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1 Introduction

For α > −1, let Jα denote the Bessel function of order α:

Jα(x) =
(x

2

)α ∞∑
n=0

(−1)n(x/2)2n

n! Γ(α+ n+ 1)

(a classical reference on Bessel functions is [24]).

It is well known that when we consider radial functions in Rd, f(x) = g(‖x‖), the
Fourier transform becomes the Hankel transform of order d/2− 1. Indeed, taking
the Hankel transform of order α, with α ≥ −1/2, as

Hαg(s) =

∫ ∞
0

g(r)jα(sr) dωα(r), s > 0,

where dωα(r) = (2αΓ(α + 1))−1r2α+1 dr and jα(z) = Γ(α + 1)(z/2)−αJα(z), it is
verified that f̂(ξ) = H d

2
−1g(‖ξ‖).
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The Dunkl transform on the real line is both an extension of the Hankel transform
to the whole real line and a generalization of the Fourier transform. It is defined by
the identity

Fαf(y) =

∫
R
f(x)Eα(−iyx) dµα(x), y ∈ R,

where
Eα(z) = jα(iz) +

z

2(α+ 1)
jα+1(iz)

and dµα(x) = (2α+1Γ(α+ 1))−1|x|2α+1 dx. The Fourier transform corresponds with
the case α = −1/2 because E−1/2(z) = ez and dµ−1/2 is, up to a multiplicative factor,
the Lebesgue measure on R. This transform is related to the Dunkl operator on the
real line. The Dunkl operators on Rd are differential-difference operators associated
with some finite reflection groups (cf. [7]). We consider the Dunkl operator Λα,
α ≥ −1/2, associated with the reflection group Z2 on R given by

Λαf(x) =
d

dx
f(x) +

2α+ 1

x

(
f(x)− f(−x)

2

)
.

The Dunkl kernel Eα is, for α ≥ −1/2 and λ ∈ C, the unique solution of the initial
value problem {

Λαf(x) = λf(x), x ∈ R,
f(0) = 1.

Very recently, many authors have been investigating the behavior of the Dunkl trans-
form with respect to several problems already studied for the Fourier transform; for
instance, multipliers [4], Paley-Wiener theorems [6], Cowling-Price’s theorem [11],
transplantation [17], Riesz transforms [18], uncertainty [21], and so on.

In the last few years there has been a great interest to the study of the spectrum
of functions i.e. the support of the transform of these functions relative to certain
integral transforms. The Paley-Wiener and Boas theorems give a characterization
of two classes of functions in terms of the behavior of their Fourier transforms. See
[5, 22] for an overview of references and details for this question.

More precisely, let f ∈ L2(R) and f̂ be its Fourier transform. The Paley-Wiener
theorem stated that f̂ ∈ L2(R) has compact support if and only if f ∈ L2(R) is
analytically extendable into the complex plane as an entire function of exponential
type. In [2] Bang proved another version of the Paley-Wiener theorem as follow:

Theorem 1 f̂ has compact support [−σ, σ] if and only if f is infinitely differentiable,
Dnf ∈ L2(R) for any n, and

lim
n→∞

‖Dnf‖1/n
L2(R) ≤ σ.

It is a real-valued version of the Paley-Wiener theorem since no complexification
of f was required.

Since any function f ∈ L2(R) can be written f = f1 + f2, where f1 ∈ L2[−σ, σ]
and f2 ∈ L2(I), where I = R\[−σ, σ], it is natural to ask if there is any characteri-
zation of the space of all functions of the latter type (Boas problem).
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The original Boas theorem asserts that if f ∈ L2(R), then a necessary and
sufficient condition that f vanishes almost everywhere on (−1, 1) is that

(B(Bf̂))(ξ) = −f̂(ξ),

where B(g) is the Boas transform of a function g defined by

(Bg)(x) =
1

π

∫ 1

0

g(x+ t)− g(x− t)
t2

sin t dt,

whenever the integral exists.
Recently in [12] by using the spectral theory associated with the Dunkl Laplace

operator we have characterize the class of square integrable functions vanishing in a
neighborhood of a point ξ0 under the Dunkl transform.

In this paper, we are interested in completing our work by obtaining a Boas-
type theorem for the Dunkl transform on R, on the spaces Lpα(R), p ∈ [1,∞]. More
precisely, we prove a new characterisation for the support of the Dunkl transform
under the behaviour of Lpα-norms of iterated Dunkl potentials.

The structure of the paper is as follows. In §2 we state the precise notations and
give some preliminaries related to the Dunkl operator on the real line. The §3 is
devoted to characterize the support for the Dunkl transform of the function in the
Lebesgue space Lpα(R) for p ∈ [1,∞], via the Dunkl potentials. Finally, in the last
section we state many versions of Roe’s theorem for Λα.

2 Preliminaries

This section gives an introduction to the harmonic analysis associated with the
Dunkl operator. Main references are [7, 8, 9, 20]. In the following we denote by

P(R) the set of polynomials on R.
C(R) the space of continuous functions on R.
Cc(R) the space of continuous functions on R with compact support.
Cp(R) the space of functions of class Cp on R.
Cpb (R) the space of bounded functions of class Cp.
E(R) the space of C∞-functions on R.
S(R) the Schwartz space of rapidly decreasing functions on R.
D(R) the space of C∞-functions on R which are of compact support.
S ′(R) the space of tempered distributions on R.
PW (C) the space of entire functions on C, rapidly decreasing

and of exponential type.
PW(C) the space of entire functions on C, slowly increasing

and of exponential type.
E ′(R) the space of distributions on R with compact support.

Some properties of the Λα, are given in the following :
For all f and g in C1(R) with at least one of them is even, we have

Λα(fg) = (Λαf)g + fΛαg. (1)
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For f of class C1 on R with compact support and g of class C1 on R, we have :∫
R

Λαf(x)g(x)|x|2α+1dx = −
∫
R
f(x)Λαg(x)|x|2α+1dx. (2)

For every λ ∈ C, let us denote by Eα(λ.) the unique solution of the eigenvalue
problem {

Λαf(x) = λf(x),
f(0) = 1.

(3)

Proposition 1 For all n ∈ N, x ∈ R and λ ∈ C, we have

| d
n

dλn
Eα(λx)| ≤ |x|ne|Reλ||x|. (4)

Notations. We denote by
Lpα(R), 1 ≤ p ≤ ∞, the space of measurable functions f on R satisfying

‖f‖Lpα(R) =

(∫
R
|f(x)|pdµα(x)

)1/p

<∞, if 1 ≤ p <∞

‖f‖L∞
α (R) = ess sup

x∈R
|f(x)| <∞.

For α ≥ −12 , and f ∈ Cc(R), the Dunkl transform is defined by

Fα(f)(λ) =

∫
R
f(x)Eα(−iλx)dµα(x), for all λ ∈ C. (5)

The inverse Fourier transform of a suitable function g on R is given by:

F−1α (g)(x) =

∫
R
g(λ)Eα(iλx)dµα(λ). (6)

Next, we give some properties of this transform.
i) For f in L1

α(R) we have

||Fα(f)||L∞
α (R) ≤ ||f ||L1

α(R). (7)

ii) For f in S(R) we have

Fα(Λαf)(y) = iyFα(f)(y), for all y ∈ R. (8)

Proposition 2 i) Plancherel formula for Fα.
For all f in S(R), we have∫

R
|f(x)|2dµα(x) =

∫
R
|Fα(f)(ξ)|2dµα(ξ). (9)

ii) Plancherel theorem for Fα.
The Dunkl transform can be uniquely extended to an isomorphism from L2

α(R) onto
L2
α(R).
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Proposition 3 The Dunkl transform Fα is a topological isomorphism from

i) D(R) onto PW (C).

ii) S(R) onto S(R).

Definition 1 Let x ∈ R and let f ∈ Cb(R). For α ≥ −12 , we define the generalized
translation operator ταx by

ταx f(y) =

∫
R
f(z)dµαx,y(z) (10)

here

dµαx,y(z) =


Kα(x, y, z)|z|2α+1dz if xy 6= 0
dδx(z) if y = 0
dδy(z) if x = 0

where Kα(x, y, z) is given explicitly in [4]. Moreover

supp(dµαx,y) ⊂
[
− |x| − |y|,−

∣∣∣ |x| − |y| ∣∣∣]⋃[∣∣∣ |x| − |y| ∣∣∣, |x|+ |y|].
Definition 2 For suitable functions f and g, we define the convolution product
f ∗α g by

f ∗α g(x) =

∫
R
ταx f(−y)g(y)|y|2α+1dy. (11)

Remark 1 It is clear that this convolution product is both commutative and asso-
ciative:

i) f ∗α g = g ∗α f.
ii) (f ∗α g) ∗α h = f ∗α (g ∗α h).

Proposition 4 i) Let f be in L2
α(R) and g in L1

α(R). Then the function f ∗α g
defined almost everywhere on R by

f ∗α g(y) =

∫
R
ταy (f)(−x)g(x)|x|2α+1dx,

belongs to L2
α(R) and we have

‖f ∗α g‖L2
α(R) ≤ C‖f‖L2

α(R)‖g‖L1
α(R).

ii) Assume that 1 ≤ p, q, r ≤ ∞ satisfy 1
p + 1

q −1 = 1
r . Then, for every f ∈ Lpα(R)

and g ∈ Lqα(R), we have f ∗α g ∈ Lrα(R), and

‖f ∗α g‖Lrα(R) ≤ C‖f‖Lpα(R)‖g‖Lqα(R). (12)

Proposition 5 i) Let Da(R) be the space of smooth functions on R supported in
[−a, a]. For f ∈ Da(R) and g ∈ Db(R), we have f ∗α g ∈ Da+b(R) and

Fα(f ∗α g) = Fα(f)(λ)Fα(f)(λ). (13)

ii) For f ∈ L2
α(R) and g ∈ L1

α(R) we have

Fα(f ∗α g)(λ) = Fα(f)(λ)Fα(f)(λ). (14)
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Definition 3 i) The Dunkl transform of a distribution τ in S ′(R), is defined by

〈Fα(τ), ϕ〉 = 〈τ,F−1α (ϕ)〉, for all ϕ ∈ S(R). (15)

ii) The Dunkl transform of a distribution S in E ′(R) is defined by

∀ λ ∈ R, Fα(S)(λ) = 〈S,Eα(−iλ.)〉. (16)

Proposition 6 The Dunkl transform Fα is a topological isomorphism from

i) E ′(R) onto PW(C).

ii) S ′(R) onto S ′(R).

Let τ be in S ′(R). We have

Fα(Λατ) = iyFα(τ). (17)

3 Boas theorem for the Dunkl transform

Definition 4 Let f ∈ S ′(R). The tempered generalized function R0f is termed the
Dunkl potential of f if Λα(R0f) = f , that is

〈R0f,Λαϕ〉 = −〈f, ϕ〉, for all ϕ ∈ S(R).

Remark 2 We proceed as in [3], and using the potential theory we can characterize
the Dunkl potential for tempered distributions.

Theorem 2 Let 1 ≤ p ≤ ∞. If Rn0f ∈ L
p
α(R) for all n ∈ N0, then

lim
n→∞

||Rn0f ||
1
n

Lpα(R)
=

1

σ0
, (18)

where
σ0 = inf

{
|ξ| : ξ ∈ suppFα(f)

}
.

For prove this theorem we need the following lemmas.

Lemma 1 If σ0 > 0, then

suppFα
(
Rn0f

)
= suppFα(f), n = 1, .... (19)

Proof. As
Λnα(Rn0f) = f

we deduce that
Fα(f) = (iξ)nFα

(
Rn0f

)
.

Therefore,

suppFα(f) ⊂ suppFα
(
Rn0f

)
⊂ Fα(f) ∪

{
0
}
.
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So, to obtain (19), it is enough to show that 0 /∈ suppFα
(
Rn0f

)
.

We choose numbers a, b : 0 < a < b < σ0 and a function h ∈ D(R) such that
supp h ⊂ (−b, b) and h(x) ≡ 1 in (−a, a). Then

supp
(
hFα(Rn0f)

)
⊂
{

0
}
.

Suppose that supp
(
hFα(Rn0f)

)
=
{

0
}
, then there is a numbers N(n) ∈ N such

that

hFα
(
Rn0f

)
=

N(n)∑
j=0

Cj(N(n))δj ,

where δj denote the jth distributional derivative of the delta function δ at 0. Hence,

F−1α (h) ∗α Rn0f(ξ) =

N(n)∑
j=0

Cj(N(n))(−iξ)j .

As Rn0f ∈ L
p
α(R) and F−1α (h) ∈ Lqα(R), we get F−1α (h) ∗α Rn0f ∈ L∞α (R).

Therefore

F−1α (h) ∗α Rn0f(ξ) = C0(N(n)), n ∈ N.

Note that
C0(N(n)) = F−1α (h) ∗α Rn0f(ξ)

= F−1α (h) ∗α ΛαR
n+1
0 f(ξ)

= Λα

(
F−1α (h) ∗α Rn+1

0 f(ξ)
)

= Λα(C0(N(n+ 1))) = 0.

Thus we deduce that C0(N(n)) = 0. So hFα
(
Rn0f

)
= 0.

Assume now the contrary that{
0
}
⊂ supp Fα

(
Rn0f

)
.

Then there is a function χ ∈ D(R), with suppχ ⊂ (−a, a) and such that

〈Fα
(
Rn0f

)
, χ〉 6= 0.

So, as h(x) = 1 for |x| < a, we get

0 6= 〈Fα
(
Rn0f

)
, χ〉 = 〈Fα

(
Rn0f

)
, hχ〉 = 〈hFα

(
Rn0f

)
, χ〉 = 0,

which is impossible. Thus we have proved (19).

Lemma 2 If σ0 > 0, then

lim sup
n→∞

||Rn0f ||
1
n

Lpα(R)
≤ 1

σ0
. (20)
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Proof. From (19) we have

suppFα
(
Rn0f

)
⊂ R\(−σ0, σ0). (21)

For any ε > 0, ε < σ0
2 we choose a function h ∈ E(R) satisfying

h(ξ) =

{
1 if |ξ| ≥ σ0 − ε
0 if |ξ| < σ0 − 2ε.

Let χ be an arbitrary element in S(R). Then it follow from (21) that

〈Rn0f, χ〉 = 〈Fα
(
Rn0f

)
,F−1α (χ)〉

= 〈Fα
(
Rn0f

)
, hF−1α (χ)〉

= 〈Rn0f,Fα
(
hF−1α (χ)

)
〉.

Therefore,

〈Rn0f, χ〉 = 〈Rn0f, ϕ〉, (22)

where

ϕ = Fα
(
hF−1α (χ)

)
.

We put

ϕn = Fα
(h(ξ)

ξn
F−1α (χ)

)
.

Then ϕn ∈ S(R) and
|〈f, ϕn〉| = |〈ΛnαRn0f, ϕn〉|

= |〈Rn0f,Λnαϕn〉|
= |〈Rn0f, ϕ〉|.

(23)

Combining (22) and (23), we get

|〈Rn0f, χ〉| = |〈f, ϕn〉| = |〈f, χ ∗α Fα(
h(ξ)

ξn
)〉|. (24)

Therefore, we have

||Rn0f ||Lpα(R) = sup{
χ∈S(R): ||χ||

L
q
α(R)≤1

} ∣∣∣〈f, χ ∗α Fα(
h(ξ)

ξn
)〉
∣∣∣

≤ sup{
χ∈S(R): ||χ||

L
q
α(R)≤1

} ||f ||Lpα(R)||χ ∗α Fα(
h(ξ)

ξn
)||Lqα(R)

≤ C||f ||Lpα(R)||Fα(h(ξ)ξn )||L1
α(R).

Hence

lim sup
n→∞

||Rn0f ||
1
n

Lpα(R)
≤ lim sup

n→∞
||Fα(

h(ξ)

ξn
)||

1
n

L1
α(R)

. (25)
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Using the continuity for the Dunkl transform on S(R), we prove that

lim sup
n→∞

||Fα(
h(ξ)

ξn
)||

1
n

L1
α(R)
≤ 1

σ0 − 2ε
. (26)

Combining (25) and (26), we get

lim sup
n→∞

||Rn0f ||
1
n

Lpα(R)
≤ 1

σ0 − 2ε

and then (20) by letting ε→ 0.

Lemma 3 If σ0 > 0, then

lim inf
n→∞

||Rn0f ||
1
n

Lpα(R)
≥ 1

σ0
. (27)

Proof. From the definition of σ0, there exists a function χ ∈ D(R) such that

suppχ ⊂
{
ξ : σ0 − ε < |ξ| < σ0 + ε

}
and 〈Fα(f), χ〉 6= 0.

Therefore,

0 6= |〈f, χ〉| = |〈ΛnαRn0f, χ〉|
= |〈Rn0f,Λnαχ〉|
≤ ||Rn0f ||Lpα(R)||Λ

n
αχ||Lqα(R). (28)

So

lim inf
n→∞

||Rn0f ||
1
n

Lpα(R)
≥ 1

lim sup
n→∞

||Λnαχ||Lqα(R)
. (29)

We proceed as above we prove that

lim sup
n→∞

||Λnαχ||
1
n

Lqα(R)
≤ σ0 + ε.

So by (29) we obtain

lim inf
n→∞

||Rn0f ||
1
n

Lpα(R)
≥ 1

(σ + ε)
, ε > 0,

and then (27).
Proof. of Theorem 2.

We divide our proof into two cases.
Case 1. σ0 = 0. We have ξ0 ∈ suppFα(f). Hence, for any ε > 0 there is a function
χ ∈ D(R) such that suppχ ⊂ (−ε, ε) such that 〈Fα(f), χ〉 6= 0. Arguing as above
we obtain

lim inf
n→∞

||Rn0f ||
1
n

Lpα(R)
≥ 1

lim sup
n→∞

||Λnαχ||
1
n

Lqα(R)

≥ 1

ε
.
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Therefore

lim inf
n→∞

||Rn0f ||
1
n

Lpα(R)
=∞.

So we always have

lim
n→∞

||Rn0f ||
1
n

Lpα(R)
=

1

σ0
.

Case 2. σ0 > 0. Combining (20) and (27), we arrive to (18).

Remark 3 We have proved the analogues of the Theorem 2 for the hypergeometric
Fourier transform and for the Opdam-Cherednik transform (see [15, 16]).

4 Roe’s theorem associated with the Dunkl operator Λα

In [19] Roe proved that if a doubly-infinite sequence (fj)j∈Z of functions on

R satisfies
dfj
dx = fj+1 and |fj(x)| ≤ M for all j = 0,±1,±2, ... and x ∈ R, then

f0(x) = a sin(x+ b) where a and b are real constants.

In this section we state many versions of the Roe’s theorem associated for the
Dunkl operator on the real line. These versions are proved in the context of the
Dunkl-type operator, which is more general than the Dunkl operator in real line.
(See [13]).

Theorem 3 Suppose P (ξ) =
∑
n

anξ
n is real-valued and let {fj}∞−∞ be a sequence

of complex-valued functions on R so that

∀ j ∈ Z, fj+1 = P (−iΛα)fj .

(i) Let a ≥ 0, R > 0, and assume that {fj}∞−∞ satisfies

|fj(x)| ≤MjR
j(1 + |x|)a, (30)

where (Mj)j∈Z satisfies the sublinear growth condition

lim
j→∞

M|j|

j
= 0. (31)

Then f = f+ + f− where P (−iΛα)f+ = Rf+ and P (−iΛα)f− = −Rf−.
If R (or −R) is not in the range of P then f+ = 0 (or f− = 0).

(ii) If we replace (31) with

lim
j→∞

M|j|

(1 + ε)|j|
= 0, (32)

for all j > 0, then the span of (fj)j is finite dimensional. Moreover, f0 = f+ + f−,
where, for some integer N , (P (−iΛα) − R)Nf+ = 0 and (P (−iΛα) + R)Nf− = 0.
Thus f+ (or f− ) is a generalized eigenfunction of P (−iΛα) with eigenvalue R (or
−R).



52 H. Mejjaoli

Theorem 4 Suppose P (ξ) =
∑
n

anξ
n is a non-constant polynomial with complex

coefficients. Let {fj}∞−∞ be a sequence of complex-valued functions on R so that

∀ j ∈ Z, fj+1 = P (−iΛα)fj .

1) Let a ≥ 0 and let R > 0. Assume that for all ε > 0, there exist constants
N ∈ N0 and C > 0, such that

∀x ∈ R, |fn(x)| ≤ CRn(1 + ε)|n|(1 + |x|)N (33)

is satisfied for all n ∈ Z. Then

∀x ∈ R, f0(x) =
∑
λ∈SR

N∑
j=0

c(λ, j)
dj

dξj
∣∣∣ξ=λEα(iξx), (34)

for constants c(λ, j) ∈ C, N ∈ N and SR :=
{
ξ ∈ R : P (ξ) = R

}
.

2) Let a ≥ 0 and let R > 0 and assume that {fj}∞−∞ satisfies

|fj(x)| ≤MjR
j(1 + |x|)a, (35)

where (Mj)j∈Z satisfies the subpotential growth condition

lim
j→∞

M|j|

jm
= 0, (36)

for some m ≥ 0.
We have
(i) If P ′(λp) 6= 0, for all λp ∈ SR, then N < m in (34).
In particular, if m = 1, then

∀x ∈ R, f0(x) =
∑
λp∈SR

fλp(x), where fλp(x) = c(λp)Eα(iλpx).

(ii) If SR consists of one point λ0 and m = 1 in (36), then P (−iΛα)f0 = P (λ0)f0.

Remark 4 The previous theorem is the analogue for the Theorems 1 and 6 of [1].

5 Open Problem

The first purpose of the future work is to characterize the Dunkl potential for tem-
pered distributions.
The second purpose is to prove the analogous of Theorem 2 for the generalized
Fourier transforms.
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