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1. Introduction

Let Σ∗ denote the class of meromorphic functions of the form:

f(z) =
1

z
+
∞∑
k=1

akz
k (αk ≥ 0), (1.1)
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which are analytic in the punctured unit disc U∗ = {z : z ∈ C and 0 < |z| <
1} = U\{0}. Let g(z) ∈ Σ∗, be given by

g(z) =
1

z
+
∞∑
k=1

bkz
k, (1.2)

then the Hadamard product (or convolution) of f(z) and g(z) is given by

(f ∗ g)(z) =
1

z
+
∞∑
k=1

akbkz
k = (g ∗ f)(z). (1.3)

A function f ∈ Σ∗ is meromorphic starlike of order β (0 ≤ β < 1) if

−Re
{
zf ′(z)

f(z)

}
> β (z ∈ U). (1.4)

The class of all such functions is denoted by Σ∗(β). A function f ∈ Σ∗ is
meromorphic convex of order β (0 ≤ β < 1) if

−Re
{

1 +
zf ′′(z)

f ′(z)

}
> β (z ∈ U). (1.5)

The class of such functions is denoted by Σ∗k(β). The classes Σ∗(β) and Σ∗k(β) were
introduced and studied by Pommerenke [8], Miller [6], Mogra et al. [7], Cho
[3] and Aouf ([1] and [2]).

For a funcion f(z) ∈ Σ∗, Frasin and Darus [5] defined an operator In : Σ∗ → Σ∗

as follows:

I0f(z) = f(z),

I1f(z) = zf
′
(z) +

2

z
,

I2f(z) = z(I1f(z))
′
+

2

z
,

and for n ∈ N = {1, 2, ...}, we have

Inf(z) = z(In−1f(z))
′
+

2

z

=
1

z
+
∞∑
k=1

knakz
k (n ∈ N0 = N ∪ {0}, z ∈ U∗).
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For 0 ≤ α < 1, 0 < β ≤ 1, 1
2
≤ γ ≤ 1 and n ∈ N0, we denote by F n(α, β, γ)

the subclass of Σ∗ consisting of functions of the form (1.1) and satisfying the
analytic criterion:∣∣∣∣ z2(Inf(z))

′
+ 1

(2γ − 1)z2(Inf(z))′ + (2αγ − 1)

∣∣∣∣ < β (z ∈ U∗). (1.6)

Choosing different values of β, γ and n, we have
(i) F 0(α, 1, 1) = F 0(α) =

{
f(z) ∈ Σ∗ : Re{−z2(f(z))

′} > α (0 ≤ α < 1)
}

;

(ii) F n(α, 1, 1) = F n(α) =
{
f(z) ∈ Σ∗ : Re{−z2(Inf(z))

′} > α (n ∈ N0, 0 ≤ α < 1)
}

;
(iii)F n(α, β, 1) = F n(α, β)

=

{
f(z) ∈ Σ∗ :

∣∣∣∣ z2(Inf(z))
′
+ 1

z2(Inf(z))′ + (2α− 1)

∣∣∣∣ < β (n ∈ N0, 0 ≤ α < 1, 0 < β ≤ 1, z ∈ U∗)
}
.

1 2. Coefficient estimates

Unless otherwise mentioned, we assume throughout this paper that 0 ≤ α <
1, 0 < β ≤ 1, 1

2
≤ γ ≤ 1, n ∈ N0 and z ∈ U∗.

Theorem 1. The function f(z) ∈ F n(α, β, γ) if and only if

∞∑
k=1

kn+1(1 + 2βγ − β)ak ≤ 2βγ(1− α). (2.1)

Proof. Suppose (2.1) holds, so∣∣∣z2(Inf(z))
′
+ 1
∣∣∣− β ∣∣∣(2γ − 1)z2(Inf(z))

′
+ (2αγ − 1)

∣∣∣
=

∣∣∣∣∣
∞∑
k=1

kn+1akz
k+1

∣∣∣∣∣− β
∣∣∣∣∣2γ(α− 1) +

∞∑
k=1

kn+1akz
k+1

∣∣∣∣∣
≤

∞∑
k=1

kn+1akr
k+1 − β

{
2γ(1− α)−

∞∑
k=1

kn+1(2γ − 1)akr
k+1

}

=
∞∑
k=1

kn+1(1 + 2βγ − β)akr
k+1 − 2βγ(1− α).

Since the above inequality holds for all r, 0 < r < 1, letting r → 1−, we have

∞∑
k=1

kn+1(1 + 2βγ − β)ak − 2βγ(1− α) ≤ 0,
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by (2.1). Hence f(z) ∈ F n(α, β, γ).

Conversely, suppose that f(z) is in the class F n(α, β, γ). Then∣∣∣∣ z2(Inf(z))
′
+ 1

(2γ − 1)z2(Inf(z))′ + (2αγ − 1)

∣∣∣∣∣∣∣∣∣∣∣∣
∞∑
k=1

kn+1akz
k+1

2γ(1− α)−
∞∑
k=1

kn+1(2γ − 1)akzk+1

∣∣∣∣∣∣∣∣ ≤ β.

Using the fact that Re(z) ≤ |z| for all z, we have∣∣∣∣ z2(Inf(z))
′
+ 1

(2γ − 1)z2(Inf(z))′ + (2αγ − 1)

∣∣∣∣
≤ Re


∞∑
k=1

kn+1akz
k+1

2γ(1− α)−
∞∑
k=1

kn+1(2γ − 1)akzk+1

 ≤ β (z ∈ U∗).2.2 (1)

If we choose z to be real so that z2(Inf(z))
′

is real. Upon clearing the denom-
inator in (2.2) and letting z → 1− through positive values, we obtain

∞∑
k=1

kn+1(1 + 2βγ − β)ak ≤ 2βγ(1− α).

This completes the proof of Theorem 1.

Corollary 1. Let the function f(z) defined by (1.1) be in the class F n(α, β, γ). Then

ak ≤
2βγ(1− α)

kn+1(1 + 2βγ − β)
(k ≥ 1),

with equality for the function

f(z) =
1

z
+

2βγ(1− α)

kn+1(1 + 2βγ − β)
zk. (2.3)

Putting β = γ = 1 and n = 0 in Theorem 1, we have

Corollary 2. The function f(z) ∈ F 0(α) (0 ≤ α < 1) if and only if
∞∑
k=1

kak ≤ (1− α), (2.4)

with equality for the function

f(z) =
1

z
+

(1− α)

k
zk (k ≥ 1). (2.5)



Subclass of Meromorphic Functions with Positive Coefficients... 23

3. Distortion theorems

Theorem 2. Let the function f(z) ∈ F n(α, β, γ), then for 0 < |z| = r < 1, we
have

1

r
− 2βγ(1− α)

(1 + 2βγ − β)
r ≤ |f(z)| ≤ 1

r
+

2βγ(1− α)

(1 + 2βγ − β)
r, (3.1)

with equality for the function

f(z) =
1

z
+

2βγ(1− α)

(1 + 2βγ − β)
z. (3.2)

Proof. It is easy to see from Theorem 1 that

(1 + 2βγ − β)
∞∑
k=1

ak ≤
∞∑
k=1

kn+1(1 + 2βγ − β)ak

≤ 2βγ(1− α).

Then
∞∑
k=1

ak ≤
2βγ(1− α)

(1 + 2βγ − β)
. (3.3)

Making use of (3.3), we have

|f(z)| ≥ 1

|z|
− |z|

∞∑
k=1

ak

≥ 1

r
− 2βγ(1− α)

(1 + 2βγ − β)
r, 3.4 (2)

and

|f(z)| ≤ 1

|z|
+ |z|

∞∑
k=1

ak

≤ 1

r
+

2βγ(1− α)

(1 + 2βγ − β)
r, 3.5 (3)

which proves the assertion (3.1). The proof is completed.

Theorem 3. Let the function f(z) ∈ F n(α, β, γ), then for 0 < |z| = r < 1, we
have

1

r2
− 2βγ(1− α)

(1 + 2βγ − β)
≤ |f ′(z)| ≤ 1

r2
+

2βγ(1− α)

(1 + 2βγ − β)
, (3.6)

with equality for the function f(z) given by (3.2).



24 M. K. Aouf, A. O. Mostafa and W. K. Elyamany

Proof. From Theorem 1 and (3.3), we have

∞∑
k=1

kak ≤
2βγ(1− α)

(1 + 2βγ − β)
. (3.7)

The remaining part of the proof is similar to the proof of Theorem 2 so, we
omit the details.

4. Closure theorems

Let the functions fj(z) be defined, for j = 1, 2, ....,m, by

fj(z) =
1

z
+
∞∑
k=1

ak,jz
k (ak,j ≥ 0). (4.1)

Theorem 4. Let fj(z) ∈ F n(α, β, γ) (j = 1, 2, ....,m). Then the function h(z),

h(z) =
1

z
+
∞∑
k=1

(
1

m

m∑
j=1

ak,j

)
zk, (4.2)

is in F n(α, β, γ).
Proof. Since fj(z) ∈ F n(α, β, γ) (j = 1, 2, ....,m), it follows from Theorem 1,
that

∞∑
k=1

kn+1(1 + 2βγ − β)ak,j ≤ 2βγ(1− α),

for every j = 1, 2, ....,m. Hence

∞∑
k=1

kn+1(1 + 2βγ − β)

(
1

m

m∑
j=1

ak,j

)

=
1

m

m∑
j=1

(
∞∑
k=1

kn+1(1 + 2βγ − β)ak,j

)
≤ 2βγ(1− α).

From Theorem 1, it follows that h(z) ∈ F n(α, β, γ). This completes the proof.

Theorem 5. The class F n(α, β, γ) is closed under convex linear combinations.
Proof. Let fj(z) (j = 1, 2) defined by (4.1) be in the class F n(α, β, γ). Then
it is sufficient to show that

h(z) = ηf1(z) + (1− η)f2(z) (0 ≤ η ≤ 1), (4.3)
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is in the class F n(α, β, γ). Since

h(z) =
1

z
+
∞∑
k=1

[ηak,1 + (1− η)ak,2]z
k, (4.4)

then, we have from Theorem 1 that

∞∑
k=1

kn+1(1 + 2βγ − β)[ηak,1 + (1− η)ak,2]

≤ 2ηβγ(1− α) + 2βγ(1− η)(1− α)

= 2βγ(1− α),

so, h(z) ∈ F n(α, β, γ).

Theorem 6. Let 0 ≤ σ < 1, then

F n(α, β, γ) ⊆ F n(σ, β, 1) = F n(σ, β)

where

σ = 1− γ(1 + β)(1− α)

(1 + 2βγ − β)
. (4.5)

Proof. Let f(z) ∈ F n(α, β, γ), then

∞∑
k=1

kn+1(1 + 2βγ − β)

2βγ(1− α)
ak ≤ 1. (4.6)

We need to find the value of σ such that

∞∑
k=1

kn+1(1 + β)

2β(1− σ)
ak ≤ 1. (4.7)

In view of (4.6) and (4.7) we have

kn+1(1 + β)

2β(1− σ)
≤ kn+1(1 + 2βγ − β)

2βγ(1− α)
.

That is

σ ≤ 1− γ(1 + β)(1− α)

(1 + 2βγ − β)
,

which completes the proof of Theorem 6.
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Theorem 7. Let f0(z) =
1

z
and

fk(z) =
1

z
+

2βγ(1− α)

kn+1(1 + 2βγ − β)
zk (k ≥ 1). (4.8)

Then f(z) is in the class F n(α, β, γ) if and only if can be expressed in the form

f(z) =∞k=0 µkfk(z), (4.9)

where µk ≥ 0 and ∞k=0µk = 1.
Proof . Assume that

f(z) = ∞
k=0µkfk(z)

=
1

z
+
∞∑
k=1

2βγ(1− α)

kn+1(1 + 2βγ − β)
µkz

k.4.10 (4)

Then it follows that

∞∑
k=1

2βγ(1− α)

kn+1(1 + 2βγ − β)
µk.

kn+1(1 + 2βγ − β)

2βγ(1− α)

=
∞∑
k=1

µk = 1− µ0 ≤ 1.

which implies that f(z) ∈ F n(α, β, γ).

Conversely, assume that the function f(z) defined by (1.1) be in the class F n(α, β, γ).
Then

ak ≤
2βγ(1− α)

kn+1(1 + 2βγ − β)
.

Setting

µk =
kn+1(1 + 2βγ − β)

2βγ(1− α)
ak, k ≥ 1,

and
µ0 = 1−∞k=1 µk ,

we can see that f(z) can be expressed in the form (4.9). This completes the
proof of Theorem 7.

Corollary 2. The extreme points of the class F n(α, β, γ) are the functions

f0(z) =
1

z
and

fk(z) =
1

z
+

2βγ(1− α)

kn+1(1 + 2βγ − β)
zk (k ≥ 1). (4.11)
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5. Integral operators

Theorem 8. Let the functions f(z) ∈ F n(α, β, γ). Then the integral operator

Fc(z) = c10u
c f(uz)du (0 < u ≤ 1; c > 0), (5.1)

is in the class F 0(ζ), where

ξ = 1− 2βγc(1− α)

(1 + 2βγ − β)(c+ 2)
. (5.2)

The result is sharp for the function f(z) given by (3.2).
Proof. Let f(z) ∈ F 0(ζ), then

Fc(z) = c10u
c f(uz)du

=
1

z
+
∞∑
k=1

c

k + c+ 1
akz

k.5.3 (5)

In view of Corollary 2, it is sufficient to show that

∞∑
k=1

kc

(k + c+ 1)(1− ζ)
ak ≤ 1. (5.4)

Since f(z) ∈ F n(α, β, γ), then

∞∑
k=1

kn+1(1 + 2βγ − β)

2βγ(1− α)
ak ≤ 1. (5.5)

From (5.4) and (5.5), we have

kc

(k + c+ 1)(1− ζ)
≤ kn+1(1 + 2βγ − β)

2βγ(1− α)
.

Then

ξ ≤ 1− 2βγc(1− α)

kn(1 + 2βγ − β)(c+ k + 1)
.

Since

Y (k) = 1− 2βγc(1− α)

kn(1 + 2βγ − β)(c+ k + 1)
,

is an increasing function of k (k ≥ 1), we obtain

ξ ≤ Y (1) = 1− 2βγc(1− α)

(1 + 2βγ − β)(c+ 2)
,

and hence the proof of Theorem 8 is completed.
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6. Radii of convexity

Theorem 9. Let the function f(z) ∈ F n(α, β, γ). Then f(z) is meromorphi-
cally convex of order δ (0 ≤ δ < 1) in 0 < |z| < r, where

r ≤
{
kn(1 + 2βγ − β)(1− δ)
2βγ(k + 2− δ)(1− α)

} 1
k+1

. (6.1)

The result is sharp.
Proof. We must show that∣∣∣∣2 +

zf
′′
(z)

f ′(z)

∣∣∣∣ ≤ 1− δ for 0 < |z| < r, (6.2)

where r1 is given by (6.1). Indeed we find from (1.1) that∣∣∣∣2 +
zf

′′
(z)

f ′(z)

∣∣∣∣ ≤ ∞
k=1k(k + 1)ak |z|k+1

1−∞k=1 kak |z|
k+1

.

Thus ∣∣∣∣2 +
zf

′′
(z)

f ′(z)

∣∣∣∣ ≤ 1− δ,

if
∞∑
k=1

k(k + 2− δ)
1− δ

akr
k+1 ≤ 1. (6.3)

But by using Theorem 1, (6.3) will be true if

k(k + 2− δ)
1− δ

rk+1 ≤ kn+1(1 + 2βγ − β)

2βγ(1− α)
.

Then

r ≤
{
kn(1 + 2βγ − β)(1− δ)
2βγ(k + 2− δ)(1− α)

} 1
k+1

(k ≥ 1).

This completes the proof of Theorem 9.

7. Modified Hadamard products

For fj(z) (j = 1, 2) defined by (4.1), the modified Hadamard product of
f1(z) and f2(z) is defined by

(f1 ∗ f2)(z) =
1

z
+
∞∑
k=1

ak,1ak,2z
k = (f2 ∗ f1)(z). (7.1)
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Theorem 10. Let fj(z) ∈ F n(α, β, γ) (j = 1, 2). Then (f1∗f2)(z) ∈ F n(φ, β, γ), where

φ = 1− 2βγ(1− α)2

(1 + 2βγ − β)
. (7.2)

The result is sharp for the functions fj(z) (j = 1, 2) given by

fj(z) =
1

z
+

2βγ(1− α)

(1 + 2βγ − β)
z (j = 1, 2). (7.3)

Proof. Using the techinque for Schild and Silverman [9], we need to find the
largest φ such that

∞∑
k=1

kn+1(1 + 2βγ − β)

2βγ(1− φ)
ak,1ak,2 ≤ 1. (7.4)

Since fj(z) ∈ F n(α, β, γ) (j = 1, 2), we readily see that

∞∑
k=1

kn+1(1 + 2βγ − β)

2βγ(1− α)
ak,1 ≤ 1, (7.5)

and
∞∑
k=1

kn+1(1 + 2βγ − β)

2βγ(1− α)
ak,2 ≤ 1. (7.6)

By the Cauchy Schwarz inequality we have

∞∑
k=1

kn+1(1 + 2βγ − β)

2βγ(1− α)

√
ak,1ak,2 ≤ 1. (7.7)

Thus it is sufficient to show that

kn+1(1 + 2βγ − β)

2βγ(1− φ)
ak,1ak,2 ≤

kn+1(1 + 2βγ − β)

2βγ(1− α)

√
ak,1ak,2, (7.8)

or equilvalently, that
√
ak,1ak,2 ≤

(1− φ)

(1− α)
. (7.9)

Connecting with (7.7), it is sufficient to prove that

2βγ(1− α)

kn+1(1 + 2βγ − β)
≤ (1− φ)

(1− α)
. (7.10)

It follows from (7.10) that

φ ≤ 1− 2βγ(1− α)2

kn+1(1 + 2βγ − β)
. (7.11)
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Now defining the function E(k) by

E(k) = 1− 2βγ(1− α)2

kn+1(1 + 2βγ − β)
. (7.12)

We see that E(k) is an increasing function of k (k ≥ 1). Therefore, we conclude
that

φ ≤ E(1) = 1− 2βγ(1− α)2

(1 + 2βγ − β)
, (7.13)

which evidently completes the proof of Theorem 10.

Using arguments similar to those in the proof of Theorem 10, we obtain the
following theorem.
Theorem 11. Let f1(z) ∈ F n(α, β, γ). Suppose also that f2(z) ∈ F n(φ, β, γ). Then
(f1 ∗ f2)(z) ∈ F n(ζ, β, γ) where

ζ = 1− 2βγ(1− α)(1− φ)

(1 + 2βγ − β)
. (7.14)

The result is sharp for the functions fj(z) (j = 1, 2) given by

f1(z) =
1

z
+

2βγ(1− α)

(1 + 2βγ − β)
z , (7.15)

and

f2(z) =
1

z
+

2βγ(1− φ)

(1 + 2βγ − β)
z . (7.16)

Theorem 12. Let fj(z) ∈ F n(α, β, γ) (j = 1, 2). Then

h(z) =
1

z
+
∞∑
k=1

(a2k,1 + a2k,2)z
k (7.17)

belong to the class F n(ε, β, γ), where

ε = 1− 4βγ(1− α)2

(1 + 2βγ − β)
. (7.18)

The result is sharp for the functions fj(z) (j = 1, 2) defined by (7.3).
Proof . By using Theorem 1, we obtain

∞∑
k=1

{
kn+1(1 + 2βγ − β)

2βγ(1− α)

}2

a2k,1 ≤

{
∞∑
k=1

kn+1(1 + 2βγ − β)

2βγ(1− α)
ak,1

}2

≤ 1,

(7.19)
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and

∞∑
k=1

{
kn+1(1 + 2βγ − β)

2βγ(1− α)

}2

a2k,2 ≤

{
∞∑
k=1

kn+1(1 + 2βγ − β)

2βγ(1− α)
ak,2

}2

≤ 1.

(7.20)
It follow from (7.19) and (7.20) that

∞∑
k=1

1

2

{
kn+1(1 + 2βγ − β)

2βγ(1− α)

}2

(a2k,1 + a2k,2) ≤ 1. (7.21)

Therefore, we need to find the largest ε such that

kn+1(1 + 2βγ − β)

2βγ(1− ε)
≤ 1

2

{
kn+1(1 + 2βγ − β)

2βγ(1− α)

}2

, (7.22)

that is

ε ≤ 1− 4βγ(1− α)2

kn+1(1 + 2βγ − β)
, (7.23)

since

G(k) = 1− 4βγ(1− α)2

kn+1(1 + 2βγ − β)
, (7.24)

is an increasing function of k (k ≥ 1), we obtain

ε ≤ G(1) = 1− 4βγ(1− α)2

(1 + 2βγ − β)
, (7.25)

and hence the proof of Theorem 12 is completed.

Putting n = 0 in Theorem 12 we obtain the following corollary:
Corollary 3. Let the functions fj(z) ∈ F 0(α, β, γ) = Σp(α, β, γ) (j = 1, 2). Then
the function h(z) defined by (7.17) belong to the class F n(ε, β, γ) = Σp(ε, β, γ), where

ε = 1− 4βγ(1− α)2

(1 + 2βγ − β)
. (7.26)

The result is sharp for the functions fj(z) (j = 1, 2) defined by (7.3).

Remark 1. The corollary 3 corrects the result obtained by Cho et al. [4,
Theorem 5, with p = 1].

Corollary 4. If f1(z) = 1
z

+
∑∞

k=1 ak,1z
k ∈ F n(α, β, γ), and f2(z) = 1

z
+∑∞

k=1 ak,2z
k with 0 ≤ ak,2 ≤ 1, k ≥ 1 then (f1 ∗ f2)(z) ∈ F n(α, β, γ).
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8. Open Problem

The authors suggest to study the properties of the same class∣∣∣∣ z2f ′(z) + 1

Bz2f”(z) + [B + (A−B)(1− α)]

∣∣∣∣ < β.
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