Meromorphic Functions That Share
One Small Function CM or IM
with Their First Derivative

Amer H. H. Al-Khaladi
Department of Mathematics
College of Science
Diyala University, Baquba, Iraq
email: ameralkhaladi@yahoo.com

Abstract

In this paper we obtain a unicity theorem of a meromorphic function and its first derivative that share one small function CM or IM. So we generalize some results given in [1], [2] and [3].

Keywords: Meromorphic function, small function, uniqueness theorem.
2000 Mathematical Subject Classification: 30D35.

1 Introduction

A meromorphic function will mean meromorphic in the whole complex plane. We shall use the standard notations in Nevanlinna value distribution theory of meromorphic functions such as $T(r, f)$, $N(r, f)$, $m(r, f)$ etc (see [4], [5]). By $S(r, f)$ we denote any quantity satisfying $S(r, f) = o(T(r, f))$ as $r \to \infty$, possibly outside a set of r with finite linear measure. Then the meromorphic function β is called a small function of f if $T(r, \beta) = S(r, f)$. We say that two non-constant meromorphic functions f and g share a small function β IM (ignoring multiplicities), if f and g have the same β-points. If f and g have the same β-points with the same multiplicities, we say that f and g share the small function β CM (counting multiplicities). Let k be a positive integer, and let b be a small function of f or ∞, we denote by $N_{k}(r, \frac{1}{f-b})$ the counting function
of \(b \)-points of \(f \) with multiplicity \(\leq k \) and by \(\bar{N}_k(r, \frac{1}{T-b}) \) the counting function of \(b \)-points of \(f \) with multiplicity \(> k \). In like manner we define \(\bar{N}_k(r, \frac{1}{T-b}) \) and \(\bar{N}_k(r, \frac{1}{T-b}) \) where in counting the \(b \)-points of \(f \) we ignore the multiplicities.

In [2] G. G. Gundersen proved the following theorem:

Theorem 1.1 Let \(f \) be a non-constant meromorphic function. If \(f \) and \(f' \) share two distinct values \(0, a \neq \infty \) CM, then \(f \equiv f' \)

In 2009, A. H. H. Al-Khaladi [1] proved the following theorems which are improvement and extension of Theorem 1.1:

Theorem 1.2 Let \(f \) be a non-constant meromorphic function. If \(f \) and \(f' \) share the value \(a \neq 0, \infty \) CM and if \(\bar{N}(r, \frac{1}{f}) = S(r, f) \), then either \(f \equiv f' \) or
\[
f(z) = \frac{a + A}{1 + ce^{-2z}}, \quad \text{where} \quad A \text{ and } c \neq 0 \text{ are constants},
\]

Theorem 1.3 Let \(f \) be a non-constant meromorphic function. If \(f \) and \(f' \) share the value \(a \neq 0, \infty \) IM and if \(\bar{N}(r, \frac{1}{f}) + \bar{N}(r, \frac{1}{f'}) = S(r, f) \), then either \(f \equiv f' \) or
\[
f(z) = \frac{2a}{1 + ce^{-2z}}, \quad \text{(1)}
\]
where \(c \) is a nonzero constant.

On the other hand, Q. C. Zhang [3] proved the following theorem:

Theorem 1.4 Let \(f \) be a non-constant meromorphic function, \(a \) be a nonzero finite complex constant. If \(f \) and \(f' \) share 0 CM, and share a IM, then \(f \equiv f' \) or \(f \) is given as (1).

In this paper we will generalize the above results (Theorem 1.1, Theorem 1.2, Theorem 1.3 and Theorem 1.4).

2 Main Results

Lemma 2.1 Let \(f' \) be a non-constant meromorphic function, and let \(\beta \) be a small function of \(f' \) such that \(\beta' \equiv \beta \neq 0, \infty \). Then
\[
m\left(r, \frac{1}{f' - \beta} \right) \leq 2\bar{N}\left(r, \frac{1}{f'} \right) + 2\bar{N}(r, f) + S(r, f')
\]

Proof Set
\[
W = \left(\frac{F'}{F} \right)^2 - 2\left(\frac{F'}{F} \right)' + 2\frac{F'}{F}, \quad \text{(2)}
\]
where \(F = \frac{f'}{\beta} \). Then from Nevanlinna’s fundamental estimate of the logarithmic derivative we obtain
\[
m(r, W) \leq 4m\left(r, \frac{F'}{F}\right) + S\left(r, \frac{F'}{F}\right) + O(1) = S(r, F') + S\left(r, \frac{F'}{F}\right).
\]
Since
\[
T\left(r, \frac{F'}{F}\right) = N\left(r, \frac{F'}{F}\right) + m\left(r, \frac{F'}{F}\right) \leq \tilde{N}(r, F') + \tilde{N}\left(r, \frac{1}{F}\right) + S(r, F)
\]
this means that
\[
m(r, W) = S(r, F) = S(r, f').
\]

(3)

Suppose that \(z_\infty \) is a simple pole of \(f \). Then the Laurent expansion of \(f \) about \(z_\infty \) is
\[
f(z) = a_{-1}(z - z_\infty)^{-1} + O(1)
\]
where \(a_{-1} \) be the residue of \(f \) at \(z_\infty \). Hence
\[
\frac{F'}{F} = -2(z - z_\infty)^{-1} - 1 + O(z - z_\infty).
\]
Substitution of this into (2) gives
\[
W(z_\infty) = O(1).
\]

(4)

It follows from (2) that the poles of \(f \) with multiplicity \(p \geq 2 \) are poles of \(W \) with multiplicity 2 at most. We can also conclude from (2) that the zeros of \(f' \) with multiplicity \(q \geq 1 \) are poles of \(W \) with multiplicity 2. Thus, from (4) we get
\[
N(r, W) \leq 2\tilde{N}(2(r, f) + 2\tilde{N}\left(r, \frac{1}{f'}\right).
\]

(5)

We distinguish the following the two cases:

Case 1. \(W \neq 0 \). We write (2) in the form
\[
\frac{1}{F - 1} = \frac{1}{W}\left(\frac{F'}{F} - \frac{F'}{F} - \frac{3F'}{F} + 2\frac{F''}{F'} + 2\right).
\]
Then it is clear that
\[
m\left(r, \frac{1}{F - 1}\right) \leq m\left(r, \frac{1}{W}\right) + S(r, F) \leq T(r, W) + S(r, F')
\]
\[
\leq m(r, W) + N(r, W) + S(r, f').
\]
Combining this with (3) and (5), we have
\[
m\left(r, \frac{1}{F - 1}\right) \leq 2\tilde{N}(2(r, f) + 2\tilde{N}\left(r, \frac{1}{f'}\right) + S(r, f').
\]
That is,
\[m\left(r, \frac{1}{f' - \beta}\right) \leq 2\bar{N}(r, f) + 2\bar{N}\left(r, \frac{1}{f'}\right) + S(r, f'). \]

Case 2. \(W \equiv 0\). If \(\frac{F'}{F} \equiv 0\), then \(f' = c\beta\) and so \(T(r, f') = S(r, f')\) a contradiction. Therefore \(\frac{F'}{F} \not\equiv 0\) and (2) becomes

\[
\frac{y'}{y + 2} - \frac{y'}{y} = \frac{1}{2},
\]
where \(y = \frac{F'}{F}\). Integrating (6) twice we obtain

\[
f' = \beta A \left(c - e^{-\frac{1}{2}z}\right)^4,
\]
where \(A\) and \(c \neq 0\) are constants. So

\[T(r, f') = 4T\left(r, e^{-\frac{1}{2}z}\right) + S(r, f'). \]

But

\[T(r, \beta) = 2T\left(r, e^{-\frac{1}{2}z}\right) + O(1). \]

Therefore

\[T(r, f') = 2T(r, \beta) + S(r, f') = S(r, f'). \]

This is a contradiction. \(\square\)

The following lemma belongs to [4].

Lemma 2.2 Let \(f\) be a non-constant meromorphic function, and \(a_1, a_2, a_3\) be distinct small functions of \(f\). Then

\[T(r, f) \leq \sum_{j=1}^{3} \bar{N}\left(\frac{1}{f - a_j}\right) + S(r, f). \]

Theorem 2.3 Let \(f\) be a non-constant meromorphic function, and let \(\beta\) be a small meromorphic function of \(f\) such that \(\beta \not\equiv 0, \infty\). If \(f\) and \(f'\) share \(\beta\) CM and if \(\bar{N}(r, \frac{1}{f}) = S(r, f)\), then either \(f \equiv f'\) or

\[
f(z) = \frac{\int_{0}^{z} \beta(t)dt + A}{1 + ce^{-z}},
\]
where \(A\) and \(c \neq 0\) are constants.
Proof Suppose that \(f \neq f' \) and let \(\Omega \) be the function defined by

\[
\Omega = \frac{1}{f} \left[\frac{(f'/\beta)' - (f/\beta)'}{f'/\beta - f/\beta} \right]
= \frac{1}{\beta^2} \left[\frac{f'}{f} \left(\frac{(f'/\beta)'}{f'/\beta} - 1 \right) - \frac{(f/\beta)'}{(f'/\beta) - f/\beta} - \right. \\
\left. \frac{(f/\beta)'}{(f'/\beta) - f/\beta} - \frac{(f/\beta)'}{f'/\beta} \right].
\tag{8}
\]

Then from Nevanlinna’s fundamental estimate of the logarithmic derivative we obtain

\[
m(r, \Omega) \leq m\left(r, \frac{1}{\beta^2}\right) + m\left(r, \frac{f'}{f}\right) + m\left(r, \frac{(f'/\beta)'}{f'/\beta} - 1\right) + \\
m\left(r, \frac{(f/\beta)'}{f'/\beta} - 1\right) + m\left(r, \frac{(f/\beta)'}{f'/\beta}\right) + O(1)
= S(r, f) + S(r, f').
\]

Since

\[
T(r, f') \leq 2T(r, f) + S(r, f),
\]

this means that

\[
m(r, \Omega) = S(r, f).
\tag{9}
\]

It follows from (8) that if \(z_\infty \) is a pole of \(f \) with multiplicity \(p \geq 1 \) and \(\beta(z_\infty) \neq 0, \infty \), then

\[
\Omega(z) = O\left((z - z_\infty)^{p-1}\right).
\tag{10}
\]

Since \(f \) and \(f' \) share \(\beta \) CM, we find from (8) that \(\Omega \) is holomorphic at the zeros of \(f - \beta \) and \(f' - \beta \). Thus the pole of \(\Omega \) can only occur at zeros of \(f \). However the zeros of \(f \) with multiplicity \(q \geq 2 \) are pole of \(\Omega \) with multiplicity 2. Thus, from \(\tilde{N}(r, \frac{1}{f}) = S(r, f) \) we get

\[
N(r, \Omega) \leq \tilde{N} \left(r, \frac{1}{f} \right) + \tilde{N}(2) \left(r, \frac{1}{f} \right) + S(r, f)
\leq 2\tilde{N} \left(r, \frac{1}{f} \right) + S(r, f) = S(r, f).
\]

Together with (9) we have

\[
T(r, \Omega) = m(r, \Omega) + N(r, \Omega) = S(r, f).
\tag{11}
\]

If \(\Omega \equiv 0 \), then from integration of (8) we get \(f - \beta = c(f' - \beta) \), where \(c \) is some nonzero constant. This implies that \(\tilde{N}(r, f) = S(r, f) \). If \(c = 1 \), then \(f \equiv f' \), a contradiction. Therefore \(c \neq 1 \) and so

\[
\frac{1}{f} = \frac{c}{\beta(c - 1)} \left(\frac{f'}{f} - 1 \right).
\]
Hence, we obtain
\[
T(r, f) \leq T\left(r, \frac{f'}{f}\right) + S(r, f) = N\left(r, \frac{f'}{f}\right) + m\left(r, \frac{f'}{f}\right) + S(r, f)
\]
\[
\leq \tilde{N}\left(r, \frac{1}{f}\right) + \tilde{N}(r, f) + S(r, f) = S(r, f),
\]

which is impossible. Therefore, we obtain $\Omega \not\equiv 0$. Writing (8) as
\[
f = \frac{1}{\beta \Omega} \left[\frac{(f'/\beta)'}{(f'/\beta) - 1} - \frac{(f/\beta)'}{(f/\beta) - 1} \right].
\]

Consequently, from (11),
\[
m(r, f) \leq m\left(r, \frac{1}{\beta}\right) + m\left(r, \frac{1}{\Omega}\right) + S(r, f) \leq m\left(r, \frac{1}{\Omega}\right) + S(r, f)
\]
\[
\leq T(r, \Omega) + S(r, f) = S(r, f).
\]

Furthermore, from (10) and (11) we deduce that
\[
N_{12}(r, f) - \tilde{N}_{12}(r, f) \leq N\left(r, \frac{1}{\Omega}\right) + S(r, f)
\]
\[
\leq T(r, \Omega) + S(r, f) = S(r, f),
\]
so that,
\[
N_{12}(r, f) = S(r, f).
\]

We set
\[
\omega = \frac{f' - f}{f(f - \beta)} = \frac{1}{f - \beta}\left(\frac{f'}{f} - 1\right).
\]

Then
\[
m(r, \omega) \leq m\left(r, \frac{1}{f - \beta}\right) + m\left(r, \frac{f'}{f}\right) + O(1)
\]
\[
= m\left(r, \frac{1}{f - \beta}\right) + S(r, f).
\]

Since f and f' share β CM, from (15) we deduce that ω is holomorphic at the zeros of $f - \beta$. Also it is clear that the poles of f being not the poles of ω. Thus,
\[
N(r, \omega) \leq \tilde{N}\left(r, \frac{1}{f}\right) + S(r, f) = S(r, f).
\]

Further, if z_∞ is a simple pole of f and $\beta(z_\infty) \neq 0, \infty$, by a simple computation, we deduce from (8) and (15) that
\[
\Omega(z_\infty) = \frac{-1}{\beta(z_\infty)a_{-1}} \quad \text{and} \quad \omega(z_\infty) = \frac{-1}{a_{-1}},
\]
where \(a_{-1} \) be the residue of \(f \) at \(z_{\infty} \). In the following we shall treat two cases \(\beta \Omega \equiv \omega \) and \(\beta \Omega \not\equiv \omega \) separately.

Case 1. \(\beta \Omega \equiv \omega \). From (8) and (15) we know that if

\[
h = \frac{f' - \beta}{f - \beta} = \frac{f'/\beta - 1}{f/\beta - 1},
\]

\[
\beta \Omega = \frac{1}{f} \left(\frac{h'}{h} \right) \quad \text{and} \quad \omega = \frac{1}{f}(h - 1).
\]

Hence,

\[
\frac{h'}{h - 1} - \frac{h'}{h} = 1.
\]

By integration, we get \(h(z) = \frac{1}{1 - ce^z} \), where \(c \) nonzero constant. Combining this with (19) yields

\[
f' - \frac{1}{1 - ce^z} f = -c\beta e^z,
\]

which leads to

\[
\frac{d}{dz} \left[f(z) \left(1 - \frac{1}{c} e^{-z} \right) \right] = \beta(z).
\]

From this we arrive at (7).

Case 2. \(\beta \Omega \not\equiv \omega \). Then from (18), (11), (16) and (17) we see that

\[
N_1(r, f) \leq N \left(r, \frac{1}{\beta \Omega - \omega} \right) \leq T(r, \beta \Omega - \omega) + O(1)
\]

\[
\leq T(r, \Omega) + T(r, \omega) + S(r, f) \leq m \left(r, \frac{1}{f - \beta} \right) + S(r, f).
\]

Combining this, (14) and (13), we obtain

\[
T(r, f) = m(r, f) + N(r, f) = N_1(r, f) + S(r, f)
\]

\[
\leq m \left(r, \frac{1}{f - \beta} \right) + S(r, f).
\]

Hence, we find that

\[
N \left(r, \frac{1}{f - \beta} \right) = S(r, f).
\]

We define

\[
\mu = \frac{(f/\beta)'}{f(f - \beta)} = \frac{1}{\beta^2} \left[\frac{(f/\beta)'}{(f/\beta) - 1} - \frac{(f/\beta)'}{f/\beta} \right].
\]

Then it is clear that

\[
m(r, \mu) = S(r, f).
\]
If z_∞ is a simple pole of f and $\beta(z_\infty) \neq 0, \infty$, by a simple calculation on the local expansions we find that

$$\mu(z_\infty) = \frac{-1}{\beta(z_\infty)a_{-1}}. \quad (23)$$

Thus, it can be obtained from (22), (23), (14), (20) and $\bar{N}(r, \frac{1}{f}) = S(r, f)$ that

$$T(r, \mu) = m(r, \mu) + N(r, \mu) = N(r, \mu) + S(r, f)$$

$$\leq \bar{N}\left(r, \frac{1}{f}\right) + \bar{N}\left(r, \frac{1}{f-\beta}\right) + S(r, f) = S(r, f). \quad (24)$$

Further, from (23) and (18) we have

$$\Omega(z_\infty) = \mu(z_\infty). \quad (25)$$

If $\Omega \equiv \mu$, we know from (8) and (21) that

$$2 \frac{(f/\beta)'}{f/\beta - 1} = \frac{(f'/\beta)'}{f'/\beta - 1}. \quad (26)$$

By integration once, $(f - \beta)^2 = c\beta(f' - \beta)$, where c is a nonzero constant. We rewrite this in the form

$$\frac{\beta' - \beta}{f - \beta} = \frac{c\beta}{f - \beta} - \frac{(f - \beta)'}{f - \beta}. \quad (26)$$

If $\beta' - \beta \neq 0$, from this, (13) and (20) we conclude that

$$T(r, f) = T\left(r, \frac{1}{f - \beta}\right) + S(r, f)$$

$$= m\left(r, \frac{1}{f - \beta}\right) + N\left(r, \frac{1}{f - \beta}\right) + S(r, f)$$

$$\leq m\left(r, \frac{1}{f' - \beta}\right) + m(r, f) + N\left(r, \frac{1}{f - \beta}\right) + S(r, f)$$

$$= S(r, f)$$

This is impossible. Therefore we have $\beta' - \beta \equiv 0$, and (26) becomes

$$\frac{(f' - \beta)'}{(f - \beta)^2} = \frac{\beta'}{c\beta^2}. \quad (26)$$

By integration, we get

$$\frac{-1}{f - \beta} = \frac{-1}{c\beta} + A,$$
Meromorphic Share One Small Function CM or IM

where \(A \) is a constant. So \(T(r, f) = S(r, f) \), a cotradiction. Thus \(\Omega \neq \mu \). It follows from this, (13), (14), (25), (11) and (24) that

\[
T(r, f) = N(r, f) + m(r, f) = N_{13}(r, f) + N_{12}(r, f) + m(r, f) \\
= N_{13}(r, f) + S(r, f) \leq N\left(r, \frac{1}{\Omega - \mu}\right) + S(r, f) \\
\leq T(r, \Omega) + T(r, \mu) + S(r, f) = S(r, f).
\]

This is impossible. The proof of Theorem 2.3 is complete. \(\square \)

Theorem 2.4 Let \(f \) be a non-constant meromorphic function, and let \(\beta \) be a small meromorphic function of \(f \) such that \(\beta \neq 0, \infty \). If \(f \) and \(f' \) share \(\beta \) IM and if \(\bar{N}(r, \frac{1}{f}) + \bar{N}(r, \frac{1}{f'}) = S(r, f) \), then either \(f \equiv f' \) or \(\beta \) is a constant and \(f \) is given as (1) when \(\beta = a \).

Proof In the following, we assume that \(f \neq f' \). Suppose \(z_0 \) is a zero of \(f - \beta \) with multiplicity \(n \geq 1 \) and \(\beta(z_\infty) \neq 0, \infty \). Then the Taylor expansion of \(f - \beta \) about \(z_0 \) is

\[
f(z) - \beta = a_n(z - z_0)^n + \ldots, \quad a_n \neq 0.
\]

(27)

Since \(f \) and \(f' \) share \(\beta \) IM,

\[
f'(z) - \beta = b_m(z - z_0)^m + \ldots, \quad b_m \neq 0.
\]

(28)

Differentiating (27) and then using (28), we obtain

\[
\beta(z) - \beta'(z) = na_n(z - z_0)^{n-1} - b_m(z - z_0)^m + \ldots.
\]

(29)

We consider the following two cases.

Case I. \(\beta - \beta' \neq 0 \). Then we get from (29) that

\[
\bar{N}(2)\left(r, \frac{1}{f - \beta}\right) \leq N\left(r, \frac{1}{\beta' - \beta}\right) + S(r, f) \leq T(r, \beta' - \beta) + S(r, f) \\
\leq 3T(r, \beta) + S(r, f) = S(r, f).
\]

(30)

If \(z_0 \) is a simple zero of \(f - \beta \) and \(f' - \beta \), from (8) we see that \(\Omega \) is holomorphic at \(z_0 \). It follows from this, (8), (10), \(f \) and \(f' \) share \(\beta \) IM, \(\bar{N}(r, \frac{1}{f}) = S(r, f) \) and (30) that

\[
N(r, \Omega) \leq \bar{N}\left(r, \frac{1}{f}\right) + \bar{N}\left(r, \frac{1}{f'}\right) + \bar{N}\left(r, \frac{1}{f' - \beta}\right) + S(r, f) \\
\leq \bar{N}(2)\left(r, \frac{1}{f' - \beta}\right) + S(r, f).
\]
Combining with (9) we obtain
\[T(r, \Omega) \leq \tilde{N}(r, \frac{1}{f' - \beta}) + S(r, f). \] (31)

Also we know from (10), (12) and (31) that
\[N_{(2)}(r, f) - \tilde{N}(r, f) \leq N\left(r, \frac{1}{\Omega}\right) + S(r, f) \]
\[\leq T(r, \Omega) - m\left(r, \frac{1}{\Omega}\right) + S(r, f) \]
\[\leq \tilde{N}(r, \frac{1}{f' - \beta}) - m(r, f) + S(r, f). \] (32)

We set
\[H = \frac{(f'/\beta)'(f - \beta)}{f'(f' - \beta)} = \frac{f - \beta}{\beta^2} \left[\frac{(f'/\beta)'}{(f'/\beta) - 1} - \frac{(f'/\beta)'}{f'/\beta} \right]. \] (33)

Then it is clear that
\[m(r, H) \leq m(r, f) + S(r, f). \] (34)

From (33) we deduce that if \(z_\infty \) is a pole of \(f \) with multiplicity \(p \geq 1 \) and \(\beta(z_\infty) \neq 0, \infty \),
\[H(z_\infty) = \frac{1}{\beta(z_\infty)} \left(\frac{p + 1}{p} \right). \] (35)

Substituting (27) and (28) into (33) gives
\[H(z) = O\left((z - z_\infty)^{n-1} \right). \] (36)

Thus the pole of \(H \) can only occur at zeros of \(f' \). However, the zeros of \(f' \)
with multiplicity \(s \geq 1 \) are poles of \(H \) with multiplicity 1. Therefore from this,
(35), (36) and \(\tilde{N}(r, \frac{1}{f'}) = S(r, f) \) we get
\[N(r, H) \leq \tilde{N}\left(r, \frac{1}{f'}\right) + S(r, f) = S(r, f). \]

Together with (34) we have
\[T(r, H) \leq m(r, f) + S(r, f). \] (37)

If \(z_\infty \) is a simple pole of \(f \), then by (35) there are two cases.

Case 1. \(H \equiv \frac{2}{\beta} \). This and (33) imply that
\[\frac{1}{f' - \beta} = \frac{1}{2\beta} \left[\frac{(f'/\beta)'}{(f'/\beta) - 1} - \frac{(f'/\beta)'}{f'/\beta} \right]. \] (38)
Obviously, by logarithmic derivative lemma $m(r, \frac{1}{f-\beta}) = S(r, f)$. Combining with (16) we get

$$m(r, \omega) = S(r, f).$$ (39)

From (38), (27) and (28) we know that if z_0 is a zero of $f - \beta$ with multiplicity $n \geq 1$ and $\beta(z_0) \neq 0, \infty$, then $n = 1$. In addition since f and f' share β IM, from (15) we see ω is holomorphic at z_0. Also it is easily verified that the pole of f being not the pole of ω. Thus, from $\bar{N}(r, \frac{1}{f}) = S(r, f)$ we obtain

$$N(r, \omega) \leq \bar{N}(r, \frac{1}{f}) + S(r, f) = S(r, f).$$

Together with (39) we have

$$T(r, \omega) = S(r, f).$$ (40)

If $\omega \equiv 0$, then $f \equiv f'$ a contradiction. In the following we assume $\omega \neq 0$. Further, it can be obtained from (15), (40) and $\bar{N}(r, \frac{1}{f}) = S(r, f)$ that

$$T(r, f) \leq T\left(r, \frac{1}{\omega} \right) + T\left(r, \frac{f'}{f} \right) + S(r, f)$$

$$= N\left(r, \frac{f'}{f} \right) + m\left(r, \frac{f'}{f} \right) + S(r, f)$$

$$\leq \bar{N}\left(r, \frac{1}{f} \right) + \bar{N}(r, f) + S(r, f)$$

$$= \bar{N}(r, f) + S(r, f),$$

which shows that

$$T(r, f) = N_1(r, f) + S(r, f).$$ (41)

Using an argument similar to that in the proof of Theorem 2.3, we can conclude that $\beta \Omega \equiv \omega$ or $\beta \Omega \neq \omega$. If $\beta \Omega \equiv \omega$, then (see Case 1 in the proof of Theorem 2.3)

$$f(z) = \int_0^z \beta(t)dt + A \frac{1}{1 + ce^{-z}}.$$

Hence

$$f'(z) = \frac{\beta + \left(\beta + A + \int_0^z \beta(t)dt\right)ce^{-z}}{1 + ce^{-z}}.$$

Since $\bar{N}(r, \frac{1}{f}) + \bar{N}(r, \frac{1}{f'}) = S(r, f)$, we must have $\beta + A + \int_0^z \beta(z)dz \equiv 0$. Differentiating this we obtain $\beta' + \beta \equiv 0$. Integrating once, $\beta(z) = c_1e^{-z}$, where c_1 is a nonzero constant. So β can not small function of f. Therefore,
we get $\beta \Omega \neq \omega$. It follows from this, (41), (18), (40) and (31) that

$$T(r, f) = N_1(r, f) + S(r, f) \leq N(r, \frac{1}{\beta \Omega - \omega}) + S(r, f)$$

$$\leq T(r, \beta) + T(r, \Omega) + T(r, \omega) + S(r, f)$$

$$\leq \tilde{N}(r, \frac{1}{f - \beta}) + S(r, f).$$ (42)

Since f and f' share β IM,

$$\tilde{N}(r, \frac{1}{f - \beta}) = \tilde{N}(r, \frac{1}{f' - \beta}).$$

By this and (42) we have

$$N_1(r, \frac{1}{f' - \beta}) = S(r, f).$$ (43)

If we rewrite (38) and (15) in the form

$$\frac{f''}{f'} - \frac{\beta'}{\beta} = 2\left(\frac{f' - \beta}{f - \beta}\right) \text{ and } f\omega + 1 = \frac{f' - \beta}{f - \beta}$$

respectively, and then elimination $\frac{f' - \beta}{f - \beta}$ between the last two equations we obtain

$$\frac{f''}{f'} - \frac{\beta'}{\beta} = 2(f\omega + 1).$$ (44)

Let z_0 be a zero of $f' - \beta$ with multiplicity $m \geq 2$ and $\beta(z_0) \neq 0, \infty$. By (27), (28) and (44) we find that

$$\beta(z_0)\omega(z_0) + 1 = 0$$ (45)

If $\beta \omega + 1 \neq 0$, then from this, (42), (45) and (40) we see that

$$T(r, f) \leq \tilde{N}(r, \frac{1}{f' - \beta}) + S(r, f) \leq N(r, \frac{1}{\beta \omega + 1}) + S(r, f)$$

$$\leq T(r, \beta) + T(r, \omega) + S(r, f) = S(r, f)$$

This is impossible. Therefore, $\beta \omega + 1 \equiv 0$. Thus, from this, (44) and (15) we get

$$\frac{f''}{f'} - \frac{\beta'}{\beta} = \frac{-2}{\beta}(f - \beta)$$

and

$$\frac{1}{\beta}(f - \beta) = \frac{f'}{f} - 1.$$ (46)
respectively. If we now eliminate $-\frac{1}{\beta}(f - \beta)$ between the last two equations leads to

$$\frac{f''}{f'} - \frac{\beta'}{\beta} = 2\left(\frac{f'}{f} - 1\right)$$

By integrating once,

$$f'(z) = c\beta(z)f^2e^{-2z}.$$ Substituting this into (46) gives

$$f(z) = \frac{2\beta(z)}{1 + c\beta^2(z)e^{-2z}}.$$ Hence,

$$f'(z) = \frac{2\beta' - 2\beta^2ce^{-2z}(\beta' - 2\beta)}{(1 + c\beta^2e^{-2z})^2}.$$ Since $\bar{N}(r, \frac{1}{f'}) = S(r, f)$, therefore we must have $\beta' \equiv 0$ and so β is a constant. Thus (1) holds when $\beta = a$.

Case 2. $H \not\equiv \frac{2}{\beta}$. Then from (35) and (37) we have

$$N_1(r, f) \leq N\left(r, \frac{1}{H - \frac{2}{\beta}}\right) + S(r, f) \leq T(r, H) + S(r, f) \leq m(r, f) + S(r, f).$$ From Lemma 2.2 ($a_1 = 0$, $a_2 = \beta$ and $a_3 = \infty$), $\bar{N}(r, \frac{1}{f'}) = S(r, f)$, (47), (37) and (32) we get

$$T(r, f') \leq \bar{N}\left(r, \frac{1}{f'}\right) + \bar{N}\left(r, \frac{1}{f' - \beta}\right) + \bar{N}(r, f) + S(r, f) \leq \bar{N}\left(r, \frac{1}{f' - \beta}\right) + \bar{N}_1(r, f) + \bar{N}_2(r, f) + S(r, f) \leq \bar{N}\left(r, \frac{1}{f' - \beta}\right) + m(r, f) + \bar{N}_2(r, f) + S(r, f) \leq \bar{N}\left(r, \frac{1}{f' - \beta}\right) + \bar{N}_2\left(r, \frac{1}{f' - \beta}\right) + S(r, f)$$

which results in

$$N_3\left(r, \frac{1}{f' - \beta}\right) = S(r, f).$$

Writing (15) as

$$f = \beta + \frac{1}{\omega}\left(\frac{f'}{f} - 1\right),$$

which implies

$$m(r, f) \leq m(r, \beta) + m\left(r, \frac{1}{\omega}\right) + m\left(r, \frac{f'}{f}\right) + O(1) = m\left(r, \frac{1}{\omega}\right) + S(r, f).$$
Also we know from (15) that if z_∞ is a pole of f with multiplicity $p \geq 1$, then z_∞ is a zero of ω with multiplicity $p - 1$. Thus

$$N(r, f) - \tilde{N}(r, f) \leq N\left(r, \frac{1}{\omega}\right) + S(r, f). \tag{50}$$

Combining (49), (50) and (16) we have

$$m(r, f) + N(r, f) - \tilde{N}(r, f) \leq T(r, \omega) + S(r, f) = m(r, \omega) + N(r, \omega) + S(r, f) \leq N(r, \omega) + m\left(r, \frac{1}{f - \beta}\right) + S(r, f). \tag{51}$$

From (15), (27), (28), (50) and $\tilde{N}(r, \frac{1}{f}) = S(r, f)$, we conclude that

$$N(r, \omega) \leq \tilde{N}\left(r, \frac{1}{f}\right) + N_2\left(r, \frac{1}{f - \beta}\right) + S(r, f) = N_2\left(r, \frac{1}{f - \beta}\right) + S(r, f).$$

Together with (51) we get

$$m(r, f) + N_2(r, f) - \tilde{N}_2(r, f) \leq N_2\left(r, \frac{1}{f - \beta}\right) + m\left(r, \frac{1}{f - \beta}\right) + S(r, f). \tag{52}$$

From (31), it is easily verified that $H \not\equiv 0$ and

$$m\left(r, \frac{1}{f - \beta}\right) \leq m\left(r, \frac{1}{H}\right) + S(r, f). \tag{53}$$

By (36),

$$N_2\left(r, \frac{1}{f - \beta}\right) - \tilde{N}_2\left(r, \frac{1}{f - \beta}\right) \leq N\left(r, \frac{1}{H}\right) + S(r, f).$$

Combining this, (51) and (37) we obtain

$$m\left(r, \frac{1}{f - \beta}\right) + N_2\left(r, \frac{1}{f - \beta}\right) - \tilde{N}_2\left(r, \frac{1}{f - \beta}\right) \leq T(r, H) + S(r, f) \leq m(r, f) + S(r, f).$$

Adding this, (52) and (30) we deduce that

$$N_2(r, f) = S(r, f), \tag{54}$$
and
\[m(r, f) = N_2 \left(r, \frac{1}{f - \beta} \right) + m \left(r, \frac{1}{f - \beta} \right) + S(r, f). \] (55)

By (55) we see that
\[m(r, f) + N_{11} \left(r, \frac{1}{f - \beta} \right) = T(r, f) + S(r, f). \]

Hence from (54) and (30) we get
\[N_{11}(r) = N_1 \left(r, \frac{1}{f - \beta} \right) + S(r, f) = N \left(r, \frac{1}{f - \beta} \right) + S(r, f) \]
\[= N \left(r, \frac{1}{f' - \beta} \right) + S(r, f). \]

From this, (47) and (32) we see
\[\bar{N} \left(r, \frac{1}{f' - \beta} \right) = N_{11}(r, f) + S(r, f) \leq m(r, f) + S(r, f) \]
\[\leq \bar{N}_2 \left(r, \frac{1}{f' - \beta} \right) + S(r, f), \]
which results in
\[N_{11} \left(r, \frac{1}{f' - \beta} \right) = S(r, f) \] (56)

Set
\[G = \frac{1}{f} \left[\frac{(f'/\beta)^\prime}{f' - \beta} - 2 \frac{(f/\beta)^\prime}{f - \beta} \right]. \] (57)

Similarly as (8) we have
\[m(r, G) = S(r, f). \] (58)

if \(z_0 \) is a zero of \(f - \beta \) and \(f' - \beta \) with multiplicity 1 and 2 respectively, and \(\beta(z_0) \neq 0, \infty \), then \(G \) is holomorphic. Also, if \(z_\infty \) is a simple pole of \(f \), then by (57) we see \(G(z_\infty) = 0 \). We discuss the following two cases.

Case 1. \(G \neq 0 \). Then from (58), (56), (48), (54), (30) and \(\bar{N}(r, \frac{1}{f}) = S(r, f) \), we deduce that
\[N_{11}(r, f) \leq N \left(r, \frac{1}{G} \right) + S(r, f) \]
\[\leq -m \left(r, \frac{1}{G} \right) + N(r, G) + m(r, G) + S(r, f) \]
\[\leq -m \left(r, \frac{1}{G} \right) + N(r, G) + S(r, f) \]
\[\leq -m \left(r, \frac{1}{G} \right) + S(r, f) \]
which shows that
\[N_1(r, f) + m\left(r, \frac{1}{G}\right) = S(r, f). \] (59)

Noting that
\[f = \frac{1}{G} \left(\frac{(f'/\beta)' - 2(f/\beta)'}{f' - \beta} \right), \]
by (57). This imply,
\[m(r, f) \leq m\left(r, \frac{1}{G}\right) + S(r, f). \]

From this, (59) and (54), we can see that \(T(r, f) = S(r, f) \) a contradiction.

Case 2. \(G \equiv 0 \). Integrating of (57) we have
\[\beta(f' - \beta) = c(f - \beta)^2, \] (60)
where \(c \) is a nonzero constant. This yields
\[
2m(r, f) = m(r, f') + S(r, f) \\
\leq m\left(r, \frac{f'}{f}\right) + m(r, f) + S(r, f) \\
= m(r, f) + S(r, f)
\]
which means \(m(r, f) + S(r, f) \). Together with (47) and (54) gives the contradiction \(T(r, f) = S(r, f) \).

Case II. \(\beta - \beta' \equiv 0 \). Then \(N_1(r, \frac{1}{f - \beta}) \equiv 0 \) and if \(z_0 \) is a zero of \(f - \beta \) with multiplicity \(n \), then \(z_0 \) is a zero of \(f' - \beta \) with multiplicity \(n - 1 \). Using an argument similar to that in the Case I, we can deduce from (8) and (33) that \(\Omega \neq 0, H \neq 0 \) and
\[
N_2(r, f) - \tilde{N}_2(r, f) \leq N\left(r, \frac{1}{\Omega}\right) + S(r, f) \\
\leq -m\left(r, \frac{1}{\Omega}\right) + N(r, \Omega) + S(r, f) \\
\leq -m\left(r, \frac{1}{\Omega}\right) + \tilde{N}_2\left(r, \frac{1}{f - \beta}\right) + S(r, f) \] (61)
and
\[
N_2\left(r, \frac{1}{f - \beta}\right) - \tilde{N}_2\left(r, \frac{1}{f - \beta}\right) \leq N\left(r, \frac{1}{H}\right) + S(r, f) \\
\leq -m\left(r, \frac{1}{H}\right) + m(r, H) + S(r, f) \\
\leq -m\left(r, \frac{1}{H}\right) + m(r, f) + S(r, f). \] (62)
Combining (61), (12), (62) and (53) we conclude
\[N_2(r, f) + N_3 \left(r, \frac{1}{f - \beta} \right) + m \left(r, \frac{1}{f - \beta} \right) = S(r, f) \tag{63} \]
and
\[m(r, f) = \bar{N}_2 \left(r, \frac{1}{f - \beta} \right) + S(r, f). \tag{64} \]

Since \(\bar{N}(r, \frac{1}{f}) = S(r, f) \), it follows from (63) and Lemma 2.1 that
\[m \left(r, \frac{1}{f' - \beta} \right) = S(r, f). \tag{65} \]

Set
\[\Delta = \frac{f - \beta}{f' - \beta}. \]

It is easy to see that \(\Delta \not\equiv 0 \), \(N(r, \Delta) = S(r, f) \) and
\[
\bar{N}(r, f) + \bar{N}_2 \left(r, \frac{1}{f - \beta} \right) \leq N \left(r, \frac{1}{\Delta} \right) \\
\leq T(r, \Delta) + O(1) \\
\leq m(r, \Delta) + O(1) \\
\leq m(r, f) + m \left(r, \frac{1}{f' - \beta} \right) + S(r, f).
\]

Together with (64) and (65) we have \(\bar{N}(r, f) = S(r, f) \). Finally, from this, (63) and (64) we find that
\[
T(r, f) = m(r, f) + S(r, f) = \bar{N}_2 \left(r, \frac{1}{f - \beta} \right) \\
\leq \frac{1}{2} \bar{N}_2 \left(r, \frac{1}{f - \beta} \right) + S(r, f) \leq \frac{1}{2} T(r, f) + S(r, f),
\]
which gives the contradiction \(T(r, f) = S(r, f) \). This completes the proof of Theorem 2.4. \(\square \)

From Theorem 2.3 and Theorem 2.4 we immediately deduce the following corollary:

Corollary 2.5 Let \(f \) be a non-constant meromorphic function, and let \(\beta \) be a small meromorphic function of \(f \) such that \(\beta \not\equiv 0, \infty \). If \(f \) and \(f' \) share 0 and \(\beta \) CM, then \(f \equiv f' \).

Corollary 2.6 Let \(f \) be a non-constant meromorphic function, and let \(\beta \) be a small meromorphic function of \(f \) such that \(\beta \not\equiv 0, \infty \). If \(f \) and \(f' \) share 0 CM and \(\beta \) IM, then either \(f \equiv f' \) or \(\beta \) is a constant and \(f \) is given as (1) when \(\beta = a \).
3 Open Problem

From Corollary 2.5 and Corollary 2.6 we establish the following:

Conjecture 3.1 Let f be a non-constant meromorphic function, β and α two distinct small meromorphic functions of f with $\beta \neq \infty$ and $\alpha \neq \infty$. If f and f' share α and β CM, then $f \equiv f'$.

Conjecture 3.2 Let f be a non-constant meromorphic function, and let β be a small meromorphic function of f such that $\beta \neq 0, \infty$. If f and f' share 0 and β IM, then either $f \equiv f'$ or β is a constant and f is given as (1) when $\beta = a$.

Corollary 2.5 shows that Conjecture 3.1 is valid when $\alpha \equiv 0$ and Corollary 2.6 shows that Conjecture 3.2 is true if 0 IM replaced by 0 CM.

References

