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Abstract
Making use of the operator L�;�;� for functions of the form f(z) = 1

z
+P1

k=1 akz
k�1; which are analytic in the punctured unit disc U� = fz : z 2 C

and 0 < jzj < 1g = Unf0g, we introduce two subclasses of meromorphic
bounded functions of complex order and investigate convolution properties,
coe¢ cient estimates and containment properties for these subclasses.

Keywords and phrases: Univalent meromorphic functions, Hadamard
product (or convolution), subordination, complex order.
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1 Introduction

Let � denote the class of meromorphic functions of the form:
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f(z) =
1

z
+

1X
k=1

akz
k�1; (1)

which are analytic in the punctured unit disc U� = fz : z 2 C and 0 < jzj <
1g = Unf0g. Let g 2 �; be given by

g(z) =
1

z
+

1X
k=1

bkz
k�1; (2)

then the Hadamard product (or convolution) of f and g is given by

(f � g)(z) = 1

z
+

1X
k=1

akbkz
k = (g � f)(z): (3)

We recall some de�nitions which will be used in our paper.
De�nition 1.1 [9]. For two functions f(z) and g(z), analytic in U; we say that
the function f(z) is subordinate to g(z) in U; and written f(z) � g(z), if there
exists a Schwarz function w(z); analytic inU with w(0) = 0 and jw(z)j < 1 such
that f(z) = g(w(z)) (z 2 U): Furthermore, if the function g(z) is univalent in
U; then we have the following equivalence

f(z) � g(z), f(0) = g(0) and f(U) � g(U):

Let us consider the second order linear homogenous di¤erential equation (see,
Baricz [4, p. 7]):

z2w00(z) + �zw0(z) +
�
�z2 � �2 + (1� �)

�
w(z) = 0 (�; �; � 2 C): (4)

The function w�;�;�(z); which is called the generalized Bessel function of the
�rst kind of order � where � is an unrestricted (real or complex) number, is
de�ned a particular solution of (4). The function w�;�;�(z) has the representa-
tion

w�;�;�(z) =

1X
k=0

(��)k

�(k + 1) �
�
k + � + �+1

2

� �z
2

�2k+�
:

Let us de�ne

L�;�;�(z) =
2� �

�
� + �+1

2

�
z�=2+1

w�;�;�(z
1=2)

=
1

z
+

1X
k=1

(��)k �
�
� + �+1

2

�
4k �(k + 1) �

�
k + � + �+1

2

�zk�1:
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The operator L�;�;�(z) is a modi�cation of the of the operator introduced by
Deniz [6] for analytic funtions.

By using the Hadamard product (or convolution), we de�ne the operator
L�;�;� as follows:

(L�;�;�f)(z) = L�;�;�(z) � f(z)

=
1

z
+

1X
k=1

(��)k �
�
� + �+1

2

�
4k �(k + 1) �

�
k + � + �+1

2

�akzk�1: (5)

It is easy to verify that

z(L�+1;�;�f)0(z) =
�
� +

�+ 1

2

�
(L�;�;�f)(z)�

�
� + 1 +

�+ 1

2

�
(L�+1;�;�f)(z):

(6)

We note that: (L�;1;1f)(z) = (L�f)(z) (see Aouf et al. [2]).

De�nition 1.2 [1]. For b 2 C� = Cnf0g, let F�(b;M) be the subclass
of � consisting of functions f(z) of the form (1) and satisfying the analytic
criterion

�zf
0(z)

f(z)
� 1 + [b(1 +m)�m] z

1�mz

�
M � 1; m = 1� 1

M
; z 2 U�

�
; (7)

or, equivalently,�����b� 1�
zf 0(z)
f(z)

b
�M

����� < M
�
M � 1; m = 1� 1

M
; z 2 U�

�
: (8)

Also, let G�(b;M) be the subclass of � consisting of functions f(z) of the form
(1) and satisfying the analytic criterion:

�zf
00(z)

f 0(z)
� 2 + b(1 +m)z

1�mz

�
M � 1; m = 1� 1

M
; z 2 U�

�
; (9)

or, equivalently,�����b� 2�
zf 00(z)
f 0(z)

b
�M

����� < M
�
M � 1; m = 1� 1

M
; z 2 U�

�
: (10)

It is easy to verify from (7) and (9) that,

f(z) 2 G�(b;M), �zf 0(z) 2 F�(b;M): (11)
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We note that:
(i) F�(b;1) = F�(b) (b 2 C�) and G�(b;1) = G�(b) (b 2 C�) (see Aouf [1])
where F�(b) and G�(b) are the classes of meromorphic starlike and convex
functions of complex order b;

(ii) F�(1 � �;M) = F�
M(�) (0 � � < 1) (see Kaczmarski [8]) and G�(1 �

�;M) = G�M(�) (0 � � < 1) (see Aouf [1]) where F�
M(�) and G�M(�) are the

classes of meromorphic bounded starlike and convex functions of order �;

(iii) F�(1;1) = F�(1) (see Clunie [5]) and G�(1;1) = G�(1) (see Aouf [1])
where F�(1) and G�(1) are the classes of meromorphic starlike and convex
functions;

(iv) F�(1 � �;1) = F�(1 � �) (0 � � < 1) (see Kaczmarski [8] and Pom-
meremke [10]) and G�(1��;1) = G�(1��) (0 � � < 1) (see Aouf [1]) where
F�(1 � �) and G�(1 � �) are the classes of meromorphic starlike and convex
functions of order �;

(v) F�((1��)e�i� cos �;1) = F�(�; �) (0 � � < 1; j�j < �
2
) (see Kaczmarski

[8]) and G�((1 � �)e�i� cos �;1) = G�(�; �) (0 � � < 1; j�j < �
2
) (see Aouf

[1]) where F�(�; �) and G�(�; �) are the classes of meromorphic ��spirallike
and ��Robertson functions of order �:

De�nition 1.3. For M � 1; b 2 C� and �; �; � 2 C, let

F�
�;�;�(b;M) = ff(z) 2 � : (L�;�;�f)(z) 2 F�(b;M)g ; (12)

and
G��;�;�(b;M) = ff(z) 2 � : (L�;�;�f)(z) 2 G�(b;M)g : (13)

It is easy to show that

f(z) 2 G��;�;�(b;M), �zf 0(z) 2 F�
�;�;�(b;M): (14)

2 Main Result

Unless otherwise mentioned, we assume throughout this paper that M �
1; b 2 C� and �; �; � 2 C:

Lemma 2.1 [3]. If f(z) 2 �; then f(z) 2 F�(b;M) if and only if

z

�
f(z) � 1 + (C � 1)z

z(1� z)2

�
6= 0 for z 2 U; (15)
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where C = C� = e�i��m
b(1+m)

; � 2 [0; 2�):

Lemma 2.2 [3]. If f(z) 2 �; then f(z) 2 G�(b;M) if and only if

z

�
f(z) � 1� 3z � 2(C � 1)z

2

z(1� z)3

�
6= 0 forz 2 U; (16)

where C = C� = e�i��m
b(1+m)

; � 2 [0; 2�):

Lemma 2.3 [7]. Let h(z) be convex (univalent) in U with Re (�h(z) + ) >
0 for all z 2 U. If p is analytic in U with p(0) = h(0); then

p(z) +
zp0(z)

�p(z) + 
� h(z)) p(z) � h(z):

Theorem 2.1. If f(z) 2 �; then f(z) 2 F�
�;�;�(b;M) if and only if

1 +
1X
k=1

�
k(e�i� �m) + b(1 +m)

�
b(1 +m)

(��)k �
�
� + �+1

2

�
4k �(k + 1) �

�
k + � + �+1

2

�akzk 6= 0; (17)
for all � 2 [0; 2�):
Proof. If f(z) 2 �; from Lemma 2.1, we have f(z) 2 F�

�;�;�(b;M) if and only
if

z

�
(L�;�;�f)(z) �

1 + (C � 1)z
z(1� z)2

�
6= 0 for z 2 U; (18)

where C = C� = e�i��m
b(1+m)

; � 2 [0; 2�): Since

1 + (C � 1)z
z(1� z)2 =

1

z
+

1X
k=1

(kC + 1)zk�1:

It is easy to show that (18) holds if and only if (17) holds. This completes the
proof of Theorem 2.1.

Theorem 2.2. If f(z) 2 �; then f(z) 2 G��;�;�(b;M) if and only if

1�
1X
k=1

(k � 1)
�
k(e�i� �m) + b(1 +m)

�
b(1 +m)

(��)k �
�
� + �+1

2

�
4k �(k + 1) �

�
k + � + �+1

2

�akzk 6= 0;
(19)

for all � 2 [0; 2�):
Proof. If f(z) 2 �; from Lemma 2.2, we have f(z) 2 G��;�;�(b;M) if and only
if

z

�
(L�;�;�f)(z) �

1� 3z � 2(C � 1)z2
z(1� z)3

�
6= 0 for z 2 U; (20)
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where C = C� = e�i��m
b(1+m)

; � 2 [0; 2�): Since

1� 3z � 2(C � 1)z2
z(1� z)3 =

1

z
�

1X
k=1

(k � 1)(kC + 1)zk�1:

It is easy to show that (20) holds if and only if (19) holds. This completes the
proof of Theorem 2.2.

Unless otherwise mentioned, we assume throughout the remainder of this sec-
tion that � > ��+1

2
and �; � > 0:

Theorem 2.3. If f(z) 2 � satis�es the inequality

1X
k=1

(k + jbj) (j�j)k �
�
� + �+1

2

�
4k �(k + 1)�

�
k + � + �+1

2

� jakj < jbj ; (21)

then f(z) 2 F�
�;�;�(b;M):

Proof. Since�����1 +
1X
k=1

�
k(e�i� �m) + b(1 +m)

�
b(1 +m)

(��)k �
�
� + �+1

2

�
4k �(k + 1) �

�
k + � + �+1

2

�akzk
�����

� 1�
1X
k=1

�����
�
k(e�i� �m) + b(1 +m)

�
b(1 +m)

����� (j�j)k �
�
� + �+1

2

�
4k �(k + 1) �

�
k + � + �+1

2

� jakj ��zk��
� 1�

1X
k=1

(k + jbj) (j�j)k �
�
� + �+1

2

�
4k jbj �(k + 1) �

�
k + � + �+1

2

� jakj > 0;
which implies that inequality (21). Thus the proof of Theorem 2.3 is completed.

Using similar arguments to those in the proof of Theorem 2.3, we obtain the
following theorem.
Theorem 2.4. If f(z) 2 � satis�es the inequality

1X
k=1

(k � 1)(k + jbj) (j�j)k �
�
� + �+1

2

�
4k �(k + 1) �

�
k + � + �+1

2

� jakj < jbj ; (22)

then f(z) 2 G��;�;�(b;M):

Theorem 2.5. If

cos (� + arg b)�m cos (arg b)
1 +m2 � 2m cos � <

1

jbj (m+ 1)

�
� +

�+ 1

2

�
; (23)
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then F�
�;�;�(b;M) � F�

�+1;�;�(b;M) with (L�+1;�;�f)(z) 6= 0 (z 2 U�) :
Proof. Let f(z) 2 F�

�;�;�(b;M) and

p(z) = �z(L�+1;�;�f)
0(z)

(L�+1;�;�f)(z)
; (24)

we see that p(z) is analytic in U with p(0) = 1: Using (6) in (24), we have

(L�;�;�f)(z)
(L�+1;�;�f)(z)

= � 1�
� + �+1

2

�p(z) + �� + 1 + �+1
2

� + �+1
2

�
; (25)

Di¤erentiating (25) logarithmically and using (24), we have

�z(L�;�;�f)
0(z)

(L�;�;�f)(z)
= p(z) +

zp0(z)

�p(z) + � + 1 + �+1
2

� 1 + [b(1 +m)�m] z
1�mz = h(z):

(26)

A simple computation shows that Re
�
�h(z) + � + 1 + �+1

2

�
> 0 is equivalent

to

Re

�
bz

1�mz

�
<

1

m+ 1

�
� +

�+ 1

2

�
;

which implies to (23). Since the function h(z) is convex, then by using Lemma
2.3, we have p(z) � h(z): This completes the proof of Theorem 2.5.

Using the same arguments as in the proof of Theorem 2.5, we obtain the
following theorem.
Theorem 2.6. If

cos (� + arg b)�m cos (arg b)
1 +m2 � 2m cos � <

1

jbj (m+ 1)

�
� +

�+ 1

2

�
; (27)

then G��;�;�(b;M) � G��+1;�;�(b;M) with (L�+1;�;�f)0(z) 6= 0 (z 2 U�) :

3 Open Problem

The authors suggest to study the idea of this paper on the class �p of p�valent
meromorphic functions, where �p denotes the class of analytic and p�valent
meromorphic functions in the punctured disc U� of the form:

f(z) =
1

zp
+

1X
k=1

akz
k�p (p 2 N): (28)
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