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Abstract

In this paper, we investigate some characterization of normalized Dini func-
tion of order ν of first kind, to be subclass of the various analytic functions.
We consider an integral operator related to normalized Dini function.
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1 Introduction

Consider the classH = H(U) of analytic functions, where U = {z : z ∈ C and |z| < 1}
represents the open unit disk in the complex plane. Let H[a, n] denote the sub-
class of H defined by

f(z) = a+ anz
n + an+1z

n+1 + · · · , (n ∈ N, a ∈ C),

and let A be the subclass of H comprising all functions f of the form

f = z +
∞∑
n=2

anz
n, (an ∈ C, z ∈ U), (1)
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which are analytic in the open unit disk in the complex plane U and satisfy
the normalization conditions: f(0) = f

′
(0) − 1 = 0. We denote the subclass

of A, characterized by the form (1), that is univalent in U by S. Additionally,
we denote by T the subclass of S described by

f = z −
∞∑
n=2

|an|zn, (z ∈ U). (2)

The convolution (or Hadamard product) of the functions f1(z) =
∞∑
n=2

ϕnz
n

and f2(z) =
∞∑
n=2

ξnz
n is defined by:

f1(z) ∗ f2(z) = (f1 ∗ f2)(z) = z +
∞∑
n=2

ϕnξnz
n.

Definition 1.1 A function f ∈ T is said to be in the class T (λ, α) if it
satisfies the condition

Re

{
zf

′
(z)

λzf ′(z) + (1− λ)f(z)

}
> α, (z ∈ U) (3)

where α < 1 and λ ≥ 0.

Definition 1.2 The subclass C(λ, α) denote all functions f ∈ T if it satis-
fies the condition

Re

{
f

′
(z) + zf

′′
(z)

f ′(z) + λzf ′′(z)

}
> α, (z ∈ U) (4)

where α < 1 and λ ≥ 0.

The subclasses T (λ, α) and C(λ, α) was studied by Altinas and Owa [2] and
the certain condition for hypergeometric function for these classes was studied
by Mostafa (see [1]).

Definition 1.3 [5] The subclass Rτ (A,B) represent all functions f ∈ A
that satisfies the condition

Re

{
f

′
(z)− 1

τ(A−B)−B |f ′(z)− 1|

}
< 1 (5)

where A and B are fixed numbers, −1 ≤ B < A ≤ 1 and τ non-zero complex
number.
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Consider the second-order linear homogeneous differential equation

z2y
′′
(z) + bzy

′
(z) + (cz2 − ν2 + (1− b)ν)y(z) = 0, (b, c, ν ∈ C) , (6)

then the function ψν,b,c is a particular solution of (6), which called the gener-
alizes Bessel function of order ν. Also, ψν,b,c represented by

ψν,b,c(z) =
∞∑
n=0

(−c)n

n!Γ
(
ν + n+ (b+1)

2

) (z
2

)2n+ν

, (z ∈ C), (7)

where Γ stands for the Euler gamma function. For b = c = 1 we obtain the
familiar Bessel function of the first kind of order ν.

Remark 1.4 :

i. For c = b = 1 we obtain the familiar Bessel function of the first kind of
order ν.

ii. For c = −1, b = 1 we obtain the modified Bessel function of the first kind
of order ν.

iii. For c = 1, b = 2 we obtain the spherical Bessel function of the first kind
of order ν.

Consider the generalized Dini function introduced by Deniz, as outlined in [4].
This function is a composite of the generalized Bessel function of the first kind,
denoted by

Dν = (a− ν)ψν,b,c(z) + zψ
′

ν,b,c(z),

where ψν,b,c represents the generalized Bessel function of order ν. It is worth
noting that when a = b = c = 1, this function reduces to the classical Dini
functions of Bessel functions. In the context of this study, we specifically
explore the normalized form of the Dini function defined by:

ων,a,b,c(z) =
2ν

ρ
Γ

(
ν +

b+ 1

2

)
z1−

ν
2

[
(a− ν)ψν,b,c(

√
z) +

√
zψ

′

ν,b,c(
√
z)
]

=
∞∑
n=0

(−c)n(2n+ a)Γ(ν + 1)

a4nn!Γ(ν + n+ 1)
zn+1

= z +
∞∑
n=1

(−c)n(2n+ a)

a4nn!(ν + 1)n
zn+1,

(8)
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where (δ)k stands for Pochhammer symbol, that defined for δ, k ∈ C by

(δ)k =
Γ(δ + k)

Γ(δ)
=


1 if k = 0; δ ∈ C \ {0}

δ(δ + 1)(δ + 2) · · · (δ + k − 1) if k ∈ N; δ ∈ C
.

Now, we introduce a new operator Ra,b,c,νf : A → A defined by

Ra,b,c,νf(z) = (ων,a,b,c(z)∗f)(z) = z+
∞∑
n=2

(−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

anz
n (z ∈ U),

(9)
where ων,a,b,c(z) is defined by (8).

The results we obtain hinge significantly upon the significance of the fol-
lowing lemmas.

Lemma 1.5 [2] A function f of the form (2) is belong to the class T (λ, α),
if and only if

∞∑
n=2

(
n− λαn− α + λα

)
|an| ≤ 1− α.

Lemma 1.6 [2] A function f of the form (2) is belong to the class C(λ, α),
if and only if

∞∑
n=2

n
(
n− λαn− α + λα

)
|an| ≤ 1− α.

Lemma 1.7 [5] if f ∈ Rτ (A,B) and of the form (1), then

|an| ≤
τ(A−B)

n
, (n = 2, 3, · · · ). (10)

The bounds in equation (10) are sharp.

2 Main Results

Theorem 2.1 If c < 0 and ν > −1, then the function 2z−ων,a,b,c(z) belong
to the class T (λ, α) if and only if

(1− λα)ω
′

ν,a,b,c(1) ≤ (2− α(1 + λ))ων,a,b,c(1), (11)

where ων,a,b,c(z) is defined by (8).
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Proof. From (8), we have

2z − ων,a,b,c(z) = z −
∞∑
n=2

(−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

zn

According to Lemma 1.5, we must show that

∞∑
n=2

(
n− λαn− α + λα

) (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

≤ 1− α.

Now

∞∑
n=2

(
n− λαn− α + λα

) (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

=
∞∑
n=2

(
n(1− λα)− α(1− λ)

) (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

= (1− λα)
∞∑
n=2

n
(−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

− α(1− λ)
∞∑
n=2

(−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

= (1− λα)
∞∑
n=1

(n+ 1)
(−c)n(2n+ a)

a4n(n)!(ν + 1)n
− α(1− λ)

∞∑
n=1

(−c)n(2n+ a)

a4n(n)!(ν + 1)n

= (1− λα)
∞∑
n=1

n (−c)n(2n+a)
a4n(n)!(ν+1)n

+ (1− λα)
∞∑
n=1

(−c)n(2n+a)
a4n(n)!(ν+1)n

− α(1− λ)
∞∑
n=1

(−c)n(2n+a)
a4n(n)!(ν+1)n

= (1− λα)
∞∑
n=1

n
(−c)n(2n+ a)

a4n(n)!(ν + 1)n
+ (1− α)

∞∑
n=1

(−c)n(2n+ a)

a4n(n)!(ν + 1)n

= (1− λα)(ω
′

ν,a,b,c(1)− ων,a,b,c(1))− (1− α)(ων,a,b,c(1)− 1)

= (1− λα)ω
′

ν,a,b,c(1)− (2− α(1 + λ))ων,a,b,c(1) + 1− α.

If the condition (11) holds, then the last expression is bounded above by 1−α
and the proof end.

Theorem 2.2 If c < 0 and ν > −1, then the function 2z − ων,a,b,c(z) is in
C(λ, α) if and only if

(1− λα)ω
′′
(1) + (3− 4λα− α)ω

′
(1) ≤ 2(1− α(1 + λ)), (12)

where ων,a,b,c(z) is defined by (8).

Proof. From (8), we have

2z − ων,a,b,c(z) = z −
∞∑
n=2

(−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

zn.
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Now, to show that 2z − ων,a,b,c(z) ∈ C(λ, α), then we must show that

∞∑
n=2

n
(
n− λαn− α + λα

) (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

≤ 1− α.

According to Lemma 1.6, we have

∞∑
n=2

n
(
n− λαn− α + λα

) (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

= (1− λα)
∞∑
n=2

n2 (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

− (α + λα)
∞∑
n=2

n
(−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

= (1− λα)
∞∑
n=2

(n+ 1)2
(−c)n(2n+ a)

a4n(n)!(ν + 1)n
− (α + λα)

∞∑
n=2

(n+ 1)
(−c)n(2n+ a)

a4n(n)!(ν + 1)n

= (1− λα)
∞∑
n=1

(n2 + 2n+ 1)
(−c)n(2n+ a)

a4n(n)!(ν + 1)n
− (α + λα)

∞∑
n=1

(n+ 1)
(−c)n(2n+ a)

a4n(n)!(ν + 1)n

=
(1− λα)(ω

′′
(1)− ω

′
(1) + ω(1)) + 2(1− λα)(ω

′
(1)− ω(1)) + (1− λα)(ω(1)− 1)

−(α + λα)(ω
′
(1)− ω(1))− (α + λα)(ω(1)− 1)

= (1− λα)ω
′′
(1) + (3− 4λα− α)ω

′
(1) + α(2λ+ 1)− 1.

The last expression is bounded above by 1−α if and only if the condition (12)
holds. then proof end.

Theorem 2.3 Let c < 0 and ν > −1. If f ∈ Rτ (A,B) and satisfies the
condition

τ(A−B)
(
(1− λα)ω

′

ν,a,b,c(1)− (2− α(1 + λ))ων,a,b,c(1) + 1− α
)
≤ 1− α,

(13)
then Ra,b,c,νf(z) ∈ K(α, λ).

Proof. Since f ∈ Rτ (A,B), then by Lemma 1.7, we have |an| ≤ τ(A−B)
n

,
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∀n ∈ N. Now,

∞∑
n=2

(
n(1− λα)− α(1− λ)

) ∣∣∣∣ (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

an

∣∣∣∣
≤ τ(A−B)

∞∑
n=2

(
n(1− λα)− α(1− λ)

n

)
(−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

< τ(A−B)
∞∑
n=2

(
n(1− λα)− α(1− λ)

) (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

τ(A−B)
∞∑
n=1

(
(n+ 1)(1− λα)− α(1− λ)

) (−c)n(2n+ a)

a4n(n)!(ν + 1)n

= τ(A−B)
(
(1− λα)ω

′

ν,a,b,c(1)− (2− α(1 + λ))ων,a,b,c(1) + 1− α
)
,

the last expression is bounded above by 1−α if and only if the condition (13)
holds true.

Theorem 2.4 Let c < 0 and ν > −1. If f ∈ Rτ (A,B) and satisfies the
condition

τ(A−B)
(
(1− λα)ω

′

ν,a,b,c(1)− (2− α(1 + λ))ων,a,b,c(1) + 1− α
)
≤ 1− α,

(14)
then Ra,b,c,νf(z) ∈ C(α, λ).

Proof. By letting f ∈ Rτ (A,B), then by using Lemma 1.7, then we have

∞∑
n=2

n
(
n(1− λα)− α(1− λ)

) ∣∣∣∣ (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

an

∣∣∣∣
≤ τ(A−B)

∞∑
n=2

(
n(1− λα)− α(1− λ)

) (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

= τ(A−B)
∞∑
n=1

(
(n+ 1)(1− λα)− α(1− λ)

) (−c)n(2n+ a)

a4n(n)!(ν + 1)n

= τ(A−B)
(
(1− λα)ω

′

ν,a,b,c(1)− (2− α(1 + λ))ων,a,b,c(1) + 1− α
)

the last expression is bounded above by 1−α if and only if the condition (14)
holds true.
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3 An Integral operator

In this section, we introduced new integral operator Dν,a,b,c(z) as follows:

Dν,a,b,c(z) =

z∫
0

2ζ − ων,a,b,c(ζ)

ζ
dζ, (15)

where ων,a,b,c(z) is defined by (8).

Theorem 3.1 Let c < 0 and ν > −1. then Dν,a,b,c ∈ C(α, λ) if and only if

(1− λα)ω
′

ν,a,b,c(1) ≤ (2− α(1 + λ))ων,a,b,c(1)

Proof. From equation (15), we have

Dν,a,b,c(z) =

z∫
0

2ζ − ων,a,b,c(ζ)

ζ
dζ

=

z∫
0

1−
∞∑
n=2

(−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

ζn−1dζ

= z −
∞∑
n=2

(−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

z∫
0

ζn−1dζ

= z −
∞∑
n=2

(−c)n−1(2n+ a− 2)

a4n−1(n)!(ν + 1)n−1

zn.

In order to establish that D(ν, a, c, z) belongs to the class C(λ, α), it is neces-
sary to demonstrate the validity of the condition specified in Equation (1.6):

∞∑
n=2

n
(
n− λαn− α + λα

)(−c)n−1(2n+ a− 2)

a4n−1(n)!(ν + 1)n−1

≤ 1− α.



An Application of Normalised Dini Functions on Analytic Functions 43

Now,
∞∑
n=2

n
(
n− λαn− α + λα

)(−c)n−1(2n+ a− 2)

a4n−1(n)!(ν + 1)n−1

=
∞∑
n=2

(
n− λαn− α + λα

) (−c)n−1(2n+ a− 2)

a4n−1(n− 1)!(ν + 1)n−1

= (1− λα)
∞∑
n=1

n (−c)n(2n+a)
a4n(n)!(ν+1)n

+ (1− λα)
∞∑
n=1

(−c)n(2n+a)
a4n(n)!(ν+1)n

− α(1− λ)
∞∑
n=1

(−c)n(2n+a)
a4n(n)!(ν+1)n

= (1− λα)
∞∑
n=1

n
(−c)n(2n+ a)

a4n(n)!(ν + 1)n
+ (1− α)

∞∑
n=1

(−c)n(2n+ a)

a4n(n)!(ν + 1)n

= (1− λα)(ω
′

ν,a,b,c(1)− ων,a,b,c(1))− (1− α)(ων,a,b,c(1)− 1)

= (1− λα)ω
′

ν,a,b,c(1)− (2− α(1 + λ))ων,a,b,c(1) + 1− α.

If the condition specified in equation (1.6) is satisfied, the final expression is
limited to a maximum value of 1− α, and this concludes the proof.
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