bi-Univalent Functions. Axioms 2023, 12, 512.
https://doi.org/10.3390/axioms12060512

[28] G. Gasper, M. Rahman and G. George, Basic hypergeometric series .
Cambridge university press, 96, 2004.
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