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Abstract

Using subordination conditions between the zero-truncated
Poisson distribution and the (p, q)−Lucas polynomial, we in-
troduce and examine a new subclass of analytical bi-univalent
functions. For functions falling within this new subclass, we
will more precisely estimate the first two initial Taylor-Maclaurin
coefficients and resolve the Fekete-Szegö functional problem.
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1 Introduction

Orthogonal polynomials (OP) were initially discovered by Legendre in 1784 [1].
Ordinary differential equations are typically solved using (OP) when certain
model constraints are met. Additionally, the (OP) [2] serve a significant role
in the approximation theory.

Φd and Φt are two polynomials of order d and t, respectively, and are
orthogonal if ∫ b

a

Φd(x)Φt(x)ϖ(x)dx = 0, for d ̸= t,
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where ϖ(x) is a properly stated function in the (a, b); as a result, the
integral of all finite order polynomials Φn(x) is well defined.

Let A be the class of functions f of the form

f(ξ) = ξ + a2ξ
2 + a3ξ

3 + · · · , (ξ ∈ U). (1)

which are analytic in the disk U = {ζ ∈ C : |ζ| < 1} and gratify the
normalization condition f ′(0) − 1 = 0 = f(0). Also, we represent by S the
subclass of A comprising functions of the Eq. (1) which are also univalent in
U.

Geometric function theory can benefit greatly from the powerful tools that
differential subordination of analytical functions provides. Miller and Mocanu
[3] introduced the first differential subordination problem, additionally, see
[4]. The majority of the developments in the field are compiled in Miller and
Mocanu’s book [5], along with references to the publication date.

Every function f ∈ S has an inverse f−1, defined by

f−1(f(ξ)) = ξ (ξ ∈ U)

and

f(f−1(w)) = w (|w| < r0(f); r0(f) ≥
1

4
)

where

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (2)

A function is said to be bi-univalent in U if both f(ξ) and f−1(ξ) are
univalent in U. Let Σ denote the class of bi-univalent functions in U given by
(1). For interesting examples of functions in the class Σ, see([6]-[13]).

In probability theory, the zero-truncated Poisson distribution is a certain
discrete probability distribution whose support is the set of positive integers,
that is, a Poisson distribution with eliminating the random variable zero [14].
This distribution is also known as the conditional Poisson distribution [15] or
the positive Poisson distribution [16]. The probability density function of the
zero-truncated Poisson distribution is given by

Pm(X = s) =
ms

(em − 1)s!
, s = 1, 2, 3, ...,m > 0.

Here, let us consider a power series whose coefficients are probabilities of
the zero-truncated Poisson distribution, that is

P(m, ξ) = ξ +
∞∑
n=2

mn−1

(em − 1)(n− 1)!
ξn, ξ ∈ U, (3)
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where m > 0. By ratio test the radius of convergence of this series is infinity.
Define the linear operator χ : A → A by

χmf(ξ) = P(m, ξ) ∗ f(ξ) = ξ +
∞∑
n=2

mn−1

(em − 1)(n− 1)!
anξ

n, ξ ∈ U , (4)

= ξ +
m

(em − 1)
a2ξ

2 +
m2

2(em − 1)
a3ξ

3 + · · ·

where ∗ denote the convolution or Hadamard product of two series, see [17].
Orthogonal polynomials have been studied extensively as early as they were

discovered by Legendre in 1784 [18]. In mathematical treatment of model prob-
lems, orthogonal polynomials arise often to find solutions of ordinary differen-
tial equations under certain conditions imposed by the model. The importance
of the orthogonal polynomials for the contemporary mathematics, as well as for
wide range of their applications in the physics and engineering, is beyond any
doubt. Recently, many researchers have been exploring bi-univalent functions
associated with orthogonal polynomials, few to mention ([19]-[38]).

Let p(x) and q(x) be polynomials with real coefficients. The (p, q)−Lucas
polynomials Lp,q,n(x) are defined by the recurrence relation

Lp,q,n(x) = p(x)Lp,q,n−1(x) + q(x)Lp,q,n−2(x) (n ≥ 2) ,

from which the first few Lucas polynomials can be found as

Lp,q,0(x) = 2, Lp,q,1(x) = p(x) and Lp,q,2(x) = p2(x) + 2q(x). (5)

Remark 1.1 We note that Lucas polynomials Lx,1,n(x) ≡ Ln(x), Pell–
Lucas polynomials L2x,1,n(x) ≡ Dn(x), Jacobsthal–Lucas polynomials L1,2x,n(x) ≡
jn(x) and Chebyshev polynomials first kind L2x,−1,n(x) ≡ Tn(x) , are special
cases of the (p, q)−Lucas polynomial.

Lemma 1.2 (16) Let G{L(x)}(ζ) be the generating function of the (p, q)−Lucas
polynomial sequence Lp,q,n(x). Then,

G{L(x)}(ζ) =
∞∑
n=0

Lp,q,n(x)ζ
n =

2− p(x)ζ

1− p(x)ζ − q(x)ζ2

and

G{L(x)}(ζ) = G{L(x)}(ζ)− 1 = 1 +
∞∑
n=1

Lp,q,n(x)ζ
n =

1 + q(x)ζ2

1− p(x)ζ − q(x)ζ2
.
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The generator of the Lucas polynomials G{L(x)}(ζ) is as follows:

G{L(x)}(ζ) =
1 + q(x)ζ2

1− p(x)ζ − q(x)ζ2
. (6)

2 The class ζΣ(x, α, µ)

In this section, we introduce a new subclass of Σ involving the new constructed
series (3) and Gegenbauer polynomials.

Definition 2.1 A function f ∈ Σ given by (1) is said to be in the class
ζΣ(x, α, µ) if the following subordinations are satisfied:

(1− µ)
χmf(ξ)

ξ
+ µ (χmf(ξ))

′ ≺ G{L(x)}(ζ), (7)

and

(1− µ)
χmg(w)

w
+ µ (χmg(w))

′ ≺ G{L(x)}(w), (8)

where µ ≥ 0 and the function h = f−1 is given by (2).

Example 2.2 If µ = 1, then we have, ζΣ(x, α, 1) = ζΣ(x, α), in which
ζΣ(x, α) denotes the class of functions f ∈ Σ given by (1) and satisfying the
following conditions.

(χmf(ξ))
′ ≺ G{L(x)}(ζ),

and

(χmg(w))
′ ≺ G{L(x)}(w),

where µ ≥ 0 and the function h = f−1 is given by (2).

Example 2.3 If µ = 0, then we have, ζΣ(x, α, 0) = ζΣ(x, α, 0), in which
ζΣ(x, α, 0) denotes the class of functions f ∈ Σ given by (1) and satisfying the
following conditions.

χmf(ξ)

ξ
≺ G{L(x)}(ζ),

and
χmg(w)

w
≺ G{L(x)}(w),

where µ ≥ 0 and the function h = f−1 is given by (2).
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3 Estimates of the class ζΣ(x, α, µ)

First, we give the coefficient estimates for the class ζΣ(x, α, µ) given in Defini-
tion 2.1.

Theorem 3.1 Let f ∈ Σ given by (1) belongs to the class ζΣ(x, α, µ). Then

|a2|

≤
2p(x)(em − 1)

√
p(x)

m
√∣∣[(1 + 2µ) (em − 1)− 2 (1 + µ)2

]
p2(x)− 4 (1 + µ)2 q(x)

∣∣ ,
and

|a3| ≤
(em − 1)2 [p(x)]2

m2 (1 + µ)2
+

(em − 1)p(x)

m2 (1 + 2µ)
.

proof 3.2 Let f ∈ ζΣ(x, α, µ). From Definition 2.1, for some analytic func-
tions w, v such that w(0) = v(0) = 0 and |w(ξ)| < 1, |v(w)| < 1 for all
ξ, w ∈ U, then we can write

(1− µ)
χmf(ξ)

ξ
+ µ (χmf(ξ))

′ = G{L(x)}(u(ζ)) (9)

and

(1− µ)
χmg(w)

w
+ µ (χmg(w))

′ = G{L(x)}(v(w)). (10)

From the equalities (9) and (10), we obtain that

(1− µ)
χmf(ξ)

ξ
+ µ (χmf(ξ))

′ = 1 + Lp,q,1(x)u1ζ + Lp,q,2(x)u2ζ
2 + · · · (11)

and

(1− µ)
χmg(w)

w
+ µ (χmg(w))

′ = 1 + Lp,q,1(x)v1w + Lp,q,2(x)v2w
2 + · · · . (12)

It is fairly well known that if

|u(ζ)| =
∣∣u1ζ + u2ζ

2 + u3ζ
3 + · · ·

∣∣ < 1, (ξ ∈ U)

and
|v(w)| =

∣∣v1w + v2w
2 + v3w

3 + · · ·
∣∣ < 1, (w ∈ U),

then, see [40]
|uj| ≤ 1 and |vj| ≤ 1 for all j ∈ N. (13)
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Thus, upon comparing the corresponding coefficients in (11) and (12), we
have

(1 + µ)m

em − 1
a2 = Lp,q,1(x)u1, (14)

(1 + 2µ)m2

2 (em − 1)
a3 = Lp,q,1(x)u2 + Lp,q,2(x)u

2
1, (15)

−(1 + µ)m

em − 1
a2 = Lp,q,1(x)v1, (16)

and
(1 + 2µ)m2

2 (em − 1)

[
2a22 − a3

]
= Lp,q,1(x)v2 + Lp,q,2(x)v

2
1. (17)

It follows from (14) and (16) that

u1 = −v1, (18)

and
2 (1 + µ)2m2

(em − 1)2
a22 = (Lp,q,1(x))

2 (u2
1 + v21

)
. (19)

If we add (15) and (17), we get

(1 + 2µ)m2

(em − 1)
a22 = Lp,q,1(x) (u2 + v2) + Lp,q,2(x)

(
u2
1 + v21

)
. (20)

Substituting the value of (u2
1 + v21) from (19) in the right hand side of (20),

we deduce that [
(1 + 2µ)− 2 (1 + µ)2

(em − 1)

Lp,q,2(x)

(Lp,q,1(x))
2

]
m2

(em − 1)
a22

= Lp,q,1(x) (u2 + v2) . (21)

Moreover, computations using (5), (13) and (21), we find that

|a2| ≤
2p(x)(em − 1)

√
p(x)

m
√∣∣[(1 + 2µ) (em − 1)− 2 (1 + µ)2

]
p2(x)− 4 (1 + µ)2 q(x)

∣∣ .
Now, if we subtract (17) from (15), we obtain

(1 + 2µ)m2

(em − 1)

(
a3 − a22

)
= Lp,q,1(x) (u2 − v2) + Lp,q,2(x)

(
u2
1 − v21

)
. (22)
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Then, in view of (5) and (19), Eq. (22) becomes

a3 =
(em − 1)2 [Lp,q,1(x)]

2

2m2 (1 + µ)2
(
u2
1 + v21

)
+

(em − 1)Lp,q,1(x)

m2 (1 + 2µ)
(u2 − v2) .

Thus, applying (5) and (13), we conclude that

|a3| ≤
(em − 1)2 [p(x)]2

m2 (1 + µ)2
+

(em − 1)p(x)

m2 (1 + 2µ)
.

Making use of the values of a22 and a3, we prove the following Fekete–Szegö
inequality for functions in the class ζΣ(x, α, µ).

Theorem 3.3 Let f ∈ Σ given by (1) belongs to the class ζΣ(x, α, µ). Then

|a3 − ηa22| ≤

{
2p(x)(em−1)
m2(1+2µ)

, 0 ≤ |T (η)| ≤ (em−1)
m2(1+2µ)

2 |p(x)| |T (η)| , |T (η)| ≥ (em−1)
m2(1+2µ)

where

T (η) =
(em − 1)2 [Lp,q,1(x)]

2 (1− η)

m2
[
(1 + 2µ) (em − 1) [Lp,q,1(x)]

2 − 2 (1 + µ)2 Lp,q,2(x)
] .

proof 3.4 From (21) and (22)

a3 − ηa22 = (1− η)
(em − 1)2 [Lp,q,1(x)]

3 (u2 + v2)

m2
[
(1 + 2µ) (em − 1) [Lp,q,1(x)]

2 − 2 (1 + µ)2 Lp,q,2(x)
]

+
(em − 1)Lp,q,1(x)

m2 (1 + 2µ)
(u2 − v2)

= Lp,q,1(x)

[
T (η) +

(em − 1)

m2 (1 + 2µ)

]
u2

+ Lp,q,1(x)

[
T (η)− (em − 1)

m2 (1 + 2µ)

]
v2,

where

T (η) =
(em − 1)2 [Lp,q,1(x)]

2 (1− η)

m2
[
(1 + 2µ) (em − 1) [Lp,q,1(x)]

2 − 2 (1 + µ)2 Lp,q,2(x)
] .

Then, in view of (5), we conclude that

∣∣a3 − ηa22
∣∣ ≤ {

2(em−1)|Lp,q,1(x)|
m2(1+2µ)

0 ≤ |T (η)| ≤ (em−1)
m2(1+2µ)

,

2 |Lp,q,1(x)| |T (η)| |T (η)| ≥ (em−1)
m2(1+2µ)

,

Which completes the proof of Theorem 3.3.
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Corresponding essentially to Example 2.2, Theorems 3.1 and 3.3 yield the
following consequence.

Corollary 3.5 Let f ∈ Σ given by (1) belongs to the class ζΣ(x, α, 0). Then

|a2| ≤
2p(x)(em − 1)

√
p(x)

m
√

|[(em − 1)− 2] p2(x)− 4q(x)|
,

|a3| ≤
(em − 1)2 [p(x)]2

m2
+

(em − 1)p(x)

m2
.

and

|a3 − ηa22| ≤

{
2p(x)(em−1)
m2(1+2µ)

, 0 ≤ |T (η)| ≤ (em−1)
m2(1+2µ)

2 |p(x)| |T (η)| , |T (η)| ≥ (em−1)
m2(1+2µ)

,

where T (η) = (em−1)2[Lp,q,1(x)]
2(1−η)

m2[(em−1)[Lp,q,1(x)]
2−2Lp,q,2(x)]

.

Corollary 3.6 Let f ∈ Σ given by (1) belongs to the class ζΣ(x, α, 1). Then

|a2| ≤
2p(x)(em − 1)

√
p(x)

m
√

|[3(em − 1)− 8] p2(x)− 16q(x)|
,

|a3| ≤
(em − 1)2 [p(x)]2

4m2
+

(em − 1)p(x)

3m2
.

and

|a3 − ηa22| ≤

{
2p(x)(em−1)

3m2 , 0 ≤ |T (η)| ≤ (em−1)
3m2

2 |p(x)| |T (η)| , |T (η)| ≥ (em−1)
3m2

where T (η) = (em−1)2[Lp,q,1(x)]
2(1−η)

m2[3(em−1)[Lp,q,1(x)]
2−8Lp,q,2(x)]

.

4 Conclusions

In this study, we have created a brand new subclass of normalized analytic and
bi-univalent functions called ζΣ(x, α, µ) that is connected to the zero-truncated
Poisson distribution and (p, q)−Lucas polynomial. We have derived estimates
for the Fekete-Szegö functional issue and the Taylor-Maclaurin coefficients |a2|
and |a3| for functions that fall under this category. Additionally, one can infer
the outcome for the subclass ζΣ(x, α) specified in Examples 2.2 and 2.3 by
appropriately specializing the parameter.
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