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Abstract. In this paper, we consider the Weinstein operator

∆α,d
W , we introduce new function spaces that are denoted by Dpα,d,

1 ≤ p ≤ ∞, α ≥ −12 . Some properties of these spaces are studied.
We study the convolutors and the surjective Weinstein convolu-
tion operator acting on (Dpα,d)′, 1 ≤ p ≤ ∞. In the case p = 2, we
obtain complete characterization.

1. INTRODUCTION

In [11], L. Schwartz has introduced the space DLp , 1 ≤ p ≤ ∞, of
all C∞-functions ψ on R such that for all n ∈ N, Dnψ is in Lp(R) and
the map ψ 7→ Dnψ from DLp into Lp(R) is continuous. These spaces
are studied by many authors (see [1], [2], [6], [10]).

In this paper we introduce for every 1 ≤ p ≤ ∞, α > −1
2

, function
spaces, denoted by Dpα,d, similar to DLp but replacing the usual deriva-

tive D by the Weinstein operator ∆α,d
W defined on Rd+1

+ = Rd×]0, +∞[ ,
by:

(1.1) ∆α,d
W =

d+1∑
i=1

∂2

∂x2i
+

2α + 1

xd+1

∂

∂xd+1

= ∆d + Lα, α > −
1

2
,

where ∆d is the Laplacian for the d first variables and Lα is the Bessel
operator for the last variable defined on ]0, +∞[ by :

Lαu =
∂2u

∂x2d+1

+
2α + 1

xd+1

∂u

∂xd+1

=
1

x2α+1
d+1

∂

∂xd+1

[
x2α+1
d+1

∂u

∂xd+1

]
.

The main result of this paper consists to give a new characteriza-
tion of the dual space (Dpα,d)′ of Dpα,d and a description of its bounded
subsets.

The Weinstein kernel Λα,d is the function given by :

∀x, y∈ Cd+1, Λα,d (x, y) = e−i〈x
′,y′〉jα(xd+1yd+1),
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where x = (x′, xd+1), x′ = (x1, x2, ..., xd) and jα is the normalized
Bessel function of index α.
The function Λα,d can be written in the form :

(1.2) Λα,d (x, y) = aαe
−i〈x′,y′〉

∫ 1

0

(
1− t2

)α− 1
2 cos(txd+1yd+1)dt,

where aα is the constant given by the relation :

(1.3) aα =
2Γ (α + 1)
√
πΓ
(
α + 1

2

) .
Using the Weinstein kernel Λα,d, we define the Weinstein transform

Fα,dW by :

∀λ ∈ Rd+1
+ , Fα,dW (f)(λ) =

∫
Rd+1
+

f(x)Λα,d(x, λ)dµα,d(x),

where f ∈ L1(Rd+1
+ , µα,d(x)) and µα,d is the measure on Rd+1

+ given by:

(1.4) dµα,d(x) = Cα,dx
2α+1
d+1 dx,

dx is the Lebesgue measure on Rd+1 and Cα,d is the constant given by

(1.5) Cα,d =
1

(2π)
d
2 2αΓ(α + 1)

.

If T ∈ (Dpα,d)′, we define the Weinstein transform Fα,dW (T ) as following:

∀φ ∈ Dpα,d, 〈F
α,d
W (T ), φ〉 = 〈T,Fα,dW (φ)〉.

We analyze the behaviour of the Weinstein transform Fα,dW on the spaces
Dpα,d and (Dpα,d)′. We study the Weinstein convolutors on Dpα,d, that is,

the functional T ∈ (Dpα,d)′ such that T ∗W φ ∈ Dpα,d for every φ ∈ Dpα,d.
We show that the convolutors of D1

α,d or of D∞α,d are the elements of

(D∞α,d)′ and we characterize the convolutors of D2
α,d. We prove S is a

convolutor in D2
α,d if and only if there exists l ∈ N such that

(1 + ||ξ||2)−lFα,dW (S) ∈ L∞α
(
Rd+1

+

)
.

On the other hand, we prove that every convolutor of Dpα,d is also a

convolutor of Dqα,d for every q satisfying :

min{p, p′} ≤ q ≤ max{p, p′}.
The surjectivity of the Weinstein convolution operator on D2

α,d is char-
acterized. Moreover, we show that such a surjective operator admits a
continuous linear right inverse. A partial result concerning the surjec-
tivity of the Dunkl convolution operator on Dpα,d is also obtained.
The contents of the paper is as follows :
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In the second section, we recapitulate some results related to the
harmonic analysis associated with the Weinstein operator ∆α,d

W given
by the relation (1.1).

The section 3 is devoted to studied the spaceDpα,d and its dual (Dpα,d)′.
We give somes property of theme. In particular, we prove that T
is in (Dpα,d)′ if and only if there exist r ∈ N and ψk ∈ Lp

′
α (Rd+1

+ ),
k = 0, 1, ..., r, for which

T =
r∑

k=0

(
4α,d
W

)k
ψk, on Dpα,d.

In the last section, we investigate the convolutors in Dpα,d, where their

surjectivity in Dpα,d is descussed at is the functionals T ∈
(
Dpα,d

)′
such

that T ∗W ϕ ∈ Dpα,d for every ϕ ∈ Dpα,d.

2. Preliminaires

In this section, we shall collect some results and definitions from the
theory of the harmonic analysis associated with the Weinstein operator
∆α,d
W defined on Rd+1

+ by the relation (1.1).
Let us begin by the following result, which gives the eigenfunction

Ψα,d
λ of the Weinstein operator ∆α,d

W .

Proposition 1. (see [3, 4])
For all λ = (λ1, λ2, ..., λd+1) ∈ Cd+1, the system

(2.1)


∂2u
∂x2j

(x) = −λ2ju(x), if 1 ≤ j ≤ d

Lαu (x) = −λ2d+1u (x) ,
u (0) = 1, ∂u

∂xd+1
(0) = 0 and ∂u

∂xj
(0) = −iλj, if 1 ≤ j ≤ d.

has a unique solution Ψα,d
λ given by :

(2.2) ∀z∈ Cd+1, Ψα,d
λ (z) = e−i〈z

′,λ′〉jα(λd+1zd+1),

where z = (z′, xd+1), z
′ = (z1, z2, ..., zd) and jα is the normalized Bessel

function of index α, defined by :

∀ξ∈ C, jα(ξ) = Γ(α + 1)
∞∑
n=0

(−1)n

n!Γ(n+ α + 1)
(
ξ

2
)2n.

The Weinstein kernel Λα,d : (λ, z) 7→ Ψα,d
λ (z) has a unique extention

to Cd+1 × Cd+1 and satisfies the following properties.

Proposition 2. (see [3, 4, 5])
i) For all λ, z ∈ Cd+1 and t ∈ R, we have

Λα,d (λ, 0) = 1, Λα,d (λ, z) = Λα,d (z, λ) and Λα,d (λ, tz) = Λα,d (tλ, z) .
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ii) For all ν ∈ Nd+1, x ∈ Rd+1
+ and z ∈ Cd+1, we have

(2.3) |Dν
zΛα,d(x, z)| ≤ ‖x‖|ν| exp(‖x‖ ‖ Im z‖),

where Dν
z = ∂ν

∂z
ν1
1 ...∂z

νd+1
d+1

and |ν| = ν1 + ...+ νd+1. In particular

(2.4) ∀x, y ∈ Rd+1
+ , |Λα,d(x, y)| ≤ 1.

Notations. In what follows, we need the following notations:
• C∗(Rd+1), the space of continuous functions on Rd+1, even with re-
spect to the last variable.
• C∗,c(Rd+1), the space of continuous functions on Rd+1 with compact
support, even with respect to the last variable.
• C0

∗,0(Rd+1), the space of continuous functions on Rd+1, even with re-
spect to the last variable and vanishing to 0 when ‖x‖ → +∞.
• Cp

∗ (Rd+1), the space of functions of class Cp on Rd+1, even with re-
spect to the last variable.
• E∗(Rd+1), the space of C∞-functions on Rd+1, even with respect to
the last variable.
• S∗(Rd+1), the Schwartz space of rapidly decreasing functions on Rd+1,
even with respect to the last variable.
• D∗(Rd+1), the space of C∞-functions on Rd+1 which are of compact
support, even with respect to the last variable.
• Lpα(Rd+1

+ ), 1 ≤ p ≤ +∞, the space of measurable functions on Rd+1
+

such that

‖f‖α,p =
[∫

Rd+1
+
|f(x)|pdµα,d(x)

] 1
p
< +∞, if 1 ≤ p < +∞,

‖f‖α,∞ = ess sup
x∈Rd+1

+

|f(x)| < +∞,

where µα,d is the measure given by the relation (1.4).
• H∗(Cd+1), the space of entire functions on Cd+1, even with respect
to the last variable, rapidly decreasing and of exponential type.

Definition 1. The Weinstein transform is given for f ∈ L1
α(Rd+1

+ ) by
:

(2.5) ∀λ ∈ Rd+1
+ , Fα,dW (f)(λ) =

∫
Rd+1
+

f(x)Λα,d(x, λ)dµα,d(x).

where µα,d is the measure on Rd+1
+ given by the relation (1.2).

Some basic properties of the transform Fα,dW are summarized in the
following results.
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Proposition 3. (see [3, 4, 5])
i) For all f ∈ L1

α(Rd+1
+ ), we have

(2.6) ‖Fα,dW (f)‖α,∞ ≤ ‖f‖α,1.
ii) Let m ∈ N and f ∈ S∗(Rd+1), for all y ∈ Rd+1

+ , we have

(2.7) Fα,dW

[(
4α,d
W

)m
f
]

(y) = (−1)m ‖y‖2mFα,dW (f)(y).

iii) For all f ∈ S∗(Rd+1) and m ∈ N, we have

(2.8) ∀λ ∈ Rd+1
+ ,

(
4α,d
W

)m [
Fα,dW (f)

]
(λ) = Fα,dW (Pmf)(λ),

where Pm(λ) = (−1)m ‖λ‖2m .
Theorem 1. (see [3, 4, 5])

i) The Weinstein transform Fα,dW is a topological isomorphism from
S∗(Rd+1) onto itself and from D∗(Rd+1) onto H∗(Cd+1).

ii) Let f ∈ S∗(Rd+1). The inverse transform
(
Fα,dW

)−1
is given by :

(2.9) ∀x ∈ Rd+1
+ ,

(
Fα,dW

)−1
(f)(x) = Fα,dW (f) (−x) .

iii) Let f ∈ L1
α(Rd+1

+ ). If Fα,dW (f) ∈ L1
α(Rd+1

+ ), then we have

(2.10) f(x) =

∫
Rd+1
+

Fα,dW (f) (y) Λα,d(−x, y)dµα,d(y), a.e x ∈ Rd+1
+ .

Theorem 2. (see [3, 4, 5])
i) For all f, g ∈ S∗(Rd+1), we have the following Parseval formula :

(2.11)

∫
Rd+1
+

f(x)g(x)dµα,d(x) =

∫
Rd+1
+

Fα,dW (f)(λ)Fα,dW (g)(λ)dµα,d(λ).

ii) ( Plancherel formula ).
For all f ∈ S∗(Rd+1), we have :

(2.12)

∫
Rd+1
+

|f(x)|2 dµα,d(x) =

∫
Rd+1
+

∣∣∣Fα,dW (f)(λ)
∣∣∣2 dµα,d(λ).

iii) ( Plancherel Theorem ) :

The transform Fα,dW extends uniquely to an isometric isomorphism on
L2
α(Rd+1

+ ).

Proposition 4. Let f be in Lpα
(
Rd+1

+

)
, p ∈ [1, 2]. Then Fα,dW f belongs

to Lp
′
α

(
Rd+1

+

)
, with p′ the conjugate exponent of p, that is 1

p
+ 1

p′
= 1

and we have

(2.13)
∥∥∥Fα,dW (f)

∥∥∥
Lp

′
α (Rd+1

+ )
6 ‖f‖Lpα(Rd+1

+ ) .
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Proof. From the relation (2.6) and the Theorem 2 iii), we deduce that
the relation (2.13) is true in the cases p = 1 and p = 2.
Hence from the Riez-Thorin interpolation ( see [12] and [13]) , deduce

that Fα,dW can be extended as a continuous mapping from Lpα
(
Rd+1

+

)
into Lp

′
α

(
Rd+1

+

)
and we have the relation (2.13). �

Definition 2. The translation operator Tx, x ∈ Rd+1
+ , associated with

the Weinstein operator ∆α,d
W is defined on C∗(Rd+1), for all y ∈ Rd+1

+ ,
by :
(2.14)

Txf (y) =
aα
2

∫ π

0

f
(
x′ + y′,

√
x2d+1 + y2d+1 + 2xd+1yd+1 cos θ

)
(sin θ)2α dθ,

where x′+y′ = (x1 + y1, ..., xd + yd) and aα is the constant given by the
relation (1.3).

Proposition 5. (see [3, 4, 5])
i) For f ∈ C∗(Rd+1), we have

∀x, y ∈ Rd+1
+ , Txf (y) = Tyf (x) and T0f = f.

ii) For all f ∈ E∗(Rd+1) and y ∈ Rd+1
+ , the function x 7→ Txf (y) belongs

to E∗(Rd+1).
iii) We have

(2.15) ∀x ∈ Rd+1
+ , ∆α,d

W ◦ Tx = Tx ◦∆α,d
W .

iv) Let f ∈ Lpα(Rd+1
+ ), 1 ≤ p ≤ +∞ and x ∈ Rd+1

+ . Then Txf belongs
to Lpα(Rd+1

+ ) and we have

(2.16) ‖Txf‖α,p ≤ ‖f‖α,p.
v) The function Λα,d (., λ) , λ ∈ Cd+1, satisfies on Rd+1

+ the following
product formula:

(2.17) ∀y ∈ Rd+1
+ , Λα,d (x, λ) Λα,d (y, λ) = Tx [Λα,d (., λ)] (y) .

vi) Let f ∈ Lpα(Rd+1
+ ), p = 1 or 2 and x ∈ Rd+1

+ , we have

(2.18) ∀y ∈ Rd+1
+ , Fα,dW (Txf) (y) = Λα,d (x, y)Fα,dW (f) (y) .

vii) The space S∗(Rd+1) is invariant under the operators Tx, x ∈ Rd+1
+ .

Definition 3. The Weinstein convolution product of f, g ∈ L1
α(Rd+1

+ )
is given by :

(2.19) ∀x ∈ Rd+1
+ , f ∗W g (x) =

∫
Rd+1
+

Txf (y) g (y) dµα,d(y).
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Proposition 6. (see [3, 4, 5])
i) Let p, q, r ∈ [1, +∞] such that 1

p
+ 1

q
− 1

r
= 1.

Then for all f ∈ Lpα(Rd+1
+ ) and g ∈ Lqα(Rd+1

+ ), the function f ∗W g
belongs to Lrα(Rd+1

+ ) and we have

(2.20) ‖f ∗W g‖α,r ≤ ‖f‖α,p‖g‖α,q.
ii) For all f, g ∈ L1

α(Rd+1
+ ),

(
resp. S∗(Rd+1)

)
, f ∗W g ∈ L1

α(Rd+1
+ )(

resp. S∗(Rd+1)
)

and we have

(2.21) Fα,dW (f ∗W g) = Fα,dW (f)Fα,dW (g).

3. The spaces Dpα,d and (Dpα,d)′

In this section, we introduce new function spaces that are denoted
by Dpα,d, 1 ≤ p ≤ ∞, α > −1

2
. Some properties of these spaces are

studied. We study the convolutors and the surjective Weinstein con-
volution operator acting on the dual space of Dpα,d denoted by (Dpα,d)′.
In the case p = 2, we obtain complete characterization.
Now, we define the new spaces Dpα,d, 1 ≤ p ≤ ∞.

Definition 4. i) The space Dpα,d, 1 ≤ p < ∞ is the set of all C∞-

functions ϕ in Rd+1 such that, for all n ∈ N,
(
4α,d
W

)n
ϕ is in Lpα(Rd+1

+ )

which is equipped with the topology generated by the countable norms

(3.1) ∀m ∈ N, µm,pα,d (ϕ) =
( m∑
n=0

||
(
4α,d
W

)n
ϕ||p

Lpα(Rd+1
+ )

) 1
p
.

ii) A function u ∈ E(Rd+1) is in B∞α,d when for each m ∈ N,
µm,∞α,d (u) <∞ , where

(3.2) µm,∞α,d (ϕ) =
m∑
n=0

||
(
4α,d
W

)n
ϕ||L∞

α (Rd+1).

iii) We denote by D∞α,d the subspace of B∞α,d that consists of all those

functions u ∈ B∞α,d for which lim
‖x‖→+∞

(
4α,d
W

)m
u(x) = 0 for each m ∈ N.

The space B∞α,d is endowed with the topology generated by the system
{µm,∞α,d }m∈N.

In the following results, we give some topological properties of the
spaces Dpα,d.

Proposition 7. i) For every 1 ≤ p ≤ ∞, Dpα,d is a Fréchet space.

ii) Let 1 ≤ p ≤ 2 ≤ q ≤ ∞. Then the space Dpα,d is continuously

contained in Dqα,d.
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iii) If 1 < p <∞ then Dpα,d is a reflexive space.
iv) B∞α,d is the strong bidual of D∞α,d.
v) For every 1 ≤ p ≤ ∞, the space D(Rd+1

+ ) is dense in Dpα,d.

Proof. i) Let 1 ≤ p ≤ ∞ and (ϕn)n∈N be a Cauchy sequence in Dpα,d.
Since Lpα(Rd+1

+ ) is a Banach space, then there exists ψm ∈ Lpα(Rd+1
+ )

such that for each m ∈ N,
(
4α,d
W

)m
ϕn → ψm, as n→∞, in Lpα(Rd+1

+ ).

On the other hand, it is easy to see that

∀m ∈ N,
(
4α,d
W

)m
ψ0 = ψm.

Hence this implies that (ϕn)n∈N converge to ψ0 in Dpα,d.
ii) Let 1 ≤ p ≤ 2 ≤ q ≤ ∞, p′ the conjugate exponent of p, that is,
1
p

+ 1
p′

= 1 and f ∈ Dpα,d. For all n ∈ N, the function λ→ λ2nFα,dW (f)(λ)

belongs to the space Lp
′
α (Rd+1

+ ). By applying Holder’s inequality it fol-
lows that this last function belongs to the space Lq

′
α (Rd+1) where q′ the

conjugate exponent of q. On the other hand, for all x ∈ Rd+1
+ , we have(

4α,d
W

)n
f(x) =

∫
Rd+1
+

λ2nFα,dW (f)(λ)Λα,d(x, λ)dµα,d(x)

=
(
Fα,dW

)−1
(λ2nFα,dW (f))(x)

and this implies that for all n ∈ N, the function 4α,d
W f belongs to the

space Lqα
(
Rd+1

+

)
.

iii) To see iii) it is sufficient to argue like in [11].
iv) See [11].
v) If 1 ≤ p < ∞, it sufficient to observe that D(Rd+1

+ ) is dense in
Lpα
(
Rd+1

+

)
.

On the other hand, if p = ∞, the result follows immediately from
the definition of D∞α,d and the fact that the space D(Rd+1

+ ) is dense in

C0
∗,0(Rd+1). �

As usual, by (Dpα,d)′ we represent the dual space of Dpα,d.
In the following proposition, we give a representation for the ele-

ments of Dpα,d.

Proposition 8. Let T be a functional on Dpα,d, 1 ≤ p <∞ and p′ the

conjugate of p. Then T is in (Dpα,d)′ if and only if, there exist r ∈ N
and ψk ∈ Lp

′
α (Rd+1

+ ), k = 0, 1, ..., r, for which

(3.3) T =
r∑

k=0

(
4α,d
W

)k
ψk, on Dpα,d.
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Proof. Suppose that T ∈ (Dpα,d)′. Then there exist an integer r and a
positive constant C such that

(3.4) ∀φ ∈ Dpα,d, |〈T, φ〉| ≤ C max
k≤r

µαk,p(φ).

We put Er+1
p = Lpα(Rd+1

+ )× ...r+1.×Lpα(Rd+1
+ ), we define the mappings

:

J : Dpα,d −→ Er+1
p

φ 7−→ (
(
4α,d
W

)k
φ)rk=0

and

L : JDpα,d −→ C

(
(
4α,d
W

)k
φ)rk=0 7−→ 〈T, φ〉.

Note that, since J is one to one, the mapping L is well defined. On the
other hand, according to (3.4), L is a continuous linear mapping when
in JDpα,d we consider the topology induced by Er+1

p . Then by invoking

Hahn-Banach theorem, we can extended L continuously to Er+1
p as an

element of (Er+1
p )′. Then, there exists uk ∈ Lp

′
α (Rd+1

+ ), k = 0, ..., r such
that (3.3) holds.
Conversely, if T takes the form (3.3), for some uk ∈ Lp

′
α (Rd+1

+ ) where
k = 0, ..., r and r ∈ N, using the Hölder’s inequality, we deduce that
T ∈ (Dpα,d)′. �

Definition 5. If T is in (Dpα,d)′, we define the Weinstein transform

Fα,dW (T ) as following :

(3.5) ∀φ ∈ Dpα,d, 〈F
α,d
W (T ), φ〉 = 〈T,Fα,dW (φ)〉.

Now we analyze the behaviour of the Weinstein transform Fα,dW on
the spaces Dpα,d and (Dpα,d)′.

Proposition 9. i) If u ∈ Dpα,d with 1 ≤ p ≤ 2, then for every polyno-

mial P , we have P (‖ξ‖2)Fα,dW (u) ∈ Lpα(Rd+1
+ ).

ii) If T ∈ (Dpα,d)′, with 2 ≤ p < ∞, then Fα,dW (T ) = P (‖ξ‖2)F , where

P is a polynomial and F ∈ Lpα(Rd+1
+ ).

Proof. i) Let u ∈ Dpα,d, with 1 ≤ p ≤ 2. Then from the relation (2.13),
it follows that

∀k ∈ N, Fα,dW (
(
4α,d
W

)k
u) ∈ Lp′α (Rd+1

+ )

47
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where p′ the conjugate exponent of p.
On the other hand, from relation (2.7), we have

∀ξ ∈ Rd+1
+ , Fα,dW

[(
4α,d
W

)k
u

]
(ξ) = (−1)k ‖ξ‖2kFα,dW (u)(ξ).

This gives the result.
ii) Let T ∈ (Dpα,d)′, with 2 ≤ p < ∞. From Proposition ?? there exist

r ∈ N and uk belongs to Lp
′
α (Rd+1

+ ), k = 0, ..., r, such that

T =
r∑

k=0

(
4α,d
W

)k
uk.

Hence, from the relation (2.7), we obtain :

Fα,dW (T ) =
r∑

k=0

Fα,dW (
(
4α,d
W

)k
uk) =

(
1 + ‖ξ‖2

)r
F (y)

where the function F defined by :

F (ξ) =
r∑

n=0

(−1)k ‖ξ‖2kFα,dW (uk)(ξ)(
1 + ‖ξ‖2

)r .

It is clear that F ∈ Lpα(Rd+1
+ ). �

In the following we give a necessary and sufficient condition for
that a distribution T belongs to (D2

α,d)
′.

Proposition 10. Let T ∈ S ′(Rd+1
+ ). Then T ∈ (D2

α,d)
′, if and only

if, there exist a polynomial P and a function F in L2
α(Rd+1

+ ) such that

Fα,dW (T ) = P (‖ξ‖2)F .

Proof. Assume that Fα,dW (T ) = P (‖ξ‖2)F , where P is a polynomial and
F ∈ L2

α(Rd+1
+ ). Then according to the relation (2.9),

T =
(
Fα,dW

)−1
(P (‖ξ‖2)F ) = P (−4α,d

W )
(
Fα,dW

)−1
(F ).

Since
(
Fα,dW

)−1
(F ) ∈ L2

α(Rd+1
+ ), from Proposition 8, we deduce that

T ∈ (D2
α,d)

′.
The conversely is immediately from Proposition 9 ii). �

Proposition 11. Let 1 ≤ p ≤ ∞ , S ∈ (Dpα,d)′ and ϕ ∈ D
(
Rd+1

+

)
be

given. Then S ∗W ϕ ∈ Lp′α (Rd+1
+ ), where p′ is the conjugate exponent of

p.
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Proof. Firstly we take 1 ≤ p < ∞. Let S ∈ (Dpα,d)′. According to

Proposition 8, there exist r ∈ N and ψk ∈ Lp
′
α (Rd+1

+ ), k = 0, 1, ..., r, for
which

S =
r∑

k=0

(
4α,d
W

)k
ψk.

For every ϕ ∈ D
(
Rd+1

+

)
, we put ϕ̃(x) = ϕ(−x). For all x ∈ Rd+1

+ , we
have

S ∗W ϕ(x) = 〈S, Txϕ̃〉 =
r∑

k=0

〈
(
4α,d
W

)k
ψk, Txϕ̃〉 =

r∑
k=0

〈ψk,
(
4α,d
W

)k
Txϕ̃〉

=
r∑

k=0

〈ψk,
(
4α,d
W

)k
Txϕ̃〉 =

r∑
k=0

(−1)k〈ψk, Tx
(
4α,d
W

)k
ϕ̃〉

=
r∑

k=0

(−1)kψk ∗W
((
4α,d
W

)k
ϕ̃

)
.

Since for each ϕ ∈ D
(
Rd+1

+

)
,
(
4α,d
W

)k
ϕ̃ ∈ D

(
Rd+1

+

)
⊂ L1

α(Rd+1
+ ), then

from the relation (2.20), we deduce that S ∗W ϕ belongs to Lp
′
α (Rd+1

+ ).
Suppose now that p =∞ and for every x ∈ Rd+1

+ , we have S ∗W ϕ(x) ∈
R . We define two open sets U+ and U− as follows:

U+ =
{
x ∈ Rd+1

+ , v ∗W ϕ(x) > 0
}

and

U− =
{
x ∈ Rd+1

+ , v ∗W ϕ(x) < 0
}
.

If K 6= ∅ is a compact subset of U+, we choose φ ∈ D(Rd+1
+ ) such that

φ ≡ 1 on K, 0 ≤ φ ≤ 1 and supp φ ⊂ U+. Then∫
K

|S ∗W ϕ(x)|dµα,d(x) ≤
∫
Rd+1
+

(S ∗W ϕ(x))φ(x)dµα,d(x)

≤ Cµαm,1(ϕ)||φ||L∞
α (Rd+1

+ ).

Hence S ∗W ϕ ∈ L1
α(U+).

In a similar way, we show that S ∗W ϕ ∈ L1
α(U−). Then S ∗W ϕ ∈

L1
α(Rd+1

+ ).
In the general case it is sufficient to consider the real and imaginary
part of S ∗W ϕ to conclude. �

Proposition 12. For every p ∈ N and ε > 0, there exist m0 ∈ N such
that for any m ∈ N, m ≥ m0, we can find two functions γm ∈ D

(
Rd+1

+

)
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and Γm ∈ D2p(B (o, ε)) such that

(3.6) δ = (I −4α,d
W )mΓm + γm

where δ is the Dirac distribution and

B (o, ε) =
{
x ∈ Rd+1, ‖x‖ ≤ ε

}
.

Proof. The proposition can be proved in the same way of Proposition
3.6 in [9]( see also [8]) �

Proposition 13. Let 1 ≤ p ≤ q ≤ ∞ ,the space Dpα,d is continuously

contained in Dqα,d.

Proof. Using the relations (3.6), (2.15) and (2.20), we deduce the result.
�

Proposition 14. Let 1 ≤ p ≤ ∞ and S ∈ D′(Rd+1
+ ) be given. Suppose

that S ∗W ϕ ∈ Lpα(Rd+1
+ ) for every ϕ ∈ D(Rd+1

+ ). Then, there exist

m ∈ N and f, g ∈ Lpα(Rd+1
+ ) for which S = (I −4α,d

W )mf + g.

Proof. Let 1 ≤ p ≤ ∞, S ∈ D′(Rd+1
+ ) and Vp′ be the unit ball of

Lp
′
α (Rd+1

+ ).
Assume that ϕ ∈ Vp′

⋂
D(Rd+1

+ ). We have

∀φ ∈ D(Rd+1
+ ), |〈S ∗W ϕ̃, φ̃〉| = |〈S ∗W φ, ϕ〉|.

On the other hand, using the Hölder inequality, we obtain

(3.7) |〈S∗W φ, ϕ〉| ≤ ||S∗W φ||Lpα(Rd+1
+ )||ϕ||Lp′α (Rd+1

+ )
≤ ||S∗W φ||Lpα(Rd+1

+ ).

Thus the set {
S ∗W ϕ̃ : ϕ ∈ Vp′

⋂
D(Rd+1

+ )
}

is bounded in D′(Rd+1
+ ) when we consider in D′(Rd+1

+ ) the weak topol-

ogy, and hence, equicontinuous onD′(Rd+1
+ ). Therefore, ifK1 = B (o, 2) ={

x ∈ Rd+1, ‖x‖ ≤ 2
}

, we can find m ∈ N such that

∀φ ∈ D(K1) and ϕ ∈ Vp′
⋂

D(Rd+1
+ ), |〈S ∗W ϕ̃, φ̃〉| ≤ C||φ||K1,m

where

||φ||K1,m = sup
x ∈ K1

k ≤ m

|
(
4α,d
W

)k
φ(x)|.

Hence, for every φ ∈ D(K1) and ϕ ∈ D(Rd+1
+ ), we have

(3.8) |〈S ∗W ϕ̃, φ̃〉| ≤ C||φ||K1,m||ϕ||Lp′α (Rd+1
+ ).
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Now we want to prove that, if we takeK2 = B (o, 1) =
{
x ∈ Rd+1, ‖x‖ ≤ 1

}
,

then

∀φ ∈ D2m(K2), S ∗W φ ∈ Lpα(Rd+1
+ ).

Let ψ ∈ D(K2) such that 0 ≤ ψ ≤ 1 and

∫
B(o,1)

ψ(x)dµα,d(x) = 1.

Let 0 < ε < 1, we put :

∀x ∈ Rd+1, ψε(x) = ε−2α−d−2ψ
(x
ε

)
.

For φ ∈ D2m(K2), φ ∗W ψε ∈ D(K1) and φ ∗W ψε → φ, as ε → 0+,
in Dm(K1). Consequently, S ∗W (φ ∗W ψε) ∈ Lpα(Rd+1

+ ) and we deduce
from (3.8) that

(3.9) ||S ∗W (φ ∗W ψε)||Lpα(Rd+1
+ ) ≤ C||φ ∗W ψε||K1,m ≤ C||φ||K1,m.

Observe that we also get from (3.9) that S ∗W (φ ∗W ψε) is a Cauchy
net in Lpα(Rd+1

+ ), thus convergent. Since S ∈ D′(R), there exist l ∈ N
and C > 0 such that

∀ϕ ∈ D(K2), |〈S, ϕ〉| ≤ C||ϕ||K2,l.

Then S can be continuously extended to Dl(K2). Hence, if m large
enough, we conclude that for all x ∈ Rd+1

+ , we have

|(S∗W (φ∗Wψε) (x)−S∗Wφ) (x) | ≤ C||φ∗Wψε−φ||K2,l ≤ C||φ∗Wψε−φ||K1,m.

Thus S ∗W (φ ∗W ψε)→ S ∗W φ, as ε→ 0+, in Cb(Rd+1).
From (3.9), we deduce that S ∗W φ ∈ Lpα(Rd+1

+ ).
According to Proposition 12, we can write

δ = (I −4α,d
W )mΓm + γm,

where γm ∈ D(K2) and Γm ∈ D2m(K2).
Then, we obtain :

S = S ∗W δ = S ∗W
(

(I −4α,d
W )mΓm + γm

)
= (I −4α,d

W )mf + g

where f = S ∗W Γm and g = S ∗W γm. �

Now we can establish the following property, where we present as
a necessary and sufficient condition in order that a distribution belongs
to (Dpα,d)′.

Theorem 3. Let 1 ≤ p ≤ ∞ and S ∈ D′(Rd+1
+ ). The following asser-

tions are equivalent:
i) S ∈ (Dpα,d)′.
ii) S ∗W φ ∈ Lp′α ((Rd+1

+ ) for every φ ∈ D(Rd+1
+ ).
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iii) There exist m ∈ N and fm ∈ Lp
′
α (Rd+1

+ ) such that

S = (I −4α,d
W )mfm.

Proof. The results follow directly from Proposition 14. �

We give now an allternative description of the space Dpα,d. that
will be useful in the sequel.

Proposition 15. Let 1 ≤ p ≤ ∞ . The family of seminorms

Γ =
{
qm,pα,d : m ∈ N

}
where for all m ∈ N and φ ∈ Dpα,d
(3.10) qm,pα,d (φ) = ||(I −4α,d

W )mφ||Lpα(Rd+1
+ )

generates the topology of Dpα,d. Moreover, every continuous seminorm

µm,pα,d is dominated by some qm,pα,d ∈ Γ.

Proof. It is clear that the family Γ defines on Dpα,d a topology weaker

than the one associated with {µn,pα,d}n∈N. Let n ∈ N. There exist a

positive constant C and a bounded subset B of (Dpα,d)′ for which

∀ϕ ∈ Dpα,d, µ
n,p
α,d(ϕ) ≤ C sup

S∈B
|〈S, ϕ〉|.

From Theorem 3 there exists m ∈ N and a positive constant C such
that, for every S ∈ B, we can find fS ∈ Lp

′
α (Rd+1

+ ), satisfying

S = (I −4α,d
W )mfS, ||fS||Lp′α (R) ≤ C.

On the other hand, for all ϕ ∈ Dpα,d, we have

|〈S, ϕ〉| ≤
∣∣∣ ∫

R
fS(x)(I −4α,d

W )mϕ(x)dµα,d(x)
∣∣∣

≤ C||(I −4α,d
W )mϕ||Lpα(Rd+1

+ ).

Thus there exists m ∈ N such that

∀ϕ ∈ Dpα,d, µ
n,p
α,d(ϕ) ≤ C||(I −4α,d

W )mϕ||Lpα(Rd+1
+ ).

Then we conclude that Γ generates the topology of Dpα,d. �

From the previous proposition we deduce an interesting charac-
terization of the functions in Dpα,d as follows :

Proposition 16. i) Let 1 ≤ p < ∞. A function ϕ ∈ Lpα(Rd+1
+ ) is in

Dpα,d if and only if

∀m ∈ N, (I −4α,d
W )mϕ ∈ Lpα(Rd+1

+ ).
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ii) A function φ ∈ L∞α (Rd+1
+ ) is in B∞α,d if and only if

∀m ∈ N, (I −4α,d
W )mφ ∈ L∞α (Rd+1

+ ).

4. Convolutors in Dpα,d
In this section we study the convolutors in Dpα,d, 1 ≤ p ≤ ∞,

where their surjectivity in Dpα,d is descussed at is the functionals

T ∈
(
Dpα,d

)′
such that T ∗W ϕ ∈ Dpα,d for every ϕ ∈ Dpα,d.

Definition 6. The generalized convolution of S ∈ (Dpα,d)′, 1 ≤ p ≤ ∞
and ϕ ∈ Dpα,d is given by :

(4.1) ∀x ∈ Rd+1
+ , S ∗W ϕ (x) = 〈S, Txϕ̃〉

where ϕ̃ (x) = ϕ(−x).
The functionnel S ∈ (Dpα,d)′ is called convolutor in Dpα,d if for every

ϕ ∈ Dpα,d, we have S ∗W ϕ ∈ Dpα,d.

Remark 1. Using the fact that for all x ∈ Rd+1
+ and ϕ ∈ Dpα,d, we have

Txϕ̃ ∈ Dpα,d, we deduce that the Definition 6 is meaningful.

Proposition 17. Let S ∈ (Dpα,d)′, 1 ≤ p ≤ ∞, be a convolutor in Dpα,d.
Then the mapping FS defined by :

∀ϕ ∈ Dpα,d, FS(ϕ) = S ∗W ϕ

is continuous from Dpα,d into itself.

Proof. Let (ϕn)n∈N be a sequence in Dpα,d such that ϕn → ϕ, as n→∞,

and FS(ϕn) → φ, as n → ∞, in Dpα,d, for certain ϕ, φ ∈ Dpα,d. Since,

for every x ∈ Rd+1
+ , the mapping ϕ→ Txϕ̃ is continuous from Dpα,d into

Dpα,d, then for every x ∈ Rd+1
+ , we have S ∗W ϕn(x) → S ∗W ϕ(x) as

n→∞, . Then FS(ϕ) = φ and the closed graph theorem implies that
FS is continuous. �

Now, using Definition 6 and the proposition 17, the following defini-
tion have a sense.

Definition 7. Let S ∈ (Dpα,d)′,1 ≤ p ≤ ∞ and T ∈ (Dp
′

α,d)
′ where

p′ the conjugate of p. Then the Weinstein convolution S ∗W T is the
functional given by :

(4.2) ∀ϕ ∈ Dpα,d, 〈S ∗W T, ϕ〉 = 〈S, T̃ ∗W ϕ〉,

where 〈T̃ , ϕ〉 = 〈T, ϕ̃〉).
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Proposition 18. i) Let S ∈ (Dpα,d)′, 1 ≤ p ≤ ∞ and T ∈ (Dp
′

α,d)
′,

where p′ the conjugate of p, that S ∗W T = T ∗W S.
ii) Let S, T ∈ (D∞α,d)′, then S ∗W T ∈ (D∞α,d)′.
iii) Let S ∈ (D∞α,d)′ and T ∈ (D1

α,d)
′, then S ∗W T ∈ (D1

α,d)
′.

iv) For every T ∈ B∞α,d and S ∈ (D∞α,d)′, we have S ∗W T ∈ B∞α,d .

v) Let T ∈ (D1
α,d)

′ and ϕ ∈ D1
α,d, then T ∗W ϕ ∈ B∞α,d.

Proof. i) By a standard argument, it is easy to see i)
ii) We deduce this result by Theorem 3 and i)
iii) The proof is similar to that of part ii).
iv) Since B∞α,d is contained in (D1

α,d)
′, then from Theorem 3 and

Proposition 17 we get the conclusion.
v) The proof is similar to that of part iv). �

As a consequence of Theorem 3, we characterize (D∞α,d)′ as the

space of convolutors in D1
α,d and in D∞α,d.

Proposition 19. Let S ∈ (D1
α,d)

′. Then S ∈ (D∞α,d)′ if and only if

S ∗W ϕ ∈ D1
α,d for every ϕ ∈ D1

α,d. Moreover, for each 1 ≤ p ≤ ∞, we
have S ∗W ϕ ∈ Dpα,d whenever S ∈ (D∞α,d)′ and ϕ ∈ Dpα,d.

In the following result, we characterize the Weinstein convolution
in D2

α,d via the Weinstein transform.

Proposition 20. i) Let S be a convolutor in D2
α,d and ϕ ∈ D2

α,d. Then
we have

(4.3) Fα,dW (S ∗W ϕ) = Fα,dW (S)Fα,dW (ϕ).

ii) Let S, T ∈ (D2
α,d)

′. Then Fα,dW (S)Fα,dW (T ) ∈ S ′
(
Rd+1

+

)
. If moreover,

S is a convolutor in D2
α,d then

(4.4) Fα,dW (S ∗W T ) = Fα,dW (S)Fα,dW (T ).

Proof. i) The results follow immediatly from the relations (4.1) and
(2.18).
ii) Using the relations (4.2) and (4.3), we get the relation (4.4) �

Theorem 4. Let S ∈ (D2
α,d)

′. We have S is a convolutor in D2
α,d if and

only if there exists l ∈ N such that (1 + ||ξ||2)−lFα,dW (S) ∈ L∞α
(
Rd+1

+

)
.

Proof. From Theorem 3, there exist f ∈ L2
α

(
Rd+1

+

)
and l ∈ N such that

S = (I−4α,d
W )lf . Then Fα,dW (S) = (1+||ξ||2)lFα,dW (f). Assume that S is

a convolutor in D2
α,d, that is for each ϕ ∈ D2

α,d, we have S ∗W ϕ ∈ D2
α,d.
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Then, according to the relations (4.3), (2.13) and Proposition 15 for all
ϕ ∈ D2

α,d, we can write
(4.5)

||Fα,dW (S)Fα,dW (ϕ)||L2
α(R

d+1
+ ) = ||S∗Wϕ||L2

α(R
d+1
+ ) ≤ C||(I−4α,d

W )lϕ||L2
α(R

d+1
+ )

where C > 0.
Let now g ∈ L2

α(Rd+1
+ ), it is not hard to see that there exists a sequence

(ϕn)n∈N in D(Rd+1
+ ) such that (1 + ‖ξ‖2)lFα,dW (ϕn)→ g, as n→∞, in

L2
α(Rd+1

+ ).
From (4.5), we deduce that

|| F
α,d
W (S)g

(1 + ‖ξ‖2)l
||L2

α(R
d+1
+ ) ≤ C||g||L2

α(R
d+1
+ ).

Hence, for certain C > 0 and l ∈ N, we have

∀ξ ∈ Rd+1
+ , |Fα,dW (S)(ξ)| ≤ C(1 + ‖ξ‖2)l.

Conversely assume now that (1 + ‖ξ‖2)−lFα,dW (S) ∈ L∞α (Rd+1
+ ) for some

l ∈ N. Let m ∈ N, for all ϕ ∈ D2
α,d, we have

||(I −4α,d
W )m(S ∗W ϕ)||L2

α(R
d+1
+ ) = ||(1 + ‖ξ‖2)mFα,dW (S)Fα,dW (ϕ)||L2

α(R
d+1
+ )

≤ C||(1 + ‖ξ‖2)l+mFα,dW (ϕ)(ξ)||L2
α(R

d+1
+ ).

Hence, we obtain

∀ϕ ∈ D2
α,d, ||(I−4

α,d
W )m(S∗Wϕ)||L2

α(R
d+1
+ ) ≤ C||(I−4α,d

W )m+lϕ||L2
α(R

d+1
+ ).

Then we conclude that S is a convolutor in D2
α,d. �

Proposition 21. Let 1 ≤ p ≤ ∞. Assume that S ∈ (Dpα,d)′ is a

convolutor in Dpα,d. Then for every min{p, p′} ≤ q ≤ max{p, p′}, S is

a convolutor of Dqα,d.

Proof. The cases p = 1 and p =∞ are proved in Proposition 19.

We first prove that S is a convolutor in (Dp
′

α,d)
′.

Since for every ϕ ∈ D(Rd+1
+ ), S ∗W ϕ ∈ Lpα(Rd+1

+ ), then from Theorem

3, we deduce that S ∈ (Dp
′

α,d)
′.

We now take T ∈ (Dp
′

α,d)
′ and we show that S ∗W T ∈ (Dp

′

α,d)
′.

Since T is a convolutor in Dpα,d and S ∗W ϕ ∈ Dpα,d, we deduce that for

all ϕ ∈ D(Rd+1
+ ), we have

(4.6) (S ∗W T ) ∗W ϕ = T ∗W (S ∗W ϕ) ∈ Lpα(Rd+1
+ ).
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Then the Theorem 3 implies that S ∗W T ∈ (Dp
′

α,d)
′. Thus we have seen

that the mapping FS defined by :

∀T ∈ (Dp
′

α,d)
′, FS(T ) = T ∗W S

maps (Dp
′

α,d)
′ into itself. Moreover, FS has a sequentially closed graph.

We apply the closed graph theorem ( see [7] ) to conclude that FS is
continuous.
By Proposition 7, the mapping F ∗S , transposed of FS is continuous from

(Dp
′

α,d)
′ into itself. On the other hand, it follows from Definition 7 that

∀ϕ ∈ D(Rd+1
+ ), F ∗S(ϕ) = S̃ ∗W ϕ.

Hence, for every m ∈ N, there exist C > 0 and n ∈ N such that

(4.7) ∀ϕ ∈ D(Rd+1
+ ), µαm,p′(S̃ ∗W ϕ) ≤ Cµαn,p′(ϕ).

Since D(Rd+1
+ ) is a dense subspace of Dp

′

α,d, (4.7) implies that S̃ and

hence S is a convolutor in Dp
′

α,d.
To finish the proof of this proposition, we will assume that p > 2 and
we will prove that

∀S ∈ Dqα,d, T ∗W S ∈ (Dqα,d)
′.

Let f, g ∈ Lq′α (Rd+1
+ ) and m ∈ N such that T = (I −4α,d

W )mf .

We now observe that for every ϕ ∈ D(Rd+1
+ ), we have S∗W (I−4α,d

W )mϕ
is a convolutor in Lq

′
α (Rd+1

+ ). In fact, for every g ∈ Lpα(Rd+1
+ ), we have

(I −4α,d
W )mϕ ∗W g ∈ Dpα,d and

g ∗W (S ∗W (I −4α,d
W )mϕ) = S ∗W ((I −4α,d

W )mϕ ∗W g) ∈ Lpα(Rd+1
+ ).

Then S ∗W (I −4α,d
W )mϕ is a convolutor in Lp

′
α (Rd+1

+ ).
By applying the Riesz-Thorin interpolation theorem, we deduce that
S ∗W (I −4α,d

W )mϕ is a convolutor in Lq
′
α (Rd+1

+ ).
Finally, for every ϕ ∈ D(Rd+1

+ ), we obtain

(T ∗W S) ∗W ϕ = f ∗W (S ∗W (I −4α,d
W )mϕ) ∈ Lq′α (Rd+1

+ )

and T ∗W S ∈ (Dqα,d)′. �

Remark 2. A consequence immediate of Proposition 21 is the follow-
ing:
if S ∈ (Dpα,d)′ is a convolutor in Dpα,d for some 1 ≤ p ≤ ∞, then S is a

convolutor in D2
α,d.
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Corollary 1. Let 1 ≤ p ≤ ∞. If T ∈ (Dpα,d)′ is a convolutor of Dpα,d
then there exists m ∈ N such that

(1 + ||ξ||2)−mFα,dW (T ) ∈ L∞α (Rd+1
+ ).

Proof. The result follows directly from Proposition 21 and Theorem
4. �

Now, we study the convolutors and the surjective Weinstein con-
volution operator acting on (Dpα,d)′, 1 ≤ p ≤ ∞. In the case p = 2, we
obtain complete characterization.

Theorem 5. Let S ∈ (D2
α,d)

′ be a convolutor in D2
α,d. The following

assertions are equivalent:
i) S ∗W D2

α,d = D2
α,d.

ii) S ∗W (D2
α,d)

′ = (D2
α,d)

′.

iii)There exists a convolutor R in D2
α,d such that S ∗W R = δ.

iv) There exist M > 0 and l ∈ N such that

|Fα,dW (S)(ξ)| ≥M(1 + ||ξ||2)−l, a.e. ξ ∈ Rd+1
+ .

Proof. i) =⇒ ii) ? Firstly it is not hard to see that Fα,dW (S)(ξ) 6= 0, a.e.
ξ ∈ Rd+1

+ .

Assume now S ∗W ϕ = 0, where ϕ ∈ D2
α,d. Then Fα,dW (S)Fα,dW (ϕ) = 0

and ϕ = 0. Thus the Weinstein convolution operator defined by S
is one-to-one on D2

α,d. It easily follows that the Weinstein convolution

operator defined by S̃ is an automorphism of D2
α,d. Then we obtain

S ∗W (D2
α,d)

′ = (D2
α,d)

′.
ii) =⇒ iii) ? From the hypothesis ii), we deduce that there exists
R ∈ (D2

α,d)
′ such that S ∗W R = δ. Let now ϕ ∈ D2

α,d. We choose

φ ∈ D2
α,d such that ϕ = S ∗W φ. Then

R ∗W ϕ = R ∗W (S ∗W φ) = (R ∗W S) ∗W φ = δ ∗W φ = φ.

Thus R is a convolutor in D2
α,d and iii) is established.

iii) =⇒ iν) ? Let R ∈ (D2
α,d)

′ be a convolutor in D2
α,d such that

S ∗W R = δ. Then Fα,dW (S)Fα,dW (R) = 1. By using now Theorem 4, we
conclude that there exist M > 0 and l ∈ N for which

|Fα,dW (S)(ξ)| ≥M(1 + ||ξ||2)−l a.e. ξ ∈ Rd+1
+ .
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iv) =⇒ i)? Let ϕ ∈ D2
α,d. We define ψ =

Fα,dW (ϕ)

Fα,dW (S)
. If iv) holds then ψ

is a measurable function and for all m ∈ N, we have

||(1 + ||ξ||2)mψ||L2
α(R

d+1
+ ) ≤ C||Fα,dW ((I −4α,d

W )m+lψ)||L2
α(R

d+1
+ )

≤ C||(I −4α,d
W )m+lψ||L2

α(R
d+1
+ ) <∞.

Then using the Theorem 2 and Corollary 1, we deduce that the function

φ =
(
Fα,dW

)−1
(ψ) is in D2

α,d and S ∗W φ = ϕ. Thus the proof of i) is

completed. �

Proposition 22. Let 1 ≤ p ≤ 2. Assume that S ∈ (Dpα,d)′ is a convo-

lutor in Dpα,d. We consider the following assertions :

i) S ∗W Dpα,d = Dpα,d.
ii)The Weinstein convolution operator defined by S is an automor-

phism of Dpα,d.
iii) There exists a convolutor R in Dpα,d such that S ∗W R = δ.
iv) There exist M > 0 and l ∈ N such that

|Fα,dW (S)(ξ)| ≥M(1 + ||ξ||2)−l, a.e. ξ ∈ Rd+1
+ .

Then, we have i)⇔ ii)⇔ iii)⇒ iv).

Proof. The proof of this results is in the same spirit with Theorem5. �

Proposition 23. Let 2 ≤ p ≤ ∞. Assume that S ∈ (Dpα,d)′ is a con-

volutor in Dpα,d. We consider the following assertions :

i) S ∗W (Dpα,d)′ = (Dpα,d)′.
ii) The Weinstein convolution operator defined by S is an automor-

phism of Dpα,d,
iii) There exists a convolutor R in Dpα,d such that S ∗W R = δ.
iv) There exist M > 0 and l ∈ N such that

|Fα,dW (S)(ξ)| ≥M(1 + ||ξ||2)−l, a.e. ξ ∈ Rd+1
+ .

Then, we have i)⇔ ii)⇔ iii)⇒ iv).

Proof. The proof of this results is in the same spirit with Theorem5. �
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