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Abstract

The purpose of the present paper is to derive the necessary
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1 Introduction

Let A be the class of analytic functions in the unit disk

U = {z ∈ C : |z| < 1}

of the form

f(z) = z +
∞∑
n=2

anz
n (z ∈ U). (1)

As usual, we denote by S the subclass of A consisting of functions which are
normalized by f(0) = 0 = f ′(0)−1 and also univalent in U . Denote by T the
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subclass of A consisting of functions whose non-zero coefficients from second
on, is given by

f(z) = z −
∞∑
n=2

anz
n. (2)

Also, for functions f ∈ A given by (1) and g ∈ A given by

g(z) = z +
∞∑
n=2

bnz
n,

we define the Hadamard product (or convolution) of f and g by

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n = (g ∗ f)(z), z ∈ U.

A function f ∈ A is said to be starlike of order α (0 ≤ α < 1), if and only

if <
(
zf ′(z)
f(z)

)
> α (z ∈ U). This function class is denoted by S∗(α). We also

write S∗(0) ≡ S∗, where S∗ denotes the class of functions f ∈ A that f(U) is
starlike with respect to the origin. A function f ∈ A is said to be convex of

order α (0 ≤ α < 1) if and only if <
(

1 + zf ′′(z)
f ′(z)

)
> α (z ∈ U). This class is

denoted by K(α). Further, K(0) = K, the well-known standard class of convex
functions. It is an established fact that f ∈ K(α)⇔ zf ′ ∈ S∗(α).

It is well known that the special functions (series) play an important role
in geometric function theory, especially in the solution by de Branges [10] of
the famous Bieberbach conjecture. There is an extensive literature dealing
with geometric properties of different types of special functions, especially for
the generalized, Gaussian hypergeometric functions [9, 11, 16] and the Bessel
functions [4, 5, 6, 12].

We recall here the Struve function of order p (see [14, 19]), denoted by Hp

is given by

Hp(z) =
∞∑
n=0

(−1)n

Γ(n+ 3
2
)Γ(p+ n+ 3

2
)

(z
2

)2n+p+1

, ∀z ∈ U

which is the particular solution of the second order non-homogeneous differ-
ential equation

z2w′′(z) + zw′(z) + (z2 − p2)w(z) =
4(z/2)p+1

√
πΓ(p+ 1

2
)

where p is unrestricted real (or complex) number. The solution of the non-
homogeneous differential equation

z2w′′(z) + zw′(z)− (z2 + p2)w(z) =
4(z/2)p+1

√
πΓ(p+ 1

2
)
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is called the modified Struve function of order p and is defined by the formula

Lp(z) = −ie−ipπ/2Hp(iz) =
∞∑
n=0

1

Γ(n+ 3
2
)Γ(p+ n+ 3

2
)

(z
2

)2n+p+1

, ∀z ∈ U.

Let the second order non-homogeneous linear differential equation [16] (also
see [11] and references cited therein),

z2w′′(z) + bzw′(z) + [cz2 − p2 + (1− b)p]w(z) =
4(z/2)p+1

√
πΓ(p+ b

2
)

(3)

where b, p, c ∈ C which is natural generalization of Struve equation. It is of
interest to note that when b = c = 1, then we get the Struve function (1)and
for c = −1, b = 1 the modified Struve function (1).This permit us to study
Struve and modified Struve functions. Now, denote by wp,b,c(z) the generalized
Struve function of order p given by

wp,b,c(z) =
∞∑
n=0

(−1)n(c)n

Γ(n+ 3
2
)Γ(p+ n+ b+2

2
)

(z
2

)2n+p+1

, ∀z ∈ U

which is the particular solution of the differential equation (3).Although the se-
ries defined above is convergent everywhere, the function wp,b,c is generally not
univalent in U. Now, consider the function up,b,c defined by the transformation

up,b,c(z) = 2p
√
πΓ

(
p+

b+ 2

2

)
z
−p−1

2 wp,b,c
(√

z
)
.

By using well known Pochhammer symbol (or the shifted factorial) defined, in
terms of the familiar Gamma function, by

(a)n =
Γ(a+ n)

Γ(a)
=

{
1 (n = 0),

a(a+ 1)(a+ 2) · · · (a+ n− 1) (n ∈ N = {1, 2, 3, ...})

we can express up,b,c(z) as

up,b,c(z) = z +
∞∑
n=2

(−c/4)n

(m)n(3/2)n
zn

= b0 + b1z + b2z
2 + · · ·+ bnz

n + · · · ,

where m =
(
p+ b+2

2

)
6= 0,−1,−2, . . .. This function is analytic on U and

satisfies the second-order in homogeneous linear differential equation

4z2u′′(z) + 2(2p+ b+ 3)zu′(z) + (cz + 2p+ b)u(z) = 2p+ b.
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For convenience, throughout in the sequel, we use the following notations

wp,b,c(z) = wp(z),

up,b,c(z) = up(z),

m = p+
b+ 2

2

and for if c < 0,m > 0(m 6= 0,−1,−2, . . .) let,

zup(z) =
∞∑
n=0

(−c/4)n−1

(m)n−1(3/2)n−1
zn = z +

∞∑
n=2

bn−1z
n

and

Ψ(z) = z(2− up(z)) = z −
∞∑
n=2

(−c/4)n−1

(m)n−1(3/2)n−1
zn (4)

For f(z) defined by (1) Aouf et al. [1] defined the classes Ωλ(α, β) and Υλ(α, β)
as follows :

Definition 1.1 The function f(z) defined by (1) is said to be in the class
Ωλ(α, β) if and only if

<
{

zf ′(z)

(1− λ)f(z) + λzf ′(z)
− α

}
> β

∣∣∣∣ zf ′(z)

(1− λ)f(z) + λzf ′(z)
− 1

∣∣∣∣ ,
for some (0 ≤ λ < 1), (0 ≤ α < 1) and (β > 0), and is in the class Υλ(α, β)
if and only if

<
{
zf ′′(z) + f ′(z)

f ′(z) + λzf ′′(z)
− α

}
> β

∣∣∣∣ zf ′′(z) + f ′(z)

f ′(z) + λzf ′′(z)
− 1

∣∣∣∣ ,
for some (0 ≤ λ < 1), (0 ≤ α < 1) and (β > 0). Denote Ω∗λ(α, β) = Ωλ(α, β)∩
T and Υ∗λ(α, β) = Υλ(α, β) ∩ T, the subclasses of T .

Note that if λ = 0 then Ωλ(α, β) = Ω0(α, β) and Υλ(α, β) = Υ0(α, β) [7],
also we note Ω0(α, 0) ≡ T ∗(α) and Υ0(α, 0) ≡ C(α) [15], further Ω0(0, β) ≡ Ω0

(β) and Υ0(0, β) ≡ Υ0(β) [17]. Suitably specializing the parameters we get
the various subclasses studied in [13] and see the references cited therein.(also
see [1, 2, 8, 7, 18]). Recently, Yagmur and Orhan [19] (see [14]) have de-
termined various sufficient conditions for the parameters p, b and c such that
the functions up,b,c(z) or z → zup,b,c(z) to be univalent, starlike, convex and
close to convex in the open unit disk. Motivated by results on connections
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between various subclasses of analytic univalent functions by using hypergeo-
metric functions (see [9, 11, 16]) and by work of Baricz [4, 5, 6]. In this paper,
we obtain sufficient condition for function h(z), given by

hµ(z) = (1− µ)zup(z) + µzu′p(z)

= z +
∞∑
n=2

(1 + nµ− µ)
(−c/4)n−1

(m)n−1(3/2)n−1
zn, (5)

where 0 ≤ µ ≤ 1, belonging to the classes Ωλ(α, β) and Υλ(α, β).

2 Main results and their consequences

We recall the following necessary and sufficient conditions for the functions
f ∈ Ω∗λ(α, β), f ∈ Υ∗λ(α, β) .

Lemma 2.1 A function f(z)of the form (2)is in

(i) the class Ωλ(α, β) if

∞∑
n=2

n(1 + β)− (α + β)[1 + λ(n− 1)] |an| ≤ 1− α. (6)

(ii) the class Υλ(α, β) if

∞∑
n=2

n[n(1 + β)− (α + β)(1 + λ(n− 1))] |an| ≤ 1− α. (7)

The above sufficient conditions are also necessary for functions f of the form
(2).

Lemma 2.2 A function f(z) of the form (2) is in

(i) the class Ω0(α, β) if and only if

∞∑
n=2

[n(1 + β)− (α + β)] |an| ≤ 1− α.

(ii) the class Υ0(α, β) if and only if

∞∑
n=2

n[n(1 + β)− (α + β)] |an| ≤ 1− α.



On subclasses of uniformly starlike and convex functions 39

Theorem 2.3 If c < 0,m > 0(m 6= 0,−1,−2, . . . then hµ(z) ∈ Ωλ(α, β) if

[µ(1 + λ)(1 + β)]u′′p(1) + [(1 + β)(2µ(1 + λ) + 1)

−(α + β)(µ+ λ(1− µ))]u′p(1)]

+[(1 + β)− (α + β)(1 + µ(1− λ))]up(1)

≤ [2(1− α)− µ(1− λ)(α + β)]. (8)

Proof Since

zup(z) = z +
∞∑
n=2

(−c/4)n−1

(m)n−1(3/2)n−1
zn,

then

up(1)− 1 =
∞∑
n=2

(−c/4)n−1

(m)n−1(3/2)n−1
, (9)

and differentiating zup(z) with respect to z and taking z = 1 we have

zu′p(z) + up(z) = 1 +
∞∑
n=2

n
(−c/4)n−1

(m)n−1(3/2)n−1
zn−1

u′p(1) + up(1)− 1 =
∞∑
n=2

n
(−c/4)n−1

(m)n−1(3/2)n−1
. (10)

Further, differentiating zu′p(z) + up(z) with respect to z and taking z = 1, we
get

zu′′p(z) + 2u′p(z) =
∞∑
n=2

n(n− 1)
(−c/4)n−1

(m)n−1(3/2)n−1
zn−2

u′′p(1) + 2u′p(1) =
∞∑
n=2

n(n− 1)
(−c/4)n−1

(m)n−1(3/2)n−1
. (11)

Since hµ(z) ∈ Ωλ(α, β), by virtue of Lemma 2.1 and (5) it suffices to show that

∞∑
n=2

(1+nµ−µ) [n(1 + β)− (α + β)(1 + λ(n− 1))]

(
(−c/4)n−1

(m)n−1(3/2)n−1

)
≤ 1−α.

(12)
Now, let

S(n, λ, β, α) =
∞∑
n=2

(1 + nµ− µ)

. {n(1 + β)− (α + β)[1 + λ(n− 1)]}
(

(−c/4)n−1

(m)n−1(3/2)n−1

)
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= µ(1 + β)
∞∑
n=2

n2 (−c/4)n−1

(m)n−1(3/2)n−1

−λµ(α + β)
∞∑
n=2

n(n− 1)
(−c/4)n−1

(m)n−1(3/2)n−1

+ [(1− µ)(1 + β)− [(α + β)(µ+ λ(1− µ)]
∞∑
n=2

n
(−c/4)n−1

(m)n−1(3/2)n−1

+[(1− µ)(α + β)(λ− 1)]
∞∑
n=2

(−c/4)n−1

(m)n−1(3/2)n−1
.

Writing n2 = n(n− 1) + n, we get

S(n, λ, β, α) = [µ(1 + β) + λµ(α + β)]
∞∑
n=2

n(n− 1)
(−c/4)n−1

(m)n−1(3/2)n−1

+(1 + β)− [(α + β)(µ+ λ(1− µ))]
∞∑
n=2

n
(−c/4)n−1

(m)n−1(3/2)n−1

+λ[(1− µ)(α + β)(λ− 1)]
∞∑
n=2

(−c/4)n−1

(m)n−1(3/2)n−1
.

From (9), (10), (11) and taking z = 1, we get

S(n, λ, β, α) ≤ [µ(1 + β) + λµ(α + β)][u′′p(1) + 2u′p(1)]

+(1 + β)− [(α + β)(µ+ λ(1− µ))](u′p(1) + up(1)− 1)

+λ[(1− µ)(α + β)(λ− 1)](up(1)− 1).

S(n, λ, β, α) = [µ(1 + β) + λµ(α + β)]u′′p(1)

+(1 + β)(2µ+ 1) + [(α + β)(λ(3µ− 1)− µ))]u′p(1)]

+[(1 + β)− (α + β)(µ+ (1− µ)(2λ− 1))](up(1)− 1).

But this expression is bounded above by 1− α if (8) holds.
Thus, the proof is complete.

Theorem 2.4 If c < 0,m > 0(m 6= 0,−1,−2, . . . then zup(z) ∈ Ωλ(α, β)
if

[(1 + β)− λ(α+ β)(1− µ)]u′p(1) + [(1 + β)− (α+ β)]up(1) ≤ 2(1− α). (13)

Proof By virtue of Lemma 2.1of (6), it suffices to show that

∞∑
n=2

[n(1 + β)− (α + β)(1 + λ(n− 1))]

(
(−c/4)n−1

(m)n−1(3/2)n−1

)
≤ 1− α.



On subclasses of uniformly starlike and convex functions 41

Since h0(z) = zup(z), hence by taking µ = 0 in (12) we get the above
inequality. Hence by taking µ = 0 in the Theorem 2.3, we get the desired
result given in (13).

Theorem 2.5 If c < 0,m > 0(m 6= 0,−1,−2, . . . then zup(z) ∈ Υλ(α, β)
if

[(1 + λ)(1 + β)]u′′p(1) + [(1 + β)(2(1 + λ) + 1))− (α + β)]u′p(1)]

+[(1 + β)− (α + β)(1 + (1− λ))]up(1) ≤ [2(1− α)− (1− λ)(α + β)].(14)

Proof By virtue of Lemma 2.1 of (7), it suffices to show that

∞∑
n=2

{n[n(1 + β)− (α + β)(1 + λ(n− 1))]}
(

(−c/4)n−1

(m)n−1(3/2)n−1

)
≤ 1− α.

By definition zup(z) ∈ Υλ(α, β)⇔ zup(z) ∈ Ωλ(α, β). That is by taking µ = 1
we have h1(z) = zu′p(z), hence by taking µ = 1 in the Theorem 2.3, we get the
desired result given in (14).

Remark 2.6 The above conditions (8)and (14) are also necessary for func-
tions Ψ(z) given by (4)and of the form

h∗µ(z) = (1− µ)Ψ(z) + µΨ′(z)

= z −
∞∑
n=2

(1 + nµ− µ)
(−c/4)n−1

(m)n−1(3/2)n−1
zn,

is in the classes Ωλ(α, β) and Υλ(α, β) respectively.

Further, by taking λ = 0 (or) λ = 1 in Theorems 2.4 and 2.5, we state the
following corollaries without proof.

Corollary 2.7 If c < 0,m > 0(m 6= 0,−1,−2, . . . then z(2− up(z)),

(i) is in Ω0(α, β) if and only if

(1 + β)u′p(1) + (1− α)up(1) ≤ 2(1− α).

(ii) is in Υ0(α, β) if and only if

(1 + β)u′′p(1) + (3− 2β − α)u′p(1) + (1− α)up(1) ≤ 2(1− α).
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3 Open problem

The authors suggest to study sufficient condition for function h(z), given by

hµ(z) = (1− µ)zup(z) + µzu′p(z)

= z +
∞∑
n=2

(1 + nµ− µ)
(−c/4)n−1

(m)n−1(3/2)n−1
zn,

where 0 ≤ µ ≤ 1, belongs to the class

<
{

1 +
1

b

[
zf ′(z)

f(z)
− 1

]}
> β

∣∣∣∣1b
(
zf ′(z)

f(z)
− 1

)∣∣∣∣
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