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1 Introduction

We consider the first order singular differential-difference operator on R :

Λf(x) =
d

dx
f(x) +

A′(x)

A(x)
(
f(x)− f(−x)

2
)− ρf(−x), (1)

where

A(x) = |x|2kB(x), k > 0, (2)
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B being a positive C∞ even function on R, with B(0) = 1, and ρ > 0.
We suppose in addition that the function A satisfies the following conditions.

i) For all x ≥ 0, A(x) is increasing and lim
x→∞

A(x) =∞.

ii) For all x > 0,
A′(x)

A(x)
is decreasing and lim

x→∞

A′(x)

A(x)
= 2ρ.

iii) There exists a constant δ > 0 such that for all x ∈ [x0,∞), x0 > 0, we have

A′(x)

A(x)
= 2ρ+ e−δxD(x),

where D is a C∞-function, bounded together with its derivatives.

Due to our assumptions on the function A there exist a positive constants C and γ
such that for x large we have

A (x) ≤ C|x|γe2%|x|. (1.1)

For {
A(x) = (sinh |x|)2k(coshx)2k′ , k ≥ k′ ≥ 0, k 6= 0
ρ = k + k′,

(3)

we have the differential-difference operator

Λk,k′f(x) =
d

dx
f(x) + (k coth(x) + k′ tanh(x)){f(x)− f(−x)} − ρf(−x), (4)

which is refereed to as the Jacobi-Cherednik operator (see [12]).
This operator is more general than the Cherednik operator in the one dimensional
case. Indeed for a root system R in Rd, R+ a fixed positive subsystem and k a
nonnegative multiplicity function defined on R, the Cherednik operators Tj , j =
1, 2, ..., d, [5], are defined for f of class C1 on Rd by

Tjf(x) =
∂

∂xj
f(x) +

∑
α∈R+

kααj

1− e−〈α,x〉
{f(x)− f(σα(x))} − ρjf(x), (5)

where 〈., .〉 is the usual scalar product, σα is the orthogonal reflection in the hyper-

plane orthogonal to α, ρj = 1
2

∑
α∈R+

kααj , and the function k is invariant by the finite

reflection group W generated by the reflections σα, α ∈ R.
For d = 1, the root systems are R = {−α, α} or R = {−2α,−α, α, 2α} with α the
positive root. We take the normalization α = 2.

- For R+ = {α}, we have the Cherednik operator

T1f(x) =
d

dx
f(x) +

2kα
1− e−2x

{f(x)− f(−x)} − ρf(x),

with ρ = kα. This operator can also be written in the form

T1f(x) =
d

dx
f(x) + kα coth(x){f(x)− f(−x)} − kαf(−x), (6)
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which is of the form (4) with k = kα, and k′ = 0
- For R+ = {α, 2α}, we have the Cherednik operator

T1f(x) =
d

dx
f(x) +

(
2kα

1− e−2x
+

4k2α

1− e−4x

)
{f(x)− f(−x)} − ρf(x),

with ρ = kα + 2k2α. It is also equal to

T1f(x) =
d

dx
f(x)+((kα+k2α) coth(x)+k2α tanh(x)){f(x)−f(−x)}−ρf(−x). (7)

This operator is therefore of the form (4) with k = kα + k2α, and k′ = k2α.
Another interesting case is R = {−2α, 2α},R+ = {2α}, with the Cherednik

operator

T1f(x) =
d

dx
f(x) +

4k2α

1− e−4x
{f(x)− f(−x)} − ρf(x),

=
d

dx
f(x) + (k2α coth(x) + k2α tanh(x)){f(x)− f(−x)} − ρf(−x).

(8)

with ρ = 2k2α. This operator is also of the form (4) with k = k′ = k2α.
The operators Tj , j = 1, 2, ..., d, have been used by Heckmann and Opdam to

develop a theory generalizing the harmonic analysis on symmetric spaces (cf. [14,
22]). For recent important results in this direction we refer to [25].

In [21] the author provides a new harmonic analysis on the real line correspond-
ing to the differential-difference operator Λ. In particular he has introduced the
transmutation operators V and tV between the first derivative operator and the op-
erator Λ. The operators V and tV are integral operators given for regular functions
on R, by

V g(x) =


∫ |x|
−|x|

K(x, y)g(y)dy, if x 6= 0,

g(0), if x = 0,

(9)

tV f(y) =

∫
|x|≥|y|

K(x, y)f(x)A(x)dx, y ∈ R,

where K(x, y) is a continuous function on (−|x|, |x|), with support in [−|x|, |x|],
given by the relation (2.12) of [21].

In the case of the Jacobi-Cherednik operator (4), the operators V and tV have
been defined and studied in [12].

Recently Trimèche in [28] has proved the positivity of the the transmutation
operators V and tV .

Classical uncertainty principles give us information about a function and its
Fourier transform. If we try to limit the behavior of one we lose control of the other.
Uncertainty principles have implications in two main areas: quantum physics and
signal analysis. In quantum physics they tell us that a particles speed and position
cannot both be measured with infinite precision. In signal analysis they tell us
that if we observe a signal only for a finite period of time, we will lose information
about the frequencies the signal consists of. The mathematical equivalent is that
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a function and its Fourier transform cannot both be arbitrarily localized. There
is two categories of uncertainty principles: Quantitative uncertainty principles and
Qualitative uncertainty principles.

Quantitative uncertainty principles is just another name for some special inequal-
ities. These inequalities give us information about how a function and its Fourier
transform relate. They are called uncertainty principles since they are similar to the
classical Heisenberg Uncertainty Principle, which has had a big part to play in the
development and understanding of quantum physics. For example: Benedicks [2],
Slepian and Pollak [26], Slepian[27], and Donoho and Stark [8] paid attention to the
supports of functions and gave quantitative uncertainty principles for the Fourier
transforms.

Qualitative uncertainty principles are not inequalities, but are theorems that tell
us how a function (and its Fourier transform) behave under certain circumstances.
For example: Hardy [13], Morgan [20], Cowling and Price [6], Beurling [3], Miyachi
[19] theorems enter within the framework of the qualitative uncertainty principles.

The quantitative and qualitative uncertainty principles has been studied by many
authors for various Fourier transforms, for examples (cf. [11, 16, 17, 29]) and others.

In this paper, we prove Hardy’s theorem, Cowling-Price’s theorem, Ray-Sarkar’s
theorem, Miyachi’s theorem, Beurling’s theorem and Gelfand-Shilov’s theorem for
the generalized Fourier transform associated to the Cherednik type operator on the
real line. We note that in [18] we have proved another versions for the Hardy’s
and Cowling-Price’s theorem for the generalized Fourier transform associated to the
Cherednik type operator on the real line.

The remaining part of the paper is organized as follows. In §2, we recall the
main results about the Cherednik type operator on the real line. In §3 we prove an
Lp version of Hardy’s theorem for the generalized Fourier transform. §4 is devoted
to generalize Cowling-Price’s theorem for the generalized Fourier transform F . §5
is devoted to obtain Beurling’s theorem for F and in §6 we generalize Miyachi’s
theorem.

2 Preliminaries

This section gives an introduction to the harmonic analysis associated with the
Cherednik type operator. Main references are [21, 28].

2.1 The eigenfunction of the operator Λ

Notations. We denote by

Pm(R) the set of homogeneous polynomials of degree m.

Cc(R) the space of continuous functions on R with compact support.

E(R) the space of C∞-functions on R.

S(R) the Schwartz space of rapidly decreasing functions on R.

D(R) the space of C∞-functions on R which are of compact support.

S 2(R) := (coshx)−ρS(R), the generalized Schwartz space.
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To present the eigenfunctions of Λ, we consider first those of the second order
singular differential operator ∆ on (0,∞) defined by

∆ =
d2

dx2
+
A′(x)

A(x)

d

dx
.

The function ϕλ, λ ∈ C, is the unique analytic solution of the differential equation{
∆u(x) = −(λ2 + ρ2)u(x),
u(0) = 1, u′(0) = 0.

We denote also by ϕλ the even function on R equal to ϕλ on [0,∞).
For every λ ∈ C, let us denote by Φλ the unique solution of the equation{

Λ f(x) = iλf(x),
f(0) = 1.

(2.2)

It is given for all λ ∈ C, by

∀ x ∈ R,Φλ(x) =

 ϕλ(x) + 1
iλ−ρ

d
dxϕλ(x), if λ 6= iρ,

1 + 2ρ
A(x)

∫ x

0
A(t)dt, if λ = iρ.

For λ 6= −iρ, we can write it in the form

∀ x ∈ R,Φλ(x) = ϕλ(x) + sgn(x)
iλ+ ρ

A(x)

∫ |x|
0

ϕλ(z)A(z)dz.

It possesses the following properties

i) For every x ∈ R, the function λ→ Φλ(x) is entire on C.

ii) There exists a positive constant M such that

∀ x ∈ R, ∀ λ ∈ R, |Φλ(x)| ≤M(1 + |x|)(1 +
√
λ2 + ρ2)e−ρ|x|.

iii) For all x ∈ R\{0} and λ ∈ C, the function Φλ(x) admits the Laplace type
integral representation

Φλ(x) =

∫ |x|
−|x|

K(x, y)eiλydy, (2.3)

where K(x, .) is a continuous function on ]−|x|, |x|[, with support in [−|x|, |x|],
given by the relation (9).

Example 1 The Laplace type integral representation of the Φλ corresponding to the
Jacobi-Cherednik operator (4), has been obtained in [12], and it is of the form (2.3)
with K(x, y) possessing the expressions in the three following cases
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- If k′ = 0, k > 0, we have

K(x, y) =
2k−1Γ(k + 1

2)
√
πΓ(k)

(sinh |x|)−2k(coshx− cosh y)k−1sgn(x)(ex − e−y),

for all x ∈ R\{0} and −|x| ≤ y ≤ |x|, and this function is positive.

- If k′ = k > 0, we have

K(x, y) =
2kΓ(k + 1

2)
√
πΓ(k)

(sinh 2|x|))−2k(cosh(2x)− cosh(2y))k−1

×sgn(x)(e2x − e−2y),
for all x ∈ R\{0}, and −|x| ≤ y ≤ |x|, and this function is positive.

- If k > k′ > 0, the function K(x, y) is given by the relation (2.54) of [12] p.
178. Its expression does not show that it is positive.

Proposition 1 ([21]). Let p be polynomial of degree m. Then there exists a positive
constant C such that for all λ ∈ C and for all x ∈ R, we have

|p( ∂
∂λ

)Φλ(x)| ≤ C(1 + |λ|))(1 + |x|)m+2e(|Imλ|−%)|x|. (2.4)

2.2 Generalized Fourier transform

For a Borel positive measure µ on R, and 1 ≤ p ≤ ∞, we write Lpµ(R) for the
Lebesgue space equipped with the norm ‖ · ‖Lpµ(R) defined by

‖f‖Lpµ(R) =

(∫
R
|f(x)|p dµ(x)

)1/p

, if p <∞,

and ‖f‖L∞µ (R) = ess supx∈R|f(x)|. When µ(x) = w(x)dx, with w a nonnegative
function on R, we replace the µ in the norms by w.

For f ∈ Cc(R), the generalized Fourier transform is defined by

F (f)(λ) =

∫
R
f(x)Φλ(x)A (x)dx, for all λ ∈ C. (2.5)

Remark 1 For λ ∈ C and g ∈ Cc(R), we have

F (g)(λ) = F∆ (ge)(λ) + (−%+ iλ)F∆ (Igo)(λ), (2.6)

where F∆ denotes the stands for the Fourier transform related to the differential
operator ∆, ge (resp. go) denotes the even (resp. odd) part of g, and

Igo(x) =

∫ x

−∞
go(t)dt.
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Theorem 1 For all f ∈ D(R),

F−1(f)(x) =

∫
R
f(λ)Φ−λ(x)dσ(λ), (2.7)

where

dσ(λ) = (1− i%

λ
)

dλ

|c(|λ|)|2
, (2.8)

with c is a continuous function on (0,∞) such that

c(s)−2 ∼
{
C1s

2k as s→∞
C2s

2 as s→ 0,
(2.9)

for some C1, C2 ∈ C.

Remark 2 For A(x) = (sinh |x|)2k(coshx)2k′, k ≥ k′ > 0, we have

dσ(λ) = (1− i%

λ
)

dλ

|c(λ)|2

where

c (λ) :=
2ρ−iλΓ(k + 1

2)Γ(iλ)

8πΓ(1
2(ρ+ iλ))Γ(1

2(k − k′ + 1 + iλ))
, λ ∈ C\iN.

Next, we give some properties of this transform.
i) For f in L1

A (R) we have

∀λ ∈ R, |F (f)(λ)| ≤ C(1 + |λ|)||f ||L1
A (R), (2.10)

ii) For f in S 2(R) we have

F (LA f)(y) = −y2F (f)(y), for all y ∈ R, (2.11)

where LA is the generalized Laplace operator on R given by

LAf(x) := Λ 2f(x) (2.12)

Proposition 2 ([21]). i) Plancherel formula for F . For all f, g in S 2(R) we
have ∫

R
f(x)g(−x)A (x) dx =

∫
R
F(f)(ξ)F(g)(ξ)dσ(ξ). (2.13)

2.3 Transmutation operators associated with the operators Λ

The generalized intertwining operator is the operator V defined on E(R) by

V f(x) =


∫ |x|
−|x|

K(x, y)f(y) dy if x ∈ R \ {0},

f(0) if x = 0.

(2.14)
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We have
∀λ ∈ C, ∀x ∈ R, Φλ(x) = V (eiλ.)(x). (2.15)

The operator V is a topological automorphism of E(R) satisfying

∀f ∈ E(R), Λ (V f)(x) = V

(
d

dy
f

)
(x). (2.16)

The operator tV is defined on D(R) by

∀y ∈ R, tV (f)(y) =

∫
|x|≥|y|

K(x, y)f(x)A (x) dx. (2.17)

The operator tV is a topological automorphism of D(R) satisfying

∀f ∈ D(R), ∀y ∈ R,
d

dy
tV (f)(y) = tV (Λ + 2ρS)(f)(y), (2.18)

where S is the operator defined by

∀ x ∈ R, S(f)(x) = f(−x), f ∈ D(R).

The operators V and tV possess the following properties:
For all f ∈ D(R) and g ∈ E(R), we have∫

R

tV (f)(y)g(y)dy =

∫
R
f(x)V g(x)A (x)dx. (2.19)

Proposition 3 ([21]). For all f ∈ D(R) we have

F (f) = Fc ◦ tV (f), (2.20)

where Fc is the classical Fourier transform defined on D(R) by

∀λ ∈ C, Fc(f)(λ) =

∫
R
f(x)e−iλxdx.

Proposition 4 Let f ∈ L1
A (R). For almost all y, the function

y 7−→ tV (f)(y) =

∫
|x|≥|y|

K(x, y)f(x)A (x) dx, (2.21)

is defined almost everywhere on R and belongs to L1(R). Moreover, for all bounded
continuous function g on R, we have the following formula :∫

R

tV (f)(y)g(y)dy =

∫
R
f(x)V g(x)A (x)dx. (2.22)

Proof. The functions (x, y) 7−→ K(x, y)f(x)A (x) and (x, y) 7−→ K(x, y)f(x)g(y)A (x)
are Lebesgue integrable on R2. Then by using Fubini’s theorem, we get the result.

Proposition 5 ([28]). The generalized intertwining operator V and its dual tV
are positive.
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2.4 The generalized heat kernel

Definition 1 Let t > 0. The heat kernel Et associated with the operator Λ is defined
by

∀x ∈ R, Et(x) = F −1(e−tλ
2
)(x). (2.23)

Remark 3 As the function λ 7→ e−tλ
2

is an even function on R, then from the
relation (2.6), we deduce that

∀x ∈ R, Et(x) =
1

2
F−1

∆ (e−tλ
2
)(x). (2.24)

We introduce also the generalized heat functions Nn(t, .), n ∈ N are defined on R by

Nn(t, x) = (−i)n
∫
R
λne−tλ

2
Φλ(x)dσ (λ). (2.25)

These functions satisfies the following properties.

i) For all t > 0, Nn(t, .) is an C∞-function on R.
ii) For all t > 0, N0(t, .) = Et > 0.
iii) For all t > 0, ‖Et‖L1

A (R) = 1.

iv) For all t > 0, ∀λ ∈ R, F
(
Nn(t, .)

)
(λ) = (−i)nλne−tλ2 .

v) For all t > 0 and ∀x ∈ R, LANn(t, x) = ∂
∂tNn(t, x).

Proposition 6 Let t > 0. We have

∀y ∈ R, tV (Et)(y) =
1

2
√
πt
e−

y2

4t . (2.26)

Proof. From the relations (2.23) and (2.20), we have

∀y ∈ R, tV (Et)(y) = F−1
c (e−tλ

2
)(y) =

1

2
√
πt
e−

y2

4t .

Proposition 7 Let p ∈ [1,∞). There exists a positive constant C(p, t) such that

∀x ∈ R, (Et(x))p ≤ C(p, t)E t
p
(x). (2.27)

Proof. From [10], p. 251, there exists C1(t) > 0 and C2(t) > 0 such that

∀x ∈ R, C1(t)
e−

x2

4t√
B (x)

≤ Et(x) ≤ C2(t)
e−

x2

4t√
B (x)

. (2.28)

Using the hypothesis on the function A, there exist C > 0 such that for all x ∈
R, B (x) ≥ C. Thus, according (2.28), we obtain (2.27).



Qualitative Uncertainty Principles for the generalized Fourier transform 65

3 An Lp version of Hardy’s theorem

For the complex measure dσ defined by (2.8), one defines its variation, the positive
measure dν, by the formula

dν(A) = sup
∞∑
n=1

|dσ(An)|

where A is in Σ algebra, and the supremum runs over all sequences of disjoint sets
(An)n∈N whose union is A.

We denote by Lpν(R), 1 ≤ p ≤ ∞, the space of measurable functions on R,
satisfying

‖f‖Lpν(R) =

(∫
R
|f(x)|pdν(x)

)1/p

<∞, 1 ≤ p <∞,

‖f‖L∞ν (R) = ess sup
x∈R

|f(x)| <∞, p =∞.

Proposition 8 Let p ∈ [1,∞] and f a measurable function on R such that
(
E 1

4a

)−1
f

belongs to LpA (R) for some a > 0. Then

eay
2
(
tV (f)

)
∈ Lp(R).

Proof. We consider two cases.
1st case : If p ∈ [1,∞), from (2.17), we have

‖eay2
(
tV (f)

)
‖pLp(R) ≤

∫
R
eapy

2

(∫
|x|≥|y|

K(x, y)
[(
E 1

4a

)−1
(x)|f(x)|

]
E 1

4a
(x)A (x) dx

)p
dy.

By applying Hölder’s inequality to the middle integral, we obtain

‖eay2
(
tV (f)

)
‖pLp(R) ≤

∫
R
eapy

2 tV

(
|
(
E 1

4a

)−1
f |p
)

(y)

[
tV

[(
E 1

4a

)p′]
(y)

] p
p′

dy,

where p′ is the conjugate exponent of p. By the relations (2.27), (2.26), and (2.22),
we deduce that

‖eay2
(
tV (f)

)
‖Lp(R) ≤M‖

(
E 1

4a

)−1
f‖LpA (R) <∞,

where M =

(
C(p′,

1

4a
)

√
p′a

π

) 1
p′

.

2nd case : If p =∞, using (2.17), we obtain for almost all y in R :

|tV (f)(y)| ≤
∫
|x|≥|y|

K(x, y)

((
E 1

4a

)−1
(x)|f(x)|

)
E 1

4a
(x)A (x) dx

≤ ‖
(
E 1

4a

)−1
f‖L∞A (R)

tV (E 1
4a

)(y).
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By the relation (2.26), we deduce that

‖eay2 tV (f)(y)‖L∞A (R) ≤M0‖
(
E 1

4a

)−1
f‖L∞A (R) <∞,

where M0 =
√

a
π . This completes the proof.

Proposition 9 Let p ∈ [1,∞] and f a measurable function on R such that
(
E 1

4a

)−1
f

belongs to LpA (R) for some a > 0. Then the function F (f) given for all λ ∈ C by

F (f)(λ) =

∫
R
f(x)Φλ(x)A (x)dx,

is well defined, entire on C, and there exists a positive constant C such that

∀ξ, η ∈ R, |F (f)(ξ + iη)| ≤ Ce
η2

4a . (3.29)

Proof. The first assertion follows from Hölder’s inequality, the relation (2.4), and
the derivation theorem under the integral sign. As the function f belongs to L1

A (R),
we deduce from the relation (2.20) that for all ξ, η ∈ R, we have

|F (f)(ξ + iη)| ≤ e
η2

4a

∫
R
eay

2 |tV (f)(y)|e−a(y−
η
2a)

2

dy.

Using Proposition 8 and Hölder’s inequality, we obtain (3.29) with

C =

(
π

ap′

) 1
2p′

‖eay2
(
tV (f)

)
‖Lp(R),

where p′ is the conjugate exponent of p.

Theorem 2 Let f be a measurable function on R such that(
E 1

4a

)−1
f ∈ LpA (R) and ebλ

2F (f) ∈ Lqν (R), (3.30)

for some constants a, b > 0, 1 ≤ p, q ≤ ∞, and at least one of p and q is finite.
Then

• If ab ≥ 1
4 , we have f = 0, almost everywhere.

• If ab < 1
4 , for all t ∈ (b, 1

4a), the functions f = Et, satisfy the relations (3.30).

For prove this theorem we need the following lemmas.

Lemma 1 Let h be an entire function on C such that

∀z ∈ C, |h(z)| ≤ Cea(Rez)2 (3.31)

and
∀x ∈ R, |h(x)| ≤ C, (3.32)

for some a,C > 0. Then h is constant on C.
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Lemma 2 Let q ∈ [1,∞) and h an entire function on C such that

∀z ∈ C, |h(z)| ≤Mea(Rez)2 (3.33)

and
‖h|R‖Lqν (R) <∞, (3.34)

for some a,M > 0. Then h ≡ 0.

Proof. of Theorem 2. We will divide the proof in several steps.
1st step : If ab > 1

4 . We consider the function h defined on C by

h(λ) = e
λ2

4aF (f)(λ).

From Proposition 9, there exists a positive constant C such that for all ξ, η ∈ R,

we have |h(ξ + iη)| ≤ Ce
ξ2

4a .
i) If q <∞, we have

‖h|R‖
q
Lqν (R)

=

∫
R
|ebλ2F (f)(λ)|qeq(

1
4a
−b)λ2 dν (λ).

The inequality ab > 1
4 implies

‖h|R‖Lqν (R) ≤ ‖ebλ
2F (f)‖Lqν (R) <∞.

We deduce from Lemma 2 that for all λ ∈ C, h(λ) = 0.
It follows that for all λ ∈ R, F (f)(λ) = 0 and then from the injectivity of the
transform F , we have

f = 0, a.e., on R.

ii) If q =∞, we have

‖h|R‖L∞ν (R) = ‖ebλ2F (f) e( 1
4a
−b)λ2‖L∞ν (R) ≤ ‖ebλ

2F (f)‖L∞ν (R) <∞.

From Lemma 1, there exists a constant K such that for all λ ∈ C, h(λ) = K.

It follows that for all λ ∈ R, F (f)(λ) = Ke−
λ2

4a . The assumption on F (f) is
expressed as

|F (f)(λ)| ≤Me−bλ
2
, a.e. λ ∈ R,

for some constant M > 0.
The continuity of F (f) on R shows that for all λ ∈ R, |F (f)(λ)| ≤Me−bλ

2
. Then

for all λ ∈ R, |K| ≤Me( 1
4a
−b)λ2 . It follows from the inequality ab > 1

4 , that K = 0.
Therefore

f = 0, a.e., on R.

2nd step : If ab = 1
4 , we have

i) If q < ∞. With the same proof as for the point i) of the first step, we
deduce that

f = 0, a.e., on R.
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ii) If q =∞. Proposition 8 and the relation (2.20) imply that the function tV (f)
satisfies

eay
2
(
tV (f)

)
∈ Lp(R) and ebλ

2Fc
(
tV (f)

)
∈ L∞(R).

Then using [9], p. 66, we see that tV (f) = 0, a.e., on R. From (2.20), it follows
that F (f) = 0 on R and then

f = 0, a.e., on R.

3rd step : If ab < 1
4 . Let t ∈ (b, 1

4a) and f = Et. From the relation (2.28), we get

∀x ∈ R, K1e
−( 1

4t
−a)x2 ≤

(
E 1

4a

)−1
(x)f(x) ≤ K2e

−( 1
4t
−a)x2 ,

for some constants K1, K2 > 0. As t < 1
4a , we deduce that

(
E 1

4a

)−1
f ∈ LpA (R).

Using the relation (2.23), we get

∀λ ∈ R, ebλ
2F (f)(λ) = e−(t−b)λ2 .

The condition t > b and the relations (2.9), imply that ebλ
2F (f) ∈ Lqν (R). This

completes the proof of the theorem.
We determine, in this section, the functions f satisfying the relations (3.30) in the

special case p = q = ∞. The result obtained for the generalized Fourier transform
F is an analogue of the classical Hardy’s theorem.

Theorem 3 Let f be a measurable function on R such that

|f(x)| ≤ME 1
4a

(x), a.e. x ∈ R and |F (f)(λ)| ≤Me−bλ
2
, for all λ ∈ R, (3.35)

for some constants a, b,M > 0. Then

• If ab > 1
4 , we have f = 0, almost everywhere.

• If ab = 1
4 , the function f is of the form f = C0E 1

4a
, for some real constant C0.

• If ab < 1
4 , there are infinitely many nonzero functions f satisfying the condi-

tions (3.35).

Proof. 1st step : If ab > 1
4 , the point ii) of the first step of the proof of Theorem 2

gives the result.
2nd step : If ab = 1

4 , we deduce from the relations (2.26) and (2.20) that the function
tV (f) satisfies

|tV (f)(y)| ≤M0e
−ay2 , a.e. y ∈ R and |Fc

(
tV (f)

)
(λ)| ≤M0e

−bλ2 , for all λ ∈ R,

for some constant M0 > 0. Using Hardy’s theorem for the usual Fourier transform
(see [13], p. 137), we obtain

tV (f)(y) = M1e
−ay2 , a.e. y ∈ R,
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where M1 is a real constant.

From the relation (2.20), it follows that F (f)(λ) = M2e
−λ

2

4a , for all λ ∈ R, where
M2 is a real constant. We deduce from the relation (2.23), that

f = C0E 1
4a
,

for some real constant C0.
3rd step : If ab < 1

4 , the functions f = Et, t ∈ (b, 1
4a), satisfy the conditions (3.35).

This completes the proof of the theorem.

4 Generalized Cowling-Price theorem for the general-
ized Fourier transform

Theorem 4 Let f be a measurable function on R such that

∫
R

(
E 1

4a
(x)
)−p
|f(x)|p

(1 + |x|)n
A (x)dx <∞ (4.36)

and ∫
R

ebqξ
2 |F (f)(ξ)|q

(1 + |ξ|)m
dξ <∞, (4.37)

for some constants a, b, n > 0, m > 1 and 1 ≤ p ≤ 2, 1 ≤ q <∞. Then

i) If ab > 1
4 , we have f = 0 almost everywhere.

ii) If ab = 1
4 , then f is of the form f =

d∑
j=0

CjNj(b, .) where d ≤ min(np+ γ
p′ ,

m−1
q ),

p′ is the conjugate of p, and γ is a positive constant given in the relation (1.1).
Especially, if

n ≤ 1 + 2ρ+ pmin(
n

p
+
γ

p′
,
m− 1

q
),

then f = 0 almost everywhere. Furthermore, if n > 2ρ+ 1 and m ∈ (1, q + 1], then
f is a constant multiple of Eb.

iii) If ab < 1
4 , for all δ ∈ (b, 1

4a), the functions of the form f =
d∑
j=0

CjNj(δ, .),

d ∈ N, satisfy (4.36) and (4.37).

Proof. We shall show that F (f)(z) exists and is an entire function in z ∈ C and

|F (f)(z)| ≤ Ce
1
4a
|Imz|2(1 + |Imz|)s, for all z ∈ C, for some s > 0. (4.38)

The first assertion follows from the hypothesis on the function f and Hölder’s in-
equality using (4.36) and the derivation theorem under the integral sign. We want
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to prove (4.38). Actually, it follows from (2.5) and (2.4) that for all z = ξ + iη ∈ C,

|F (f)(ξ + iη)| ≤
∫
R
|f(x)||Φ(ξ+iη)(x)|A (x)dx

≤
∫
R

(
E 1

4a
(x)
)−1
|f(x)|

(1 + |x|)
n
p

(1 + |x|)
n
pE 1

4a
(x)e(|η|−%)|x|A (x)dx

≤ e
|η|2
4a

∫
R

(
E 1

4a
(x)
)−1
|f(x)|

(1 + |x|)
n
p

(1 + |x|)
n
p e−a(|x|− |η|

2a
)2e−%|x|A (x)dx.

Then by using the Hölder inequality, (4.36) and the relation (1.1), we can obtain

|F (f)(ξ + iη)| ≤ e
|η|2
4a

(∫
R

(1 + |x|)
np′
p e−ap

′(|x|− |η|
2a

)2e−%p
′|x|A (x)dx

) 1
p′

≤ Ce
|η|2
4a

(∫ ∞
0

(1 + t)
np′
p

+γ
e−ap

′(t− |η|
2a

)2e−%(p′−2)tdt
) 1
p′

≤ Ce
1
4a
|Imz|2(1 + |Imz|)

n
p

+ γ
p′ .

Thus (4.38) is proved.
If ab = 1

4 , then

|F (f)(ξ + iη)| ≤ Ceb|Imz|2(1 + |Imz|)
n
p

+ γ
p′ .

Therefore, if we let g(z) = ebz
2F (f)(z), then

|g(z)| ≤ Ceb(Rez)2(1 + |Imz|)
n
p

+ γ
p′ .

Hence it follows from (4.37) that∫
R

|g(ξ)|q

(1 + |ξ|)m
dξ <∞.

Here we use the following lemma.

Lemma 3 ([24]). Let h be an entire function on C such that

|h(z)| ≤ Cea|Rez|2(1 + |Imz|)m

for some m > 0, a > 0 and ∫
R

|h(x)|q

(1 + |x|)s
|Q(x)|dx <∞

for some q ≥ 1, s > 1 and Q ∈ PM (R). Then h is a polynomial with

deg h ≤ min{m, s−M − 1

q
}

and, if s ≤ q +M + 1, then h is a constant.
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Hence by this lemma g is a polynomial, we say Pb, with

degPb := d ≤ min{n
p

+
γ

p′
,
m− 1

q
}.

Then
F (f)(x) = Pb(x)e−bx

2

and thus,

f(x) =
d∑
j=0

CjNj(b, .) for all x ∈ R.

Therefore, nonzero f satisfies (4.36) provided that

n > 2%+ 1 + pmin
{n
p

+
γ

p′
,
m− 1

q

}
.

Furthermore, if m ≤ q + 1, then g is a constant by the Lemma 3 and thus

F (f)(x) = Ce−bx
2

and f(x) = CbEb(x).

When n > 1 and m > 1, these functions satisfy (4.37) and (4.36) respectively. This
proves ii).

If ab > 1
4 , then we can choose positive constants, a1, b1 such that a > a1 = 1

4b1
>

1
4b . Then f and F (f) also satisfy (4.36) and (4.37) with a and b replaced by a1 and

b1 respectively. Therefore, it follows that F (f)(x) = Pb1(x)e−b1x
2
. But then F (f)

cannot satisfy (4.37) unless Pb1 ≡ 0, which implies f ≡ 0. This proves i).

If ab < 1
4 , then for all δ ∈ (b, 1

4a), the functions of the form f(x) =

d∑
j=0

CjNj(δ, .),

where d ∈ N, satisfy (4.36) and (4.37). This proves iii).

5 Beurling’s theorem for the generalized Fourier trans-
form

Beurling’s theorem and Bonami, Demange, and Jaming’s extension are generalized
for the generalized Fourier transform as follows.

Theorem 5 Let N ∈ N, δ > 0 and f ∈ L2
A (R) satisfy∫

R

∫
R

|f(x)||F(f)(y)||R(y)|δ

(1 + |x|+ |y|)N
e|x| |y|A (x)dxdy <∞, (5.39)

where R is a polynomial of degree m. If N ≥ mδ + 3, then

f(x) =
∑

s<N−mδ−1
2

asNs(r, x) a.e., (5.40)

where r > 0, as ∈ C. Otherwise, f(x) = 0 almost everywhere.
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Proof. We start the following lemma.

Lemma 4 We suppose that f ∈ L2
A (R) satisfies (5.39). Then f ∈ L1

A (R).

Proof. We may suppose that f is not negligible. (5.39) and the Fubini theorem
imply that for almost every (t, y) ∈ R,

|F (f)(y)||R(y)|δ

(1 + |y|)N

∫
R

|f(x)|
(1 + |x|)N

e|x| |y|A (x)dx <∞.

Since f and thus, F (f) are not negligible, there exist y0 ∈ R, y0 6= 0, such that
F (f)(y0)R(y0) 6= 0. Therefore,∫

R

|f(x)|
(1 + |x|)N

e|x| |y0|A (x)dx <∞.

Since
e|x| |y0|

(1 + |x|)N
≥ 1 for large x, it follows that

∫
R
|f(x)|A (x)dx <∞.

This lemma and Proposition 4 imply that tV (f) is well-defined almost everywhere
on R. By the same techniques used in [16], we can deduce that∫

R

∫
R

e|x| |y||tV (f)(x)||Fc (tV )(f)(y)||R(y)|δ

(1 + |x|+ |y|)N
A (x)dxdy <∞.

According to Theorem 2.3 in [23], we conclude that for all x ∈ R,

tV (f)(x) = P (x)e−
x2

4s ,

where s > 0 and P a polynomial of degree strictly lower than N−mδ−1
2 . Then by

(2.20),

F (f)(y) = Fc ◦ tV (f)(y) = Fc
(
P (x)e−

x2

4s

)
(y) = Q(y)e−sy

2
,

where Q is a polynomial of degree degP . Then by using properties of the generalized
heat kernels functions we can find constants as such that

F (f)(y) = F
( ∑
s<N−mδ−1

2

aslNs(r, .)
)

(y).

By the injectivity of F the desired result follows.

As an application of Theorem 5, we want to prove the following Gelfand-Shilov
type theorem for the generalized Fourier transform.

Corollary 1 Let N,m ∈ N, δ > 0, a, b > 0 with ab ≥ 1
4 , and 1 < p, q < ∞ with

1
p + 1

q = 1. Let f ∈ L2
A (R) satisfy

∫
R

|f(x)|e
(2a)p

p
|x|p

(1 + |x|)N
A (x)dx <∞ (5.41)
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and ∫
R

|F (f)(y)|e
(2b)q

q
|y|q |R(y)|δ

(1 + |y|)N
dy <∞ (5.42)

for some R ∈ Pm.

i) If ab > 1
4 or (p, q) 6= (2, 2), then f(x) = 0 almost everywhere.

ii) If ab = 1
4 and (p, q) = (2, 2), then f is of the form (5.40) whenever N ≥ mδ+3

2
and r = 2b2. Otherwise, f(x) = 0 almost everywhere.

Proof. Since

4ab|x||y| ≤ (2a)p

p
|x|p +

(2b)q

q
|y|q,

it follows from (5.41) and (5.42) that∫
R

∫
R

|f(x)||F (f)(y)||R(y)|δ

(1 + |x|+ |y|)2N
e4ab|x| |y|A (x)dxdy <∞.

Then (5.39) is satisfied, because 4ab ≥ 1. Therefore, according to the proof of
Theorem 5, we can deduce that∫

R

∫
R

e4ab|x| |y||tV (f)(x)||Fc (tV )(f)(y)||R(y)|δ

(1 + |x|+ |y|)2N
A (x)dxdy <∞,

and tV (f) and f are of the forms

tV (f)(x) = P (x)e−
x2

4s and F (f)(y) = Q(y)e−sy
2
,

where s > 0 and P,Q are polynomials of the same degree strictly lower than
2N−mδ−1

2 . Therefore, substituting these from, we can deduce that

∫
R

∫
R

e
−(
√
s|y|− 1

2
√
s
|x|)2

e(4ab−1)|x| |y||P (x)||Q(x)||R(y)|δ

(1 + |x|+ |y|)2N
A (x)dxdy <∞.

When 4ab > 1, this integral is not finite unless f = 0 almost everywhere. Moreover,
it follows from (5.41) and (5.42) that

∫
R

|P (x)|e−
1
4s
x2e

(2a)p

p
|x|p

(1 + |x|)N
A (x)dx <∞

and ∫
R

|Q(y)|e−sy2e
(2b)q

q
|y|q |R(y)|δ

(1 + |y|)N
dy <∞.

Hence, one of these integrals is not finite unless (p, q) = (2, 2). When 4ab = 1 and
(p, q) = (2, 2), the finiteness of above integrals implies that r = 2b2 and the rest
follows from Theorem 5.
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6 Miyachi’s theorem for the generalized Fourier trans-
form

Theorem 6 Let f be a measurable function on R such that(
E 1

4a

)−1
f ∈ LpA (R) + LqA (R) (6.43)

and ∫
R

log+ ebξ
2 |F (f)(ξ)|

λ
dξ <∞, (6.44)

for some constants a, b, λ > 0, 1 ≤ p, q ≤ ∞. Then
i) If ab > 1

4 , we have f = 0 almost everywhere.
ii) If ab = 1

4 , we have f = CEb with |C| ≤ λ.

iii) If ab < 1
4 , for all δ ∈ (b, 1

4a), the functions of the form f =
d∑
j=0

CjNj(δ, .),

d ∈ N, satisfy (6.43) and (6.44).

To prove this result we need the following lemmas.

Lemma 5 ([16]). Let h be an entire on C function such that

|h(z)| ≤ AeB|Rez|2 and

∫
R

log+ |h(y)|dy <∞, (6.45)

for some positive constants A,B. Then h is a constant on C.

Lemma 6 Let r be in [1,∞]. We consider a function g in LrA (R). Then there exists
a positive constant C such that:

||eax2 tV (E 1
4a
g)||Lr(R) ≤ C||g||LrA (R)),

where || · ||Lr(R) is the norm of the usual Lebesgue space Lr(R) and a > 0.

Proof. The proof is immediately from Proposition 8.

Lemma 7 Let p, q in [1,∞] and f a measurable function on R such that(
E 1

4a

)−1
f ∈ LpA (R) + LqA (R), (6.46)

for some a > 0. Then the function defined on C by

F (f)(λ) =

∫
R
f(x)Φλ(x)A (x)dx, (6.47)

is well defined and entire on C. Moreover there exists a positive constant C such
that for all ξ, η in R we have

|F (f)(ξ + iη)| ≤ Ce
η2

4a . (6.48)
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Proof. The first assertion follows from the hypothesis on the function f and Hölder’s
inequality using (6.46) and the derivation theorem under the integral sign. We want
to prove (6.48).
The condition (6.46) implies that the function f belongs to L1

A (R). Hence we deduce
from (2.20) that for all ξ, η in R we have

|F (f)(ξ + iη)| = |
∫
R

tV (f)(y)e−iy(ξ+iη)dy|.

≤
∫
R

∣∣∣ tV (f)(y)
∣∣∣eyηdy.

The integral of the second member can also be estimate in the form∫
R
eay

2 |tV (f)(y)|e−a(y−
η
2a)

2

dy.

Indeed from (6.46) there exists u in LpA (R) and v in LqA (R) such that

f = E 1
4a

(u+ v).

Thus using the Lemma 6 and Hölder’s inequality we obtain∫
R
eay

2 |tV (f)(y)|e−a(y−
η
2a)

2

dy ≤ C(||u||LpA (R) + ||v||LqA (R)) <∞.

Therefore, the desired result follows.
Proof. of Theorem 6.

We will divide the proof in several cases.
1 st case ab > 1

4 .
Consider the function h defined on C by

h(z) = e
z2

4aF (f)(z). (6.49)

This function is entire on C and using (6.48) we obtain:

|h(ξ + iη)| ≤ Ce
ξ2

4a , (6.50)

for all ξ, η ∈ R. On the other hand we have∫
R+

log+ |h(y)|dy =

∫
R+

log+ |e
y2

4aF (f)(y)|dy,

=

∫
R

log+ |λe( 1
4a
−b)y2 e

by2F (f)(y)

λ
|dy

≤
∫
R

log+ |e
by2F (f)(y)

λ
|dy +

∫
R
e( 1

4a
−b)y2dy

because log+(cd) ≤ log+(c) + d for all c, d > 0. Since ab > 1
4 , (6.44) implies that∫

R
log+ |h(y)|dy <∞. (6.51)
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From the relations (6.50) and (6.51), it follows from Lemma 5 that there exists
a constant C such that

h(ξ + iη) = C, ξ, η ∈ R.

Thus

F (f)(y) = Ce−
y2

4a .

Using now the condition (6.44) and that ab > 1
4 , we deduce that C = 0 and hence

from the injectivity of F (f) we deduce that f = 0.
Second case ab = 1

4 .
The same proof as for the the first step give that

F (f)(y) = Ce−
y2

4a .

Thus (6.44) holds whenever |C| ≤ λ. Hence

f = Ce−
y2

4a , with |C| ≤ λ.

Third case ab < 1
4

If f is a given form, then

F (f)(y) = Q(y)e−
y2

4a

for some Q ∈ P. These functions clearly satisfy the conditions (6.43),(6.44) for all
δ ∈ (b, 1

4a). The proof of the Theorem is complete. The following is an immediate
corollary of Theorem 6.

Corollary 2 Let f be a measurable function on R such that(
E 1

4a

)−1
f ∈ LpA (R) + LqA (R) (6.52)

and ∫
R
|F (f)(ξ)|rebrξ2dξ <∞, (6.53)

for some constants a, b, r > 0 and 1 ≤ p, q ≤ ∞. Then

i) If ab ≥ 1
4 , we have f = 0 almost everywhere.

ii) If ab < 1
4 , then for all δ ∈ (b, 1

4a), all the functions of the form f =
d∑
j=0

CjNj(δ, .), d ∈ N, satisfy (6.52) and (6.53).

7 Open Problem

The purpose of the future work is to study the qualitative uncertainty principles for
more generalized Fourier transforms.
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1-2.

[4] A. Bonami, B. Demange and P. Jaming, Hermite functions and uncer-
tainty principles for the Fourier and the windowed Fourier transforms, Rev.
Mat. Iberoamericana, 19 (2002), 22-35.

[5] I. Cherednik, Aunification of Knizhnik-Zamolod chnikove quations and Dunkl
operators via affine Hecke algebras, Invent. Math. 106 (1991), 411-432.

[6] M.G. Cowling and J.F. Price, Generalizations of Heisenberg inequality, Lec-
ture Notes in Math., 992. Springer, Berlin (1983), 443-449.

[7] R. Daher, T. Kawazoe and H. Mejjaoli, A generalization of Miyachy’s
theorem, J. Math. Soc. Japon. V., 61, No2 (2009), 551-558.

[8] D. L. Donoho, P. B. Stark, Uncertainty principles and signal recovery, SIAM
J. Appl. Math. 49 (1989), 906-931.

[9] M. Eguichi, S. Koizumi and K. Kumahara, An Lp version of Hardy theorem
for the motion group, J. Austral. Math. Soc. Serie A., 68, No2 (2000), 55-67.

[10] A. Fitouhi, Heat polynomials for a singular differential operator on (0,∞), J.
Constructive approximation. V., 5, No2 (1989), 241-270.
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