Int. J. Open Problems Complex Analysis, Vol. 8, No. 1, March 2016 ISSN 2074-2827; Copyright ©ICSRS Publication, 2016 www.i-csrs.org

On subclasses of uniformly starlike and convex functions defined by Struve functions

H.E. Darwish, A.Y. Lashin and E.M. Madar

Department of Mathematics Faculty of Science Mansoura University Mansoura, 35516, EGYPT e-mail: Darwish333@yahoo.com e-mail: aylashin@mans.edu.eg e-mail: EntesarMadar@Gamil.com Received 1 May 2014; Accepted 12 July 2014

Abstract

The purpose of the present paper is to derive the necessary and sufficient condition for the generalized Bessel function (struve function) belonging to the classes $\Omega^*_{\lambda}(g; \alpha, \beta)$ and $\Upsilon^*_{\lambda}(g; \alpha, \beta)$.

Keywords: Starlike functions; Convex functions; Uniformly starlike functions; Uniformly convex functions; Hadamard product; Bessel function; Struve function.

2000 Mathematical Subject Classification: 30C45.

1 Introduction

Let A be the class of analytic functions in the unit disk

$$U = \{z \in \mathbb{C} : |z| < 1\}$$

of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in U).$$

$$\tag{1}$$

As usual, we denote by S the subclass of A consisting of functions which are normalized by f(0) = 0 = f'(0) - 1 and also univalent in U. Denote by T the

subclass of A consisting of functions whose non-zero coefficients from second on, is given by

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n.$$
 (2)

Also, for functions $f \in A$ given by (1) and $g \in A$ given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$

we define the Hadamard product (or convolution) of f and g by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g * f)(z), \quad z \in U.$$

A function $f \in A$ is said to be starlike of order α $(0 \leq \alpha < 1)$, if and only if $\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha$ $(z \in U)$. This function class is denoted by $S^*(\alpha)$. We also write $S^*(0) \equiv S^*$, where S^* denotes the class of functions $f \in A$ that f(U) is starlike with respect to the origin. A function $f \in A$ is said to be convex of order α $(0 \leq \alpha < 1)$ if and only if $\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha$ $(z \in U)$. This class is denoted by $K(\alpha)$. Further, K(0) = K, the well-known standard class of convex functions. It is an established fact that $f \in K(\alpha) \Leftrightarrow zf' \in S^*(\alpha)$.

It is well known that the special functions (series) play an important role in geometric function theory, especially in the solution by de Branges [10] of the famous Bieberbach conjecture. There is an extensive literature dealing with geometric properties of different types of special functions, especially for the generalized, Gaussian hypergeometric functions [9, 11, 16] and the Bessel functions [4, 5, 6, 12].

We recall here the Struve function of order p (see [14, 19]), denoted by H_p is given by

$$H_p(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{\Gamma(n+\frac{3}{2})\Gamma(p+n+\frac{3}{2})} \left(\frac{z}{2}\right)^{2n+p+1}, \quad \forall z \in U$$

which is the particular solution of the second order non-homogeneous differential equation

$$z^{2}w''(z) + zw'(z) + (z^{2} - p^{2})w(z) = \frac{4(z/2)^{p+1}}{\sqrt{\pi}\Gamma(p + \frac{1}{2})}$$

where p is unrestricted real (or complex) number. The solution of the non-homogeneous differential equation

$$z^{2}w''(z) + zw'(z) - (z^{2} + p^{2})w(z) = \frac{4(z/2)^{p+1}}{\sqrt{\pi}\Gamma(p + \frac{1}{2})}$$

is called the modified Struve function of order p and is defined by the formula

$$\mathfrak{L}_{p}(z) = -ie^{-ip\pi/2}H_{p}(iz) = \sum_{n=0}^{\infty} \frac{1}{\Gamma(n+\frac{3}{2})\Gamma(p+n+\frac{3}{2})} \left(\frac{z}{2}\right)^{2n+p+1}, \quad \forall z \in U.$$

Let the second order non-homogeneous linear differential equation [16] (also see [11] and references cited therein),

$$z^{2}w''(z) + bzw'(z) + [cz^{2} - p^{2} + (1 - b)p]w(z) = \frac{4(z/2)^{p+1}}{\sqrt{\pi}\Gamma(p + \frac{b}{2})}$$
(3)

where $b, p, c \in \mathbb{C}$ which is natural generalization of Struve equation. It is of interest to note that when b = c = 1, then we get the Struve function (1)and for c = -1, b = 1 the modified Struve function (1). This permit us to study Struve and modified Struve functions. Now, denote by $w_{p,b,c}(z)$ the generalized Struve function of order p given by

$$w_{p,b,c}(z) = \sum_{n=0}^{\infty} \frac{(-1)^n (c)^n}{\Gamma(n+\frac{3}{2})\Gamma(p+n+\frac{b+2}{2})} \left(\frac{z}{2}\right)^{2n+p+1}, \quad \forall z \in U$$

which is the particular solution of the differential equation (3). Although the series defined above is convergent everywhere, the function $w_{p,b,c}$ is generally not univalent in U. Now, consider the function $u_{p,b,c}$ defined by the transformation

$$u_{p,b,c}(z) = 2^p \sqrt{\pi} \Gamma\left(p + \frac{b+2}{2}\right) z^{\frac{-p-1}{2}} w_{p,b,c}\left(\sqrt{z}\right).$$

By using well known Pochhammer symbol (or the shifted factorial) defined, in terms of the familiar Gamma function, by

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1 & (n=0), \\ a(a+1)(a+2)\cdots(a+n-1) & (n \in \mathbb{N} = \{1,2,3,\ldots\}) \end{cases}$$

we can express $u_{p,b,c}(z)$ as

$$u_{p,b,c}(z) = z + \sum_{n=2}^{\infty} \frac{(-c/4)^n}{(m)_n (3/2)_n} z^n$$

= $b_0 + b_1 z + b_2 z^2 + \dots + b_n z^n + \dots,$

where $m = \left(p + \frac{b+2}{2}\right) \neq 0, -1, -2, \dots$ This function is analytic on U and satisfies the second-order in homogeneous linear differential equation

$$4z^{2}u''(z) + 2(2p+b+3)zu'(z) + (cz+2p+b)u(z) = 2p+b.$$

For convenience, throughout in the sequel, we use the following notations

$$w_{p,b,c}(z) = w_p(z),$$
$$u_{p,b,c}(z) = u_p(z),$$
$$m = p + \frac{b+2}{2}$$

and for if $c < 0, m > 0 (m \neq 0, -1, -2, ...)$ let,

$$zu_p(z) = \sum_{n=0}^{\infty} \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} z^n = z + \sum_{n=2}^{\infty} b_{n-1} z^n$$

and

$$\Psi(z) = z(2 - u_p(z)) = z - \sum_{n=2}^{\infty} \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} z^n$$
(4)

For f(z) defined by (1) Aouf et al. [1] defined the classes $\Omega_{\lambda}(\alpha, \beta)$ and $\Upsilon_{\lambda}(\alpha, \beta)$ as follows :

Definition 1.1 The function f(z) defined by (1) is said to be in the class $\Omega_{\lambda}(\alpha,\beta)$ if and only if

$$\Re\left\{\frac{zf'(z)}{(1-\lambda)f(z)+\lambda zf'(z)}-\alpha\right\}>\beta\left|\frac{zf'(z)}{(1-\lambda)f(z)+\lambda zf'(z)}-1\right|,$$

for some $(0 \leq \lambda < 1)$, $(0 \leq \alpha < 1)$ and $(\beta > 0)$, and is in the class $\Upsilon_{\lambda}(\alpha, \beta)$ if and only if

$$\Re\left\{\frac{zf''(z)+f'(z)}{f'(z)+\lambda zf''(z)}-\alpha\right\}>\beta\left|\frac{zf''(z)+f'(z)}{f'(z)+\lambda zf''(z)}-1\right|,$$

for some $(0 \le \lambda < 1)$, $(0 \le \alpha < 1)$ and $(\beta > 0)$. Denote $\Omega_{\lambda}^*(\alpha, \beta) = \Omega_{\lambda}(\alpha, \beta) \cap T$ and $\Upsilon_{\lambda}^*(\alpha, \beta) = \Upsilon_{\lambda}(\alpha, \beta) \cap T$, the subclasses of T.

Note that if $\lambda = 0$ then $\Omega_{\lambda}(\alpha, \beta) = \Omega_0(\alpha, \beta)$ and $\Upsilon_{\lambda}(\alpha, \beta) = \Upsilon_0(\alpha, \beta)$ [7], also we note $\Omega_0(\alpha, 0) \equiv T^*(\alpha)$ and $\Upsilon_0(\alpha, 0) \equiv C(\alpha)$ [15], further $\Omega_0(0, \beta) \equiv \Omega_0(\beta)$ and $\Upsilon_0(0, \beta) \equiv \Upsilon_0(\beta)$ [17]. Suitably specializing the parameters we get the various subclasses studied in [13] and see the references cited therein.(also see [1, 2, 8, 7, 18]). Recently, Yagmur and Orhan [19] (see [14]) have determined various sufficient conditions for the parameters p, b and c such that the functions $u_{p,b,c}(z)$ or $z \to zu_{p,b,c}(z)$ to be univalent, starlike, convex and close to convex in the open unit disk. Motivated by results on connections between various subclasses of analytic univalent functions by using hypergeometric functions (see [9, 11, 16]) and by work of Baricz [4, 5, 6]. In this paper, we obtain sufficient condition for function h(z), given by

$$h_{\mu}(z) = (1-\mu)zu_{p}(z) + \mu zu'_{p}(z)$$

= $z + \sum_{n=2}^{\infty} (1+n\mu-\mu) \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} z^{n},$ (5)

where $0 \le \mu \le 1$, belonging to the classes $\Omega_{\lambda}(\alpha, \beta)$ and $\Upsilon_{\lambda}(\alpha, \beta)$.

2 Main results and their consequences

We recall the following necessary and sufficient conditions for the functions $f \in \Omega^*_{\lambda}(\alpha, \beta), f \in \Upsilon^*_{\lambda}(\alpha, \beta)$.

Lemma 2.1 A function f(z) of the form (2) is in

(*i*) the class $\Omega_{\lambda}(\alpha, \beta)$ if

$$\sum_{n=2}^{\infty} n(1+\beta) - (\alpha+\beta)[1+\lambda(n-1)] |a_n| \le 1-\alpha.$$
 (6)

(*ii*) the class $\Upsilon_{\lambda}(\alpha, \beta)$ if

$$\sum_{n=2}^{\infty} n[n(1+\beta) - (\alpha+\beta)(1+\lambda(n-1))] |a_n| \le 1 - \alpha.$$
 (7)

The above sufficient conditions are also necessary for functions f of the form (2).

Lemma 2.2 A function f(z) of the form (2) is in

(i) the class $\Omega_0(\alpha, \beta)$ if and only if

$$\sum_{n=2}^{\infty} [n(1+\beta) - (\alpha+\beta)] |a_n| \le 1 - \alpha.$$

(*ii*) the class $\Upsilon_0(\alpha, \beta)$ if and only if

$$\sum_{n=2}^{\infty} n[n(1+\beta) - (\alpha+\beta)] |a_n| \le 1 - \alpha.$$

Theorem 2.3 If $c < 0, m > 0 (m \neq 0, -1, -2, \dots$ then $h_{\mu}(z) \in \Omega_{\lambda}(\alpha, \beta)$ if

$$\begin{bmatrix} \mu(1+\lambda)(1+\beta)]u_{p}''(1) + [(1+\beta)(2\mu(1+\lambda)+1) \\ -(\alpha+\beta)(\mu+\lambda(1-\mu))]u_{p}'(1)] \\ +[(1+\beta)-(\alpha+\beta)(1+\mu(1-\lambda))]u_{p}(1) \\ \leq [2(1-\alpha)-\mu(1-\lambda)(\alpha+\beta)].
 \tag{8}$$

Proof Since

$$zu_p(z) = z + \sum_{n=2}^{\infty} \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} z^n,$$

then

$$u_p(1) - 1 = \sum_{n=2}^{\infty} \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}},$$
(9)

and differentiating $zu_p(z)$ with respect to z and taking z = 1 we have

$$zu'_{p}(z) + u_{p}(z) = 1 + \sum_{n=2}^{\infty} n \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} z^{n-1}$$
$$u'_{p}(1) + u_{p}(1) - 1 = \sum_{n=2}^{\infty} n \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}}.$$
(10)

Further, differentiating $zu'_p(z) + u_p(z)$ with respect to z and taking z = 1, we get

$$zu_p''(z) + 2u_p'(z) = \sum_{n=2}^{\infty} n(n-1) \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} z^{n-2}$$
$$u_p''(1) + 2u_p'(1) = \sum_{n=2}^{\infty} n(n-1) \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}}.$$
(11)

Since $h_{\mu}(z) \in \Omega_{\lambda}(\alpha, \beta)$, by virtue of Lemma 2.1 and (5) it suffices to show that

$$\sum_{n=2}^{\infty} (1+n\mu-\mu) \left[n(1+\beta) - (\alpha+\beta)(1+\lambda(n-1)) \right] \left(\frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} \right) \le 1-\alpha.$$
(12)

Now, let

$$S(n,\lambda,\beta,\alpha) = \sum_{n=2}^{\infty} (1+n\mu-\mu)$$

. {n(1+\beta) - (\alpha+\beta)[1+\lambda(n-1)]} $\left(\frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}}\right)$

$$= \mu(1+\beta)\sum_{n=2}^{\infty} n^2 \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} -\lambda\mu(\alpha+\beta)\sum_{n=2}^{\infty} n(n-1)\frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} + [(1-\mu)(1+\beta) - [(\alpha+\beta)(\mu+\lambda(1-\mu)]\sum_{n=2}^{\infty} n\frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} + [(1-\mu)(\alpha+\beta)(\lambda-1)]\sum_{n=2}^{\infty} \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}}.$$

Writing $n^2 = n(n-1) + n$, we get

$$S(n,\lambda,\beta,\alpha) = [\mu(1+\beta) + \lambda\mu(\alpha+\beta)] \sum_{n=2}^{\infty} n(n-1) \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} + (1+\beta) - [(\alpha+\beta)(\mu+\lambda(1-\mu))] \sum_{n=2}^{\infty} n \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} + \lambda[(1-\mu)(\alpha+\beta)(\lambda-1)] \sum_{n=2}^{\infty} \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}}.$$

From (9), (10), (11) and taking z = 1, we get

$$S(n,\lambda,\beta,\alpha) \leq [\mu(1+\beta) + \lambda\mu(\alpha+\beta)][u''_{p}(1) + 2u'_{p}(1)] + (1+\beta) - [(\alpha+\beta)(\mu+\lambda(1-\mu))](u'_{p}(1) + u_{p}(1) - 1) + \lambda[(1-\mu)(\alpha+\beta)(\lambda-1)](u_{p}(1) - 1).$$

$$S(n, \lambda, \beta, \alpha) = [\mu(1+\beta) + \lambda\mu(\alpha+\beta)]u_p''(1) + (1+\beta)(2\mu+1) + [(\alpha+\beta)(\lambda(3\mu-1)-\mu))]u_p'(1)] + [(1+\beta) - (\alpha+\beta)(\mu+(1-\mu)(2\lambda-1))](u_p(1)-1).$$

But this expression is bounded above by $1 - \alpha$ if (8) holds.

Thus, the proof is complete.

Theorem 2.4 If $c < 0, m > 0 (m \neq 0, -1, -2, ... then <math>zu_p(z) \in \Omega_\lambda(\alpha, \beta)$ if

$$[(1+\beta) - \lambda(\alpha+\beta)(1-\mu)]u'_p(1) + [(1+\beta) - (\alpha+\beta)]u_p(1) \le 2(1-\alpha).$$
(13)

Proof By virtue of Lemma 2.1of (6), it suffices to show that

$$\sum_{n=2}^{\infty} \left[n(1+\beta) - (\alpha+\beta)(1+\lambda(n-1)) \right] \left(\frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} \right) \le 1 - \alpha.$$

Since $h_0(z) = zu_p(z)$, hence by taking $\mu = 0$ in (12) we get the above inequality. Hence by taking $\mu = 0$ in the Theorem 2.3, we get the desired result given in (13).

Theorem 2.5 If $c < 0, m > 0 (m \neq 0, -1, -2, ... then <math>zu_p(z) \in \Upsilon_{\lambda}(\alpha, \beta)$ if

$$[(1+\lambda)(1+\beta)]u_p''(1) + [(1+\beta)(2(1+\lambda)+1)) - (\alpha+\beta)]u_p'(1)] + [(1+\beta) - (\alpha+\beta)(1+(1-\lambda))]u_p(1) \le [2(1-\alpha) - (1-\lambda)(\alpha+\beta)]14)$$

Proof By virtue of Lemma 2.1 of (7), it suffices to show that

$$\sum_{n=2}^{\infty} \left\{ n[n(1+\beta) - (\alpha+\beta)(1+\lambda(n-1))] \right\} \left(\frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} \right) \le 1 - \alpha$$

By definition $zu_p(z) \in \Upsilon_{\lambda}(\alpha, \beta) \Leftrightarrow zu_p(z) \in \Omega_{\lambda}(\alpha, \beta)$. That is by taking $\mu = 1$ we have $h_1(z) = zu'_p(z)$, hence by taking $\mu = 1$ in the Theorem 2.3, we get the desired result given in (14).

Remark 2.6 The above conditions (8) and (14) are also necessary for functions $\Psi(z)$ given by (4) and of the form

$$\begin{aligned} h^*_{\mu}(z) &= (1-\mu)\Psi(z) + \mu \Psi'(z) \\ &= z - \sum_{n=2}^{\infty} (1+n\mu-\mu) \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} z^n, \end{aligned}$$

is in the classes $\Omega_{\lambda}(\alpha, \beta)$ and $\Upsilon_{\lambda}(\alpha, \beta)$ respectively.

Further, by taking $\lambda = 0$ (or) $\lambda = 1$ in Theorems 2.4 and 2.5, we state the following corollaries without proof.

Corollary 2.7 If $c < 0, m > 0 (m \neq 0, -1, -2, ... then <math>z(2 - u_p(z))$,

(i) is in $\Omega_0(\alpha, \beta)$ if and only if

$$(1+\beta)u'_p(1) + (1-\alpha)u_p(1) \le 2(1-\alpha).$$

(*ii*) is in $\Upsilon_0(\alpha, \beta)$ if and only if

$$(1+\beta)u_p''(1) + (3-2\beta-\alpha)u_p'(1) + (1-\alpha)u_p(1) \le 2(1-\alpha)u_p'(1) \le 2(1-\alpha)u_p'(1$$

3 Open problem

The authors suggest to study sufficient condition for function h(z), given by

$$h_{\mu}(z) = (1-\mu)zu_{p}(z) + \mu zu'_{p}(z)$$

= $z + \sum_{n=2}^{\infty} (1+n\mu-\mu) \frac{(-c/4)^{n-1}}{(m)_{n-1}(3/2)_{n-1}} z^{n},$

where $0 \le \mu \le 1$, belongs to the class

$$\Re\left\{1+\frac{1}{b}\left[\frac{zf'(z)}{f(z)}-1\right]\right\} > \beta\left|\frac{1}{b}\left(\frac{zf'(z)}{f(z)}-1\right)\right|$$

References

- M.K. Aouf, A.O. Mostafa and A. A. Hussain, Properties of certain class of uniformly Starlike and Convex functions defined by convolution, Int. J. Open Prob. Complex Anal., 7(2015), No. 2, 62-76.
- [2] M.K. Aouf, A.O. Mostafa and O.M. Aljubori, On quasi-Hadamard products of some families of uniformly starlike and convex functions with negative Coefficients, Int. J. Open Prob. Complex Anal., 7(2015), No. 3, 1-13.
- [3] M. K. Aouf, A. A. Shamandy, A. O. Mostafa and A. K. Wagdy, Certain subclasses of uniformly starlike and convex functions defined by convolution with negative coefficients, Mat. Vesnik., 65(2013), no. 1, 14-28.
- [4] A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73(2008), no.1-2, 155-178.
- [5] A. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica (Cluj) - Tome 48(71)(2006), no.1, 13-18.
- [6] A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Math., vol. 1994, Springer-Verlag, 2010.
- [7] R. Bharati, Parvatham and A. R. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 26(1997), no.1, 17-32.
- [8] R. Brar and S. S. Billing, Certain results on starlike and parabolic starlike functions, Int. J. Open Prob. Complex Anal., 8(2015), No. 4, 27-35.
- [9] E. N. Cho, Y. S. Woo and S. Owa, Uniform convexity properties for hypergeometric functions, Fract. Cal. Appl. Anal., 5(2002), no.3, 303-313.

- [10] L. de Branges, A proof of the Bierberbach conjucture, Acta. Math., 154 (1985), 137-152.
- [11] E. Merkes and T. B. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc., 12 (1961), 885-888.
- [12] R. S. Mondal and A. Swaminathan, Geometric properties of generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 35(2012, no. 1, 179-194.
- [13] G. Murugusundaramoorthy and N. Magesh, On certain subclasses of analytic functions associated with hypergeometric functions, Appl. Math. Letters, 24,(2011), 494-500.
- [14] H. Orhan and N. Yagmur, Geometric properties of generalized Struve functions, in The International Congress in Honour of Professor Hari M. Srivastava, Bursa, Turkey, August, 2012.
- [15] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975),109-116.
- [16] H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl., 172 (1993), 574-581.
- [17] G. K. Subramanian, G. Murugusundaramoorthy, P. Balasubrah-manyam and H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japonica, 42(1995), no. 3, 517-522.
- [18] G. K. Subramanian, V. T. Sudharsan, P. Balasubrahmanyam and H. Silverman, *Classes of uniformly starlike functions*, Publ. Math. Debrecen., 53(1998), no. 3-4, 309-315.
- [19] N. Yagmur and H. Orhan, Starlikeness and convexity of generalized Struve functions, Abstract and Appl. Anal., (2013), Article ID 954513, 6 pages.