Int. J. Open Problems Complex Analysis, Vol. 9, No. 1, March 2017 ISSN 2074-2827; Copyright ©ICSRS Publication, 2017 www.i-csrs.org

# Certain Sufficient Conditions for Starlike Functions

Pardeep Kaur and Sukhwinder Singh Billing

Department of Applied Sciences, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib-140407, Punjab, India. e-mail: aradhitadhiman@gmail.com

Department of Mathematics, Sri Guru Granth Shaib World University, Fatehgarh Sahib-140406, Punjab, India. e-mail: ssbilling@gmail.com

Received 6, October; Accepted 3, December, 2016

#### Abstract

We here obtain certain sufficient conditions for normalized analytic functions to be starlike. We also find some sandwich-type results ensuring the starlikeness of the normalized analytic functions.

**Keywords:** Analytic function, Starlike function, Differential Subordination, Differential Superordination

2000 Mathematical Subject Classification: 30C45, 30C80.

#### 1 Introduction

Let  $\mathcal{H}$  be the class of functions analytic in  $\mathbb{E} = \{z : |z| < 1\}$  and  $\mathcal{H}[a, n]$  be the subclass of  $\mathcal{H}$  consisting functions of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$$

Let  $\mathcal{A}$  be the subclass of  $\mathcal{H}$  consisting functions f, analytic in the open unit disk  $\mathbb{E} = \{z : |z| < 1\}$  and normalized by the conditions f(0) = f'(0) - 1 = 0. A function  $f \in \mathcal{A}$  is said to be starlike of order  $\beta$ ,  $0 \le \beta < 1$ , if and only if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \beta, \ z \in \mathbb{E}.$$

The class of such functions is denoted by  $\mathcal{S}^*(\beta)$ . Note that  $\mathcal{S}^*(0) = \mathcal{S}^*$  the class of univalent starlike functions.

Let  $\Phi : \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$  be an analytic function, p be an analytic function in  $\mathbb{E}$  with  $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$  for all  $z \in \mathbb{E}$  and h be univalent in  $\mathbb{E}$ . Then the function p is said to satisfy first order differential subordination if

$$\Phi(p(z), zp'(z); z) \prec h(z), \quad \Phi(p(0), 0; 0) = h(0). \tag{1}$$

A univalent function q is called a dominant of the differential subordination (1) if p(0) = q(0) and  $p \prec q$  for all p satisfying (1). A dominant  $\tilde{q}$  that satisfies  $\tilde{q} \prec q$  for all dominants q of (1), is said to be the best dominant of (1).

Let  $\Psi : \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$  be analytic and univalent in domain  $\mathbb{C}^2 \times \mathbb{E}$ , h be analytic in  $\mathbb{E}$ , p be analytic and univalent in  $\mathbb{E}$ , with  $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$  for all  $z \in \mathbb{E}$ . Then p is called a solution of the first order differential superordination if

$$h(z) \prec \Psi(p(z), zp'(z); z), \ h(0) = \Psi(p(0), 0; 0).$$
 (2)

An analytic function q is called a subordinant of the differential superordination (2), if  $q \prec p$  for all p satisfying (2). A univalent subordinant  $\tilde{q}$  that satisfies  $q \prec \tilde{q}$  for all subordinant q of (2), is said to be the best subordinant of (2).

A number of sufficient conditions for  $f \in \mathcal{A}$  to be starlike are available in literature on univalent functions. In 1973, Miller, Mocanu and Reade [4] studied the class of  $\alpha$ -convex functions  $f \in \mathcal{A}$  satisfying the differential inequality

$$\Re\left[(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] > 0, \ z \in \mathbb{E},$$

where  $\alpha$  is any real number and proved that members of this class are starlike in  $\mathbb{E}$ .

In 1976, Lewandowski et al. [2] proved that the functions  $f \in \mathcal{A}$  which satisfy

$$\Re\left[\frac{zf'(z)}{f(z)}\left(1+\frac{zf''(z)}{f'(z)}\right)\right] > 0, \ z \in \mathbb{E},$$

are starlike in  $\mathbb{E}$ . In 2001, Padmanabhan [7] proved that for a function  $f \in \mathcal{A}$ , the differential inequality

$$\alpha \frac{z^2 f''(z)}{f'(z)} + \frac{z f'(z)}{f(z)} \prec \frac{1+z}{1-z}, \ \alpha \ge 0, \ z \in \mathbb{E},$$

ensures the membership of f in class  $S^*$ . For more results we refer to [5, 6, 8, 9, 10, 11, 12].

The main objective of the present paper is to derive certain sufficient conditions for members of the class  $\mathcal{A}$  to be starlike. For this purpose, we establish a subordination theorem to get some criteria for starlikeness of  $f \in \mathcal{A}$ . We also obtain a superordination theorem and consequently get certain sandwich-type results for starlikeness of  $f \in \mathcal{A}$ .

### 2 Preliminaries

We shall need the following definition and Lemmas to prove our main results.

**Definition 2.1.** [3, Def. 2.2b, p.21]. We denote by Q the set of functions p that are analytic and injective on  $\overline{\mathbb{E}} \setminus \mathbb{B}(p)$ , where

$$\mathbb{B}(p) = \left\{ \zeta \in \partial \mathbb{E} : \lim_{z \to \zeta} p(z) = \infty \right\},\$$

are such that  $p'(\zeta) \neq 0$  for  $\zeta \in \partial \mathbb{E} \setminus \mathbb{B}(p)$ .

**Lemma 2.2.** [3, Theorem 3.4h, p.132]. Let q be univalent in  $\mathbb{E}$  and let  $\theta$  and  $\phi$  be analytic in a domain D containing  $q(\mathbb{E})$ , with  $\phi(w) \neq 0$ , when  $w \in q(\mathbb{E})$ . Set  $Q_1(z) = zq'(z)\phi[q(z)]$ ,  $h(z) = \theta[q(z)] + Q_1(z)$  and suppose that either

(i) h is convex, or

(ii)  $Q_1$  is starlike.

in addition, assume that

(iii) 
$$\Re\left(\frac{zh'(z)}{Q_1(z)}\right) > 0.$$

If p is analytic in  $\mathbb{E}$ , with  $p(0) = q(0), p(\mathbb{E}) \subset D$  and

$$\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)],$$

then  $p \prec q$  and q is the best dominant.

**Lemma 2.3.** [1]. Let q be univalent in  $\mathbb{E}$  and let  $\theta$  and  $\phi$  be analytic in a domain  $\mathbb{D}$  containing  $q(\mathbb{E})$ . Set  $Q_1(z) = zq'(z)\phi[q(z)], h(z) = \theta[q(z)] + Q_1(z)$  and suppose that

(i)  $Q_1$  is starlike in  $\mathbb{E}$  and (ii)  $\Re \left[ \frac{\theta'(q(z))}{\phi(q(z))} \right] > 0, \ z \in \mathbb{E}.$ 

If  $p \in \mathcal{H}[q(0), 1] \cap Q$ , with  $p(\mathbb{E}) \subset \mathbb{D}$  and  $\theta[p(z)] + zp'(z)\phi[p(z)]$  is univalent in  $\mathbb{E}$  and

 $\theta[q(z)] + zq'(z)\phi[q(z)] \prec \theta[p(z)] + zp'(z)\phi[p(z)], \ z \in \mathbb{E},$ 

then  $q(z) \prec p(z)$  and q is the best subordinant.

# 3 Main Results

In what follows, all the powers taken are the principal ones.

**Theorem 3.1.** Let  $q, q(z) \neq 0$ , be a univalent function in  $\mathbb{E}$ , satisfying the conditions

$$\Re\left(1 + \frac{zq''(z)}{q'(z)} + (\lambda - 1)\frac{zq'(z)}{q(z)}\right) > 0$$

and

$$\Re\left(\frac{1-2\alpha}{\alpha}\lambda+(\lambda+1)q(z)\right)>0$$

where  $\alpha$  and  $\lambda$  are complex numbers and  $\alpha \neq 0$ . If  $f \in \mathcal{A}$ ,  $\frac{zf'(z)}{f(z)} \neq 0$ , satisfies the differential subordination

$$\left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right) \prec (1 - 2\alpha + \alpha q(z))q^{\lambda}(z) + \alpha zq'(z)q^{\lambda-1}(z)$$
(3)

then

$$\frac{zf'(z)}{f(z)} \prec q(z)$$

and q(z) is the best dominant.

**Proof:** Define the function p(z) by

$$p(z) = \frac{zf'(z)}{f(z)}$$

Therefore

$$\frac{zp'(z)}{p(z)} = 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}$$

and (3) reduces to

$$p^{\lambda}(z)(1-2\alpha+\alpha p(z))+\alpha z p'(z)p^{\lambda-1}(z) \prec q^{\lambda}(z)(1-2\alpha+\alpha q(z))+\alpha z q'(z)q^{\lambda-1}(z)$$
(4)

Define  $\theta$  and  $\phi$  as under:

 $\theta(w) = (1 - 2\alpha + \alpha w)w^{\lambda} \& \phi(w) = \alpha w^{\lambda-1}$  where  $\theta$  is analytic function in  $\mathbb{C}$  and  $\phi$  is analytic in  $\mathbb{C} \setminus \{0\}$  and  $\phi(w) \neq 0$ ,  $w \in \mathbb{C} \setminus \{0\}$ . Therefore  $Q_1(z) = zq'(z)\phi(q(z)) = \alpha zq'(z)q^{\lambda-1}(z)$  and

$$h(z) = \theta(q(z)) + Q_1(z) = q^{\lambda}(z)(1 - 2\alpha + \alpha q(z)) + \alpha z q'(z) q^{\lambda - 1}(z).$$

A little calculation yields

$$\frac{zQ_1(z)}{Q_1(z)} = 1 + \frac{zq''(z)}{q'(z)} + (\lambda - 1)\frac{zq'(z)}{q(z)}$$

and

$$\frac{zh'(z)}{Q_1(z)} = \frac{(1-2\alpha)}{\alpha}\lambda + (\lambda+1)q(z) + 1 + \frac{zq''(z)}{q'(z)} + (\lambda-1)\frac{zq'(z)}{q(z)}$$

In view of the given conditions, we have  $Q_1(z)$  is starlike in  $\mathbb{E}$  and  $\Re\left(\frac{zh'(z)}{Q_1(z)}\right) > 0$ . The proof now follows from the Lemma 2.2.

**Remark 3.2.** It is easy to verify that dominant  $q(z) = \frac{1 + (1 - 2\beta)z}{1 - z}$ ,  $0 \le \beta < 1$ , satisfies the conditions of Theorem 3.1 for  $\lambda = 1$  and for real number  $\alpha, 0 < \alpha \le 1/2$ . Consequently, we get the following result.

**Corollary 3.3.** If  $f \in \mathcal{A}$ ,  $\frac{zf'(z)}{f(z)} \neq 0$ ,  $z \in \mathbb{E}$  and for real number  $\alpha$ ,  $0 < \alpha \leq 1/2$ , satisfies

$$\frac{zf'(z)}{f(z)} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right) \prec \left(1 - 2\alpha + \alpha \frac{1 + (1 - 2\beta)z}{1 - z}\right) \left(\frac{1 + (1 - 2\beta)z}{1 - z}\right) + \frac{2\alpha(1 - \beta)z}{(1 - z)^2}$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1 + (1 - 2\beta)z}{1 - z}$$

and hence  $f(z) \in \mathcal{S}^*(\beta), \ 0 \le \beta < 1.$ 

**Remark 3.4.** When we select the dominant  $q(z) = e^z$  in Theorem 3.1, it satisfies the conditions of Theorem 3.1 for real numbers  $\alpha$  and  $\lambda$  be such that  $0 \leq \lambda < 1$  and  $0 < \alpha \leq 1/2$ , we obtain the following result:

Corollary 3.5. Let  $f \in \mathcal{A}$ ,  $\frac{zf'(z)}{f(z)} \neq 0$ ,  $z \in \mathbb{E}$ , satisfies

$$\left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right) \prec \left(1 - 2\alpha + \alpha(e^z + z)\right) e^{\lambda z},$$

where  $\alpha$  and  $\lambda$  are real numbers be such that  $0 \leq \lambda < 1$  and  $0 < \alpha \leq 1/2$ , then

$$\frac{zf'(z)}{f(z)} \prec e^z, \ z \in \mathbb{E} \quad i.e. \ f \in \mathcal{S}^*.$$

**Remark 3.6.** On selecting the dominant q(z) = 1 + az, 0 < a < 1, it is easy to check that this dominant satisfies the conditions given in Theorem 3.1 for  $\lambda = 1$  and for real number  $\alpha$ ,  $0 < \alpha \leq 1/2$ , we have the following corollary: **Corollary 3.7.** For  $\alpha \in \mathbb{C}$ ,  $0 < \alpha \leq 1/2$ , if  $f \in \mathcal{A}$ ,  $\frac{zf'(z)}{f(z)} \neq 0$ ,  $z \in \mathbb{E}$ , satisfies

$$\frac{zf'(z)}{f(z)}\left(1-\alpha+\alpha\frac{zf''(z)}{f'(z)}\right) \prec (1-\alpha)+az(1+\alpha)+\alpha a^2 z^2,$$

then

$$\frac{zf'(z)}{f(z)} \prec 1 + az, \ 0 < a < 1,$$

and therefore f(z) is starlike.

**Remark 3.8.** For  $q(z) = \frac{\beta(1-z)}{\beta-z}$ , as the dominant in Theorem 3.1, the given conditions are satisfied by this dominant for  $\lambda = 1$ ,  $\alpha$ , and  $\beta$  are real numbers such that  $0 < \alpha \le 1/2$  and  $\beta > 1$ . In view of this remark, we obtain the following result:

**Corollary 3.9.** If  $f \in \mathcal{A}$ ,  $\frac{zf'(z)}{f(z)} \neq 0$ ,  $z \in \mathbb{E}$ , for real numbers  $\alpha$ , and  $\beta$  be such that  $0 < \alpha \leq 1/2$  and  $\beta > 1$ , satisfies

$$\frac{zf'(z)}{f(z)}\left(1-\alpha+\alpha\frac{zf''(z)}{f'(z)}\right) \prec \left(1-2\alpha+\alpha\frac{\beta(1-z)}{\beta-z}+\frac{\alpha(1-\beta)z}{(\beta-z)(1-z)}\right)\frac{\beta(1-z)}{(\beta-z)},$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{\beta(1-z)}{\beta-z}$$

and hence  $f(z) \in \mathcal{S}^*$ .

**Theorem 3.10.** Let  $\alpha$ ,  $\lambda$  are complex numbers with  $\alpha \neq 0$ , and let q,  $q(z) \neq 0$  be univalent function in the unit disc  $\mathbb{E}$  and be such that

$$\Re\left(1+\frac{zq''(z)}{q'(z)}+(\lambda-1)\frac{zq'(z)}{q(z)}\right)>0$$

and

$$\Re\left(\frac{1-2\alpha}{\alpha}\lambda + (\lambda+1)q(z)\right) > 0$$

If  $f \in \mathcal{A}$ ,  $\frac{zf'(z)}{f(z)} \in \mathcal{H}[q(0), 1] \cap \mathcal{Q}$  with  $\left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right)$  is univalent in  $\mathbb{E}$ , then

$$(1-2\alpha+\alpha q(z))q^{\lambda}(z)+\alpha zq'(z)q^{\lambda-1}(z) \prec \left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(1-\alpha+\alpha\frac{zf''(z)}{f'(z)}\right),$$
(5)

then

$$q(z) \prec \frac{zf'(z)}{f(z)}, \ z \in \mathbb{E}.$$

And q(z) is the best subordinant.

**Proof:** Write 
$$p(z) = \frac{zf'(z)}{f(z)}$$
, then (5) becomes

$$(1 - 2\alpha + \alpha q(z))q^{\lambda}(z) + \alpha zq'(z)q^{\lambda-1}(z) \prec p^{\lambda}(z)(1 - 2\alpha + \alpha p(z)) + \alpha zp'(z)p^{\lambda-1}(z)$$

$$(6)$$

By defining  $\theta$  and  $\phi$  as under:

 $\theta(w) = (1 - 2\alpha + \alpha w)w^{\lambda} \& \phi(w) = \alpha w^{\lambda-1}$ , where  $\theta$  is analytic function in  $\mathbb{C}$  and  $\phi$  is analytic in  $\mathbb{C} \setminus \{0\}$  and  $\phi(w) \neq 0$ ,  $w \in \mathbb{C} \setminus \{0\}$ . Therefore,

$$Q_1(z) = zq'(z)\phi(q(z)) = \alpha zq'(z)q^{\lambda-1}(z)$$

and observing that

$$\frac{zQ_1(z)}{Q_1(z)} = 1 + \frac{zq''(z)}{q'(z)} + (\lambda - 1)\frac{zq'(z)}{q(z)}$$

and

$$\frac{\theta'(q(z))}{\phi(q(z))} = \frac{1-2\alpha}{\alpha}\lambda + (\lambda+1)q(z).$$

In view of the given conditions,  $Q_1(z)$  is starlike and  $\Re \left[ \frac{\theta'(q(z))}{\phi(q(z))} \right] > 0$ , for  $z \in \mathbb{E}$ . Therefore, the proof now follows from Lemma (2.3).

### 4 Sandwich-Type Results

**Theorem 4.1.** Let  $q_i(z) \neq 0$  (i = 1, 2) be univalent in  $\mathbb{E}$  and  $\lambda$ ,  $\alpha$  are complex numbers where  $\alpha \neq 0$ . Further assume that

(i) 
$$\Re\left(1 + \frac{zq_i''(z)}{q_i'(z)} + (\lambda - 1)\frac{zq_i'(z)}{q_i(z)}\right) > 0$$

and

$$(ii) \Re\left(\frac{1-2\alpha}{\alpha}\lambda + (\lambda+1)q_i(z)\right) > 0, \quad for \ (i=1,2)$$

If  $f \in \mathcal{A}, 0 \neq \frac{zf'(z)}{f(z)} \in \mathcal{H}[q(0), 1] \cap Q$ , and  $\left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right)$  is univalent in  $\mathbb{E}$ , then

$$\left(1 - 2\alpha + \alpha q_1(z) + \alpha \frac{zq_1'(z)}{q_1(z)}\right)q_1^{\lambda}(z) \prec \left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right)$$

Pardeep Kaur and Sukhwinder Singh Billing

$$\prec \left(1 - 2\alpha + \alpha q_2(z)\right) + \alpha \frac{zq_2'(z)}{q_2(z)} \right) q_2^{\lambda}(z), \tag{7}$$

then

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z).$$

Moreover  $q_1$  and  $q_2$  are the best subordinant and the best dominant respectively.

Taking  $q_1(z) = 1 + az$  and  $q_2(z) = 1 + bz$ , 0 < a < b < 1. Also for  $\alpha$ ,  $0 < \alpha \le 1/2$  and  $\lambda = 1$  in Theorem 4.1, we conclude the following result:

**Corollary 4.2.** For  $\alpha$ ,  $0 < \alpha \leq 1/2$ , if  $f \in \mathcal{A}$  be such that  $\frac{zf'(z)}{f(z)} \in \mathcal{H}[1,1] \cap Q$  with  $\frac{zf'(z)}{f(z)} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right)$  is univalent in  $\mathbb{E}$  and satisfies

$$(1 - \alpha + \alpha az)(1 + az) \prec \frac{zf'(z)}{f(z)} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right) \prec (1 - \alpha + \alpha bz)(1 + bz)$$

then

$$1 + az \prec \frac{zf'(z)}{f(z)} \prec 1 + bz, \ z \in \mathbb{E}.$$

where a and b are real numbers such that 0 < a < b < 1.

**Example 4.3.** Taking b = 1/2, a = 1/4,  $\alpha = 1/2$  and f to be same as in Corollary 4.2, we obtain:

$$\left(1+\frac{z}{4}\right)^2 \prec \frac{zf'(z)}{f(z)} \left(1+\frac{zf''(z)}{f'(z)}\right) \prec \left(1+\frac{z}{2}\right)^2 \tag{8}$$

which implies

$$1 + \frac{z}{4} \prec \frac{zf'(z)}{f(z)} \prec 1 + \frac{z}{2}, \ z \in \mathbb{E}.$$
 (9)

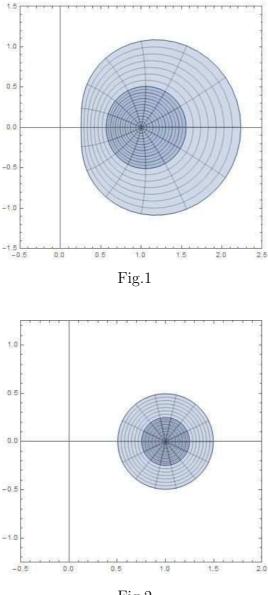


Fig.2

Using Mathematica 10.0, we plot the images of the unit disk under the functions  $\left(1+\frac{z}{4}\right)^2$  and  $\left(1+\frac{z}{2}\right)^2$  of (8) in Fig.1 and  $\left(1+\frac{z}{4}\right)$  and  $\left(1+\frac{z}{2}\right)$  of (9) in Fig. 2. It follows that if  $\frac{zf'(z)}{f(z)}\left(1+\frac{zf''(z)}{f'(z)}\right)$  takes values in the light shaded portion of Fig. 1, then  $\frac{zf'(z)}{f(z)}$  will take values in the light shaded portion of Fig. 2. Hence f is starlike in  $\mathbb{E}$ .

By selecting  $q_1(z) = e^{z/2}$  and  $q_2(z) = e^z$ . And for  $\alpha$  and  $\lambda$ ,  $0 < \alpha \leq 1/2$  and  $0 \leq \lambda < 1$  in Theorem 4.1, we obtain:

**Corollary 4.4.** For real numbers  $\alpha$  and  $\lambda$  be such that  $0 < \alpha \leq 1/2$  and  $0 \leq \alpha \leq 1/2$  $\lambda < 1, \text{ if } f \in \mathcal{A}, \frac{zf'(z)}{f(z)} \in \mathcal{H}[1,1] \cap Q, \text{ with } \left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right) \text{ is }$ univalent in  $\mathbb{E}$ , and satisfies

$$\left(1 - 2\alpha + \alpha e^{z/2} + \frac{\alpha z}{2}\right) e^{\lambda z/2} \prec \left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right) \prec (1 - 2\alpha + \alpha e^z + \alpha z)e^{\lambda z}$$
*then*

$$e^{z/2} \prec \frac{zf'(z)}{f(z)} \prec e^z.$$

**Example 4.5.** By selecting  $\alpha = 1/2$ ,  $\lambda = 1/2$  and f as same in the above corollary, we get :

$$(e^{z/2} + z/2)e^{z/4} \prec \left(\frac{zf'(z)}{f(z)}\right)^{1/2} \left(1 + \frac{zf''(z)}{f'(z)}\right) \prec (e^z + z)e^{z/2}$$
(10)

which implies that

$$e^{z/2} \prec \frac{zf'(z)}{f(z)} \prec e^z. \tag{11}$$

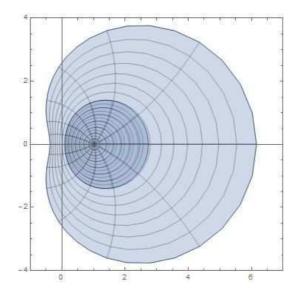
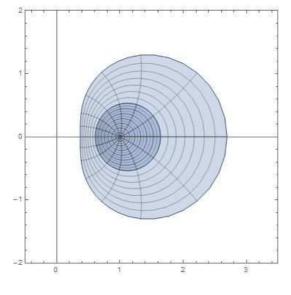


Fig.3

Here we plot, using mathematica 10.0, the functions  $(e^{z/2} + z/2)e^{z/4}$  and  $(e^{z}+z)e^{z/2}$  of (10) in Fig.3 and functions  $e^{z/2}$  and  $e^{z}$  of (11) in Fig.4. We observe that when  $\left(\frac{zf'(z)}{f(z)}\right)^{1/2} \left(1 + \frac{zf''(z)}{f'(z)}\right)$  takes values in light shaded portion of Fig.3 then  $\frac{zf'(z)}{f(z)}$  takes values in the light shaded portion of Fig.4. Hence f is starlike in  $\mathbb{E}$ .





## 5 Open Problem

In the present paper, we here prove the starlikeness of  $f \in \mathcal{A}$  satisfying a differential subordination involving the operator  $\left(\frac{zf'(z)}{f(z)}\right)^{\lambda} \left(1 - \alpha + \alpha \frac{zf''(z)}{f'(z)}\right)$ . The problem of finding the order of starlikeness is yet open for  $\lambda \neq 1$ .

# References

- T. Bulboaca, Classes of first order Differential superordination-preserving integral operators, Demonstratio Mathematica, Vol. 35, No. 2, 2002, 287-292.
- [2] Z. Lewandowski, S. S. Miller and E. Zlotkiewicz, Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc., Vol. 56, 1976, 111-117.
- [3] S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications*, Marcel Dekker, New York and Basel, 2000.
- [4] S. S. Miller, P. T. Mocanu and M. O. Reade, All α- convex functions are univalent and starlike, Proc. Amer. Math. Soc., Vol. 37, 1973, 553-554.
- [5] M. Obradovič, S. B. Joshi and I. Jovanovic, On certain sufficient conditions for starlikeness and convexity, Indian J. Pure Appl. Math., Vol. 29, No. 3, 1998, 271-275.

- [6] M. Obradovič and S. Owa, A Criterion for Starlikeness, Math. Nachr., Vol. 140, 1989, 97-102.
- [7] K. S. Padmanabhan, On sufficient conditions for starlikeness, Indian J.Pure appl. Math., Vol. 32, No. 4, 2001, 543-550.
- [8] V. Ravichandran and M. Darus, On a criteria for starlikeness, International Math. J., Vol. 4, No. 2, 2003, 119-125.
- [9] V. Ravichandran, N. Mahesh and R. Rajalakshmi, On Certain Applications of Differential Subordinations for φ-like Functions, Tamkang J. Math., Vol. 36, No. 2, 2005, 137-142.
- [10] V. Ravichandran, C. Selvaraj and R. Rajalakshmi, Sufficient conditions for starlike functions of order α, J. Inequal. Pure and Appl. Math., Vol. 3, No. 5, 2002, Art. 81, 1-6.
- [11] S. Singh, S. Gupta, S. Singh, Starlikeness of analytic maps satisfying a differential inequality, General Mathematics, Vol. 18, No.3, 2010, 51-58.
- [12] S. Singh, Differential sandwich-type results and criteria for starlikeness, Rend. Sem. Mat. Univ. Politec. Torino, Vol. 69, No. 1, 2011, 57-71.