A Multiplier Transformation Defined by Convolution Involving a Differential Operator

S. F. Ramadan and M. Darus

School of Mathematical Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia
salma.naji@Gmail.com
maslina@ukm.my (corresponding author)

Abstract

The object of this paper is to introduce a multiplier transformation defined by convolution involving differential operator given by Al-Oboudi. A new subclass of strongly close-to-convex functions in the open unit disk using this operator will be discussed. Our results include several previous known results as special cases.

Keywords: Analytic function, Starlike and Strongly close-to-convex functions.

AMS Mathematics Subject Classification (2000): 30C45.

1 Introduction

Let H be the class of analytic functions in the open unit disk $U = \{ z : |z| < 1 \}$ and $H[a,n]$ be the subclasses of H consisting of functions of the form:

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + ...$$

Let A be the subclass of H consisting of functions of the form:
\[f (z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in U \quad (1) \]

which are analytic in the unit disk \(U \). Let \(F \) and \(G \) be analytic functions in the unit disk \(U \), the function \(F \) is said to be subordinate to \(G \) or \(G \) is said to be superordinate to \(F \), if there exists a function \(w \) analytic in \(U \) with \(w (0) = 0 \) and \(|w| < 1 \) for \(z \in U \) and such that \(F (z) = G (w (z)) \), \(z \in U \) in such a case, we write \(F \prec G \) or \(F (z) \prec G (z) \) if the function \(G \) is univalent in \(U \), then

\[F \prec G \iff F (0) = G (0), \quad F (U) \subset G (U). \]

For functions \(f \) given by (1) and \(g (z) = z + \sum_{n=2}^{\infty} b_n z^n, \quad z \in U \). let \((f * g) (z)\) denote the Hadamard product (convolution) of \(f (z) \) and \(g (z) \), defined by :

\[(f * g) (z) = z + \sum_{n=2}^{\infty} a_n b_n z^n \]

For \(f \in A \), Al-Oboudi [2] introduced the following operator :

\[D_0^0 f (z) = f (z) \quad (2) \]

\[D_\lambda^1 f (z) = D_\lambda f (z) = (1 - \lambda) f (z) + \lambda z f' (z) \quad (3) \]

\[D_\lambda^m f (z) = D_\lambda (D_\lambda^{m-1} f (z)), \quad \lambda > 0 \quad (4) \]

if \(f \) is given by (1), then from (3) and (4) we see that

\[D_\lambda^m f (z) = z + \sum_{n=2}^{\infty} [1 + (n - 1) \lambda]^m a_n z^n, \quad m \geq 0, \quad \lambda > 0 \]

when \(\lambda = 1 \), we get Salagean differential operator [16].

For any complex number \(s \), we define the multiplier transformation \(I^s_\delta \) of functions \(f \in A \) by :

\[I^s_\delta f (z) = z + \sum_{n=2}^{\infty} \left(\frac{n + \delta}{1 + \delta} \right)^s a_n z^n, \quad (\delta > -1) \]

By Hadamard product we get \(D^m_{\lambda, \delta} f (z) \) defined by :

\[D^m_{\lambda, \delta} f (z) = z + \sum_{n=2}^{\infty} [1 + (n - 1) \lambda]^m \left(\frac{n + \delta}{1 + \delta} \right)^s a_n z^n, \]
A multiplier transformation defined by convolution

\[(s \in C, \lambda > 0, \delta > -1, m \geq 0, z \in U).\]

Obviously, we observe that

\[D_{\lambda, \delta}^{m,s}(D_{\lambda, \delta}^{l,k}f(z)) = D_{\lambda, \delta}^{m+l,s+k}f(z), \quad (s, k \in C, \delta > -1, l, m \geq 0, z \in U).\]

For \(s \in \mathbb{Z}, \delta = 1\) and \(m = 0\) the operator \(D_{\lambda, \delta}^{m,s}\) was studied by Uralegaddi and Somanatha [19], and for \(s \in \mathbb{Z}, m = 0\) the operator \(D_{\lambda, \delta}^{m,s}\) was closely related to multiplier transformations studied by Flett [6], also, for \(s = -1, m = 0\) the operator \(D_{\lambda, \delta}^{m,s}\) belongs to integral operator studied by Owa and Srivastava [14]. And for any negative real number \(s\) and \(\delta = 1\), \(m = 0\) the operator \(D_{\lambda, \delta}^{m,s}\) was a multiplier transformation studied by Jung et al. [7], and for any nonnegative integer \(s\) and \(\delta = 1, m = 0\), the operator \(D_{\lambda, \delta}^{m,s}\) was the differential operator given by Salagean [16]. Finally, for different choices of \(s, \delta\) and \(m\), several operators investigated earlier by other authors (see for example Ahuja [1], Cho and Kim [4], and Lin and Owa [9]) are obtained.

Now, by using \(D_{\lambda, \delta}^{m,s}\), new classes of analytic functions are defined as follows: For \(s \in C, \delta > -1\) and \(m \geq 0\), let \(K_{\lambda, \delta}^{m,s}(\gamma, \alpha, \beta, A, B)\) be the class of functions \(f \in A\) satisfying the condition:

\[
\left| \arg \left(\frac{z(D_{\lambda, \delta}^{m,s}f(z))'}{D_{\lambda, \delta}^{m,s}g(z)} \right) - \gamma \right| < \frac{\pi}{2} \alpha \quad (0 \leq \gamma < 1; 0 < \alpha \leq 1; z \in U)
\]

for some \(g \in S_{\lambda, \delta}^{m,s}(\beta, A, B)\), where

\[
S_{\lambda, \delta}^{m,s}(\beta, A, B) = \left\{ g \in A : \frac{1}{1 - \beta} \left(\frac{z(D_{\lambda, \delta}^{m,s}g(z))'}{D_{\lambda, \delta}^{m,s}g(z)} \right) - \beta < \frac{1 + Az}{1 + Bz} \right\},
\]

\[(0 \leq \beta < 1; -1 \leq B < A \leq 1; z \in U)\]

Note that \(K_{1,0}^{1,0}(\gamma, 1, \beta, 1, -1)\) and \(K_{0,0}^{0,0}(\gamma, 1, \beta, 1, -1)\) are the classes of quasiconvex and close-to-convex functions of order \(\gamma\) and type \(\beta\), respectively introduced and studied by Noor and Alkhora sani [11] and Silverman [17]. Further \(K_{0,0}^{0,1}(0, \alpha, 0, 1, -1) = K_{1,0}^{1,0}(0, \alpha, 0, 1, -1)\) is the class of strongly close-to-convex functions of order \(\alpha\) in the sense of Pommerenke [15]. Finally, notice that for integer \(s\) and \(m = 0\), the class \(K_{0,0}^{0,s}(\gamma, \alpha, \beta, A, B)\) was studied by Cho and Kim [4].

We need the following lemmas to prove our main results:
Lemma 1.1 [5] Let \(h \) be convex univalent in \(U \) with \(h(0) = 1 \) and
\(\Re(\beta h(z) + \gamma) > 0 \), \((\beta, \gamma \in \mathbb{C})\). If \(p \) is analytic in \(U \) with \(p(0) = 1 \), then
\[
p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z), \quad (z \in U)
\]
implies
\[
p(z) \prec h(z)
\]

Lemma 1.2 [10] Let \(h \) be convex univalent in \(U \) and \(w \) be analytic in \(U \) with
\(\Re w(z) \geq 0 \). If \(p \) is analytic in \(U \) and \(p(0) = h(0) \), then
\[
p(z) + w(z)zp'(z) \prec h(z)
\]
implies
\[
p(z) \prec h(z)
\]

Lemma 1.3 [13] Let \(p \) be analytic in \(U \) with \(p(0) = 1 \) and \(p(z) \neq 0 \) in \(U \). Suppose that there exists a point \(z_0 \in U \) such that :
\[
|\arg p(z)| < \frac{\pi}{2} \eta \quad \text{for} \quad |z| < |z_0| \quad (5)
\]
and
\[
|\arg p(z_0)| = \frac{\pi}{2} \eta \quad (0 < \eta \leq 1). \quad (6)
\]
then we have
\[
\frac{zp'(z_0)}{p(z_0)} = ik\eta, \quad (7)
\]
where
\[
k \geq \frac{1}{2} \left(a + \frac{1}{a} \right) \quad \text{when} \quad \arg p(z_0) = \frac{\pi}{2} \eta \quad (8)
\]
and
\[
k \leq -\frac{1}{2} \left(a + \frac{1}{a} \right) \quad \text{when} \quad \arg p(z_0) = -\frac{\pi}{2} \eta \quad (9)
\]
and
\[
p(z_0)^\frac{1}{a} = \pm ia \quad (a > 0). \quad (10)
\]
At first, with the help of Lemma 1.1, we obtain the following theorem :

Theorem 1.4 Let \(h \) be convex univalent in \(U \) with \(h(0) = 1 \) and
\(\Re((1 - \beta) h(z) + \beta + \delta) > 0 \). If a function \(f \in A \) satisfies the condition
\[
\frac{1}{1 - \beta} \left(\frac{z(D_{\lambda, \delta}^m f(z))^\prime}{D_{\lambda, \delta}^{m+1} f(z)} - \beta \right) < h(z), \quad (0 \leq \beta < 1; z \in U)
\]
A multiplier transformation defined by convolution

then

\[
\frac{1}{1 - \beta} \left(z \left(\frac{D_{\lambda,\delta}^{m,s} f(z)}{D_{\lambda,\delta}^{m,s} f(z)} \right)' - \beta \right) < h(z), \quad (0 \leq \beta < 1; z \in U)
\]

Proof: Let

\[
p(z) = \frac{1}{1 - \beta} \left(z \left(\frac{D_{\lambda,\delta}^{m,s} f(z)}{D_{\lambda,\delta}^{m,s} f(z)} \right)' - \beta \right)
\]

where \(p \) is analytic function with \(p(0) = 1 \). By using the equation:

\[
z \left(D_{\lambda,\delta}^{m,s} f(z) \right)' = (\delta + 1) D_{\lambda,\delta}^{m,s+1} f(z) - \delta D_{\lambda,\delta}^{m,s} f(z)
\]

we get:

\[
\delta + \beta + (1 - \beta) p(z) = \frac{(\delta + 1) D_{\lambda,\delta}^{m,s+1} f(z)}{D_{\lambda,\delta}^{m,s} f(z)}
\]

(12)

taking logarithmic derivatives in both sides of (12) and multiplying by \(z \), we have

\[
p(z) + \frac{zp'(z)}{\delta + \beta + (1 - \beta) p(z)} = \frac{1}{1 - \beta} \left(z \left(\frac{D_{\lambda,\delta}^{m,s+1} f(z)}{D_{\lambda,\delta}^{m,s} f(z)} \right)' - \beta \right), \quad z \in U.
\]

Applying Lemma 1.1, it follows that \(p < h \), that is

\[
\frac{1}{1 - \beta} \left(z \left(\frac{D_{\lambda,\delta}^{m,s} f(z)}{D_{\lambda,\delta}^{m,s} f(z)} \right)' - \beta \right) < h(z).
\]

Taking \(h(z) = (1 + Az)/(1 + Bz) \), \((-1 \leq B < A \leq 1)\) in Theorem 1.4 we have

Corollary 1.5 The inclusion relation \(S_{\lambda,\delta}^{m,s+1}(\beta, A, B) \subset S_{\lambda,\delta}^{m,s}(\beta, A, B) \) holds for \(s \in C, \delta > -1, m \geq 0 \).

Letting \(s = \delta = 0, m = 0 \) and \(h(z) = ((1 + z)/(1 - z))^\mu, \quad (0 < \mu \leq 1) \) in Theorem 1.4 we have the following inclusion relation:

Corollary 1.6 For \(s \in C, \delta > -1, m \geq 0 \) and \(h(z) = ((1 + z)/(1 - z))^\mu, \quad (0 < \mu \leq 1) \) then we have \(C(\mu, \beta) \subset S^*(\mu, \beta) \).
Theorem 1.7 Let h be convex univalent in U with $h(0) = 1$ and
$\Re \left((1 - \beta) h(z) + \beta + \frac{1}{\lambda} - 1 \right) > 0$. If a function $f \in A$ satisfies the condition
\[
\frac{1}{1 - \beta} \left(\frac{z(D_{\lambda, \delta}^{m+1,s} f(z))'}{D_{\lambda, \delta}^{m+1,s} f(z)} - \beta \right) < h(z), \quad (0 \leq \beta < 1; z \in U)
\]
then
\[
\frac{1}{1 - \beta} \left(\frac{z(D_{\lambda, \delta}^{m,s} f(z))'}{D_{\lambda, \delta}^{m,s} f(z)} - \beta \right) < h(z), \quad (0 \leq \beta < 1; z \in U)
\]
for $s \in C$, $\delta > -1$, $m \geq 0$

Proof : Let
\[
p(z) = \frac{1}{1 - \beta} \left(\frac{z(D_{\lambda, \delta}^{m,s} f(z))'}{D_{\lambda, \delta}^{m,s} f(z)} - \beta \right), \quad (0 \leq \beta < 1; z \in U)
\]
where p is analytic function with $p(0) = 1$. By using the equation
\[
\lambda z (D_{\lambda, \delta}^{m,s} f(z))' = D_{\lambda, \delta}^{m+1,s} f(z) - (1 - \lambda) D_{\lambda, \delta}^{m,s} f(z)
\]
we get
\[
\beta + 1 \frac{1}{\lambda} - 1 + (1 - \beta) p(z) = \frac{D_{\lambda, \delta}^{m+1,s} f(z)}{\lambda D_{\lambda, \delta}^{m,s} f(z)}
\]
and taking logarithmic derivatives in both sides of (13) and multiplying by z we get
\[
p(z) + \frac{zp'(z)}{\beta + 1 \frac{1}{\lambda} - 1 + (1 - \beta) p(z)} = \frac{1}{1 - \beta} \left(\frac{z(D_{\lambda, \delta}^{m+1,s} f(z))'}{D_{\lambda, \delta}^{m+1,s} f(z)} - \beta \right).
\]
Applying Lemma 1.1 it follows that $p < h$, that is
\[
\frac{1}{1 - \beta} \left(\frac{z(D_{\lambda, \delta}^{m,s} f(z))'}{D_{\lambda, \delta}^{m,s} f(z)} - \beta \right) < h(z).
\]
Taking $h(z) = (1 + Az)/(1 + Bz)$, $(-1 \leq B < A \leq 1)$ in Theorem 1.7 we have
Corollary 1.8 The inclusion relation \(S_{m, s}^{m+1, s} (\beta, A, B) \subset S_{m, s}^{m, s} (\beta, A, B) \) holds for \(s \in C, \delta > -1, m \geq 0 \).

Theorem 1.9 Let \(h \) be convex univalent in \(U \), with \(h(0) = 1 \) and \(\Re((1 - \beta) h(z) + \beta + c) > 0 \). If a function \(f \in A \) satisfies the condition

\[
\frac{1}{1 - \beta} \left(\frac{z (D_{m, s}^{m, s} f (z))'}{D_{m, s}^{m, s} f (z)} - \beta \right) < h(z), \quad (0 \leq \beta < 1; z \in U)
\]

then

\[
\frac{1}{1 - \beta} \left(\frac{z (D_{m, s}^{m, s} F_c (f) (z))'}{D_{m, s}^{m, s} F_c (f) (z)} - \beta \right) < h(z), \quad (0 \leq \beta < 1; z \in U)
\]

where \(F_c \) be the integral operator defined by

\[
F_c (f) := F_c (f) (z) = \frac{c + 1}{z^c} \int_0^z t^{c-1} f (t) \ dt, \quad (c \geq 0) \quad (14)
\]

Proof: From (14) we have

\[
z (D_{m, s}^{m, s} F_c (f) (z))' = (c + 1) D_{m, s}^{m, s} f (z) - c D_{m, s}^{m, s} F_c (f) (z) \quad (15)
\]

By using the same technique as in the proof of the Theorem 1.4 and Lemma 1.1 the required result is obtained.

Letting \(h(z) = (1 + Az)/(1 + Bz) \), \((-1 \leq B < A \leq 1)\) in Theorem 1.9 we have immediately the following

Corollary 1.10 If \(f \in S_{m, s}^{m, s} (\beta, A, B) \), then \(F_c (f) (z) \in S_{m, s}^{m, s} (\beta, A, B) \) where \(F_c \) is the integral defined by (14).

Now, we obtain the following:

Theorem 1.11 Let \(f \in A \) and \(0 < \alpha \leq 1, \quad 0 \leq \gamma < 1 \). If

\[
\left| \arg \left(\frac{z (D_{m, s}^{m, s} f (z))'}{D_{m, s}^{m, s} g (z)} - \gamma \right) \right| < \frac{\pi}{2} \alpha
\]

for some \(g \in S_{m, s}^{m, s+1} (\beta, A, B) \), then

\[
\left| \arg \left(\frac{z (D_{m, s}^{m, s} f (z))'}{D_{m, s}^{m, s} g (z)} - \gamma \right) \right| < \frac{\pi}{2} \eta
\]
where η ($0 < \eta \leq 1$) is the solution of the equation:

$$\alpha = \begin{cases}
\eta + \frac{2}{\pi} \tan^{-1} \left(\frac{\eta \cos \frac{\pi}{2} t_1}{(1 - \beta)(1 + A) + \beta + \delta + \eta \sin \frac{\pi}{2} t_1} \right) & \text{for } B \neq -1 \\
\eta & \text{for } B = -1
\end{cases}$$

(16)

and

$$t_1 = \frac{2}{\pi} \sin^{-1} \left(\frac{(1 - \beta)(A - B)}{(1 - \beta)(1 - AB) + (\beta + \delta)(1 - B^2)} \right).$$

(17)

Proof: Let

$$p(z) = \frac{1}{1 - \gamma} \left(\frac{z \left(D_{m,s}^{(1)} f(z) \right)' - (1 - \gamma) p(z) + \gamma z \left(D_{m,s}^{(1)} g(z) \right)'}{D_{m,s}^{(1)} g(z)} \right).$$

Using (11) and simplifying, we have

$$((1 - \gamma) p(z) + \gamma D_{m,s}^{(1)} f(z) = (\delta + 1) D_{m,s}^{(1)} f(z) - \delta D_{m,s}^{(1)} f(z).$$

(18)

Differentiating (18) and multiplying by z, we obtain

$$(1 - \gamma) z p'(z) D_{m,s}^{(1)} g(z) + ((1 - \gamma) p(z) + \gamma z \left(D_{m,s}^{(1)} g(z) \right)'

= (\delta + 1) z \left(D_{m,s}^{(1)} f(z) \right)' - \delta z \left(D_{m,s}^{(1)} f(z) \right)'.$$

(19)

Since $g \in S_{m,s}^{(1)} (\beta, A, B)$, by Corollary 1.5, we know that $g \in S_{m,s}^{(1)} (\beta, A, B)$. Let

$$q(z) = \frac{1}{1 - \beta} \left(\frac{z \left(D_{m,s}^{(1)} g(z) \right)' - \beta}{D_{m,s}^{(1)} g(z)} \right).$$

Then using (11) once again, we have

$$(1 - \beta) q(z) + \beta + \delta = (\delta + 1) \frac{D_{m,s}^{(1)} g(z)}{D_{m,s}^{(1)} g(z)}. $$

(20)

From (19) and (20) we obtain

$$\frac{1}{1 - \gamma} \left(\frac{z \left(D_{m,s}^{(1)} f(z) \right)'}{D_{m,s}^{(1)} g(z)} - \gamma \right) = p(z) + \frac{z p'(z)}{(1 - \beta) q(z) + \beta + \delta}.$$

While, by using the result of Silverman and Silvia [18], we have

$$\left| q(z) - \frac{1 - AB}{1 - B^2} \right| < \frac{A - B}{1 - B^2}, \quad (z \in U; B \neq -1)$$

(21)
A multiplier transformation defined by convolution

\[\mathcal{R}\{q(z)\} > \frac{1 - A}{2}, \quad (z \in U; B \neq -1) \quad (22) \]

Then from (21) and (22), we obtain

\[(1 - \beta) q(z) + \beta + \delta = \rho e^{i\phi}, \]

where

\[\left\{ \begin{array}{l}
\frac{(1-\beta)(1-A)}{1-B} + \beta + \delta < \rho < \frac{(1-\beta)(1+A)}{1+B} + \beta + \delta \\
-t_1 < \phi < t_2 \end{array} \right. \]

for \(B \neq -1 \).

When \(t_1 \) is given by (17), and

\[\left\{ \begin{array}{l}
\frac{(1-\beta)(1-A)}{2} + \beta + \delta < \rho < \infty \\
-1 < \phi < 1 \end{array} \right. \]

for \(B = -1 \).

We note that \(p \) is analytic in \(U \), by applying the assumption and Lemma 1.2 with \(w(z) = 1/(1 - \beta) q(z) + \beta + \delta \). Hence \(p(z) \neq 0 \) in \(U \).

If there exists a point \(z_0 \in U \) such that the conditions (5) and (6) are satisfied, then (by Lemma 1.3) we obtain (7) under the restrictions (8), (9) and (10).

At first, suppose that \(p(z_0)^{1/2} = ia, \quad (a > 0) \). Then we obtain

\[
\arg\left(p(z_0) + \frac{z_0 p'(z_0)}{(1 - \beta) q(z_0) + \beta + \delta} \right)
\]

\[= \frac{\pi}{2} \eta + \arg\left(1 + i\eta k \left(\rho e^{i\pi/2} \right)^{-1} \right) \]

\[\geq \frac{\pi}{2} \eta + \tan^{-1}\left(\frac{\eta k \sin \frac{\pi}{2} (1 - \phi)}{\rho + \eta k \cos \frac{\pi}{2} (1 - \phi)} \right) \]

\[\geq \frac{\pi}{2} \eta + \tan^{-1}\left(\frac{\eta \cos \frac{\pi}{2} t_1}{\frac{(1-\beta)(1+A)}{1+B} + \beta + \delta + \eta \sin \frac{\pi}{2} t_1} \right) \]

\[= \frac{\pi}{2} \alpha \]

where \(\alpha \) and \(t_1 \) given by (16) and (17), respectively. Similarly for the case \(B = -1 \) we have

\[
\arg\left(p(z_0) + \frac{z_1 p'(z_0)}{(1 - \beta) q(z_0) + \beta + \delta} \right) \geq \frac{\pi}{2} \eta.
\]

These evidently contradict the assumption of Theorem 1.11.
Next, suppose that \(p(z_0)^{\frac{1}{n}} = -ia, \quad (a > 0) \). Applying the same method as the above, we have

\[
\arg \left(p(z_0) + \frac{z_0p'(z_0)}{(1 - \beta)q(z_0) + \beta + \delta} \right) \leq -\frac{\pi}{2} \eta - \tan^{-1} \left(\frac{\eta \cos \frac{\pi}{2} t_1}{(1 - \beta)(1 + A) + \beta + \delta + \eta \sin \frac{\pi}{2} t_1} \right)
\]

\[
= -\frac{\pi}{2} \alpha,
\]

where \(\alpha \) and \(t_1 \) are given by (16) and (17), respectively. Similarly, for the case \(B = -1 \) we have

\[
\arg \left(p(z_0) + \frac{z_1p'(z_0)}{(1 - \beta)q(z_0) + \beta + \delta} \right) \leq -\frac{\pi}{2} \eta.
\]

These also contradict to the assumption of Theorem 1.11. Therefore we complete the proof of Theorem 1.11.

From Theorem 1.11, we see easily the following:

Corollary 1.12 The inclusion relation

\[K_{\lambda, \delta}^{m+1}(\gamma, \alpha, \beta, A, B) \subset K_{\lambda, \delta}^{m, s}(\gamma, \alpha, \beta, A, B) \] holds for \(s \in C, \delta > -1, m \geq 0 \).

Taking \(s = -1, \delta = 0 \) and \(m = \lambda = 1 \) in Theorem 1.11 we have

Corollary 1.13 Let \(f \in A \). If

\[
\left| \arg \left(\frac{(zf'(z))'}{g'(z)} - \gamma \right) \right| < \frac{\pi}{2} \alpha, \quad (0 \leq \gamma < 1, 0 < \alpha \leq 1)
\]

for some \(g \in S_{1,0}^{1,0}(\beta, A, B) \), then

\[
\left| \arg \left(\frac{zf'(z)}{g(z)} - \gamma \right) \right| < \frac{\pi}{2} \eta
\]

where \(\eta, (0 < \eta \leq 1) \) is the solution of the equation given by (16).

Remark : If we put \(A = 1, B = 1 \) and \(\eta = 1 \) in Corollary 1.13 then we see that every quasi-convex function of order \(\gamma \) and type \(\beta \) is close-to-convex function of order \(\gamma \) and type \(\beta \), which reduced to the result obtained by Noor [12].
Theorem 1.14 Let \(f \in A \) and \(0 < \alpha \leq 1, \ 0 \leq \gamma < 1 \). If

\[
\left| \arg \left(\frac{z \left(D_{\lambda, \delta}^{m, s} f(z) \right)'}{D_{\lambda, \delta}^{m, s} g(z)} - \gamma \right) \right| < \frac{\pi}{2^\alpha}
\]

from some \(g \in S_{\lambda, \delta}^{m, s} (\beta, A, B) \), then

\[
\left| \arg \left(\frac{z \left(D_{\lambda, \delta}^{m, s} F_c(f)(z) \right)'}{D_{\lambda, \delta}^{m, s} F_c(g)(z)} - \gamma \right) \right| < \frac{\pi}{2^\eta},
\]

where \(F_c \) is defined by (14), and \(\eta, (0 < \eta \leq 1) \) is the solution of the equation given by (16).

Proof: Let

\[
p(z) = \frac{1}{1 - \gamma} \left(\frac{z \left(D_{\lambda, \delta}^{m, s} F_c(f)(z) \right)'}{D_{\lambda, \delta}^{m, s} F_c(g)(z)} - \gamma \right).
\]

Since \(g \in S_{\lambda, \delta}^{m, s} (\beta, A, B) \), we have from Corollary 1.10 that \(F_c(g)(z) \in S_{\lambda, \delta}^{m, s} (\beta, A, B) \). Using (15) we have

\[
((1 - \gamma) p(z) + \gamma) D_{\lambda, \delta}^{m, s} F_c(g)(z) = (c + 1) D_{\lambda, \delta}^{m, s} f(z) - c D_{\lambda, \delta}^{m, s} F_c(f)(z).
\]

Then, by a simple calculation, we get

\[
(1 - \gamma) z p'(z) + ((1 - \gamma) p(z) + \gamma) ((1 - \beta) q(z) + c + \beta) = (c + 1) \frac{z \left(D_{\lambda, \delta}^{m, s} f(z) \right)'}{D_{\lambda, \delta}^{m, s} F_c(g)(z)}
\]

where

\[
q(z) = \frac{1}{1 - \beta} \left(\frac{z \left(D_{\lambda, \delta}^{m, s} F_c(g)(z) \right)'}{D_{\lambda, \delta}^{m, s} F_c(g)(z)} - \beta \right).
\]

Hence we have

\[
\frac{1}{1 - \gamma} \left(\frac{z \left(D_{\lambda, \delta}^{m, s} f(z) \right)'}{D_{\lambda, \delta}^{m, s} g(z)} - \gamma \right) = p(z) + \frac{zp'(z)}{(1 - \beta) q(z) + \beta + c}.
\]

The remaining part of the proof in Theorem 1.14 is similar to that of Theorem 1.11 and so we omit it.

From Theorem 1.9, we see easily the following:
Corollary 1.15 If \(f \in K_{\lambda, \delta}^{m, s} (\gamma, \alpha, \beta, A, B) \) then \(F_c (f) \in K_{\lambda, \delta}^{m, s} (\gamma, \alpha, \beta, A, B) \) where \(F_c \) is the integral operator defined by (14).

Remark : If we take \(s = \delta = 0, \ m = \lambda = 1 \) and \(s = \delta = m = 0 \) with \(\alpha = 1, \ A = 1 \) and \(B = -1 \) in Corollary 1.15, respectively, then we have the corresponding results obtained by Noor and Alkhorasani [11]. Furthermore, taking \(s = \delta = m = \gamma = 0, \ A = 1, \ B = -1 \) and \(\alpha = 1 \) in Corollary 1.15, we obtain the classical result by Bernardi [3], which implies the result studied by Libera [8].

2 Open Problem

The operator defined can be extended and can solve many new results and properties.

Acknowledgement: The work here was supported by UKM-ST-06-FRGS0107-2009.

References

A multiplier transformation defined by convolution

