Int. J. Open Problems Complex Analysis, Vol. 9, No. 1, March 2017 ISSN 2074-2827; Copyright ©ICSRS Publication, 2017 www.i-csrs.org

On The Weinstein Equations in Spaces of Type $\mathcal{D}^{p}_{\alpha,d}$

Hassen Ben Mohamed

Department of Mathematics Faculty of Sciences of Gabes Tunisia E-mail: hassenbenmohamed@yahoo.fr

ABSTRACT. In this paper, we consider the Weinstein operator $\Delta_W^{\alpha,d}$, we introduce new function spaces that are denoted by $\mathcal{D}_{\alpha,d}^p$, $1 \leq p \leq \infty, \ \alpha \geq \frac{-1}{2}$. Some properties of these spaces are studied. We study the convolutors and the surjective Weinstein convolution operator acting on $(\mathcal{D}_{\alpha,d}^p)'$, $1 \leq p \leq \infty$. In the case p = 2, we obtain complete characterization.

1. INTRODUCTION

In [11], L. Schwartz has introduced the space D_{L^p} , $1 \leq p \leq \infty$, of all C^{∞} -functions ψ on \mathbb{R} such that for all $n \in \mathbb{N}$, $D^n \psi$ is in $L^p(\mathbb{R})$ and the map $\psi \mapsto D^n \psi$ from D_{L^p} into $L^p(\mathbb{R})$ is continuous. These spaces are studied by many authors (see [1], [2], [6], [10]).

In this paper we introduce for every $1 \leq p \leq \infty$, $\alpha > \frac{-1}{2}$, function spaces, denoted by $\mathcal{D}_{\alpha,d}^p$, similar to D_{L^p} but replacing the usual derivative D by the Weinstein operator $\Delta_W^{\alpha,d}$ defined on $\mathbb{R}^{d+1}_+ = \mathbb{R}^d \times]0, +\infty[$, by:

(1.1)
$$\Delta_W^{\alpha,d} = \sum_{i=1}^{d+1} \frac{\partial^2}{\partial x_i^2} + \frac{2\alpha+1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}} = \Delta_d + L_\alpha, \ \alpha > -\frac{1}{2},$$

where Δ_d is the Laplacian for the *d* first variables and L_{α} is the Bessel operator for the last variable defined on $]0, +\infty[$ by :

$$L_{\alpha}u = \frac{\partial^2 u}{\partial x_{d+1}^2} + \frac{2\alpha + 1}{x_{d+1}}\frac{\partial u}{\partial x_{d+1}} = \frac{1}{x_{d+1}^{2\alpha + 1}}\frac{\partial}{\partial x_{d+1}}\left[x_{d+1}^{2\alpha + 1}\frac{\partial u}{\partial x_{d+1}}\right]$$

The main result of this paper consists to give a new characterization of the dual space $(\mathcal{D}^p_{\alpha,d})'$ of $\mathcal{D}^p_{\alpha,d}$ and a description of its bounded subsets.

The Weinstein kernel $\Lambda_{\alpha,d}$ is the function given by :

$$\forall x, y \in \mathbb{C}^{d+1}, \ \Lambda_{\alpha, d}\left(x, y\right) = e^{-i\langle x', y' \rangle} j_{\alpha}(x_{d+1}y_{d+1}),$$

Key words and phrases. Weinstein operator, Weinstein transform, $\mathcal{D}_{\alpha,d}^p$ spaces.

where $x = (x', x_{d+1}), x' = (x_1, x_2, ..., x_d)$ and j_{α} is the normalized Bessel function of index α .

The function $\Lambda_{\alpha,d}$ can be written in the form :

(1.2)
$$\Lambda_{\alpha,d}(x,y) = a_{\alpha} e^{-i\langle x',y'\rangle} \int_0^1 \left(1-t^2\right)^{\alpha-\frac{1}{2}} \cos(tx_{d+1}y_{d+1}) dt,$$

where a_{α} is the constant given by the relation :

(1.3)
$$a_{\alpha} = \frac{2\Gamma\left(\alpha+1\right)}{\sqrt{\pi}\Gamma\left(\alpha+\frac{1}{2}\right)}$$

Using the Weinstein kernel $\Lambda_{\alpha,d}$, we define the Weinstein transform $\mathcal{F}_{W}^{\alpha,d}$ by :

$$\forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathcal{F}^{\alpha,d}_W(f)(\lambda) = \int_{\mathbb{R}^{d+1}_+} f(x) \Lambda_{\alpha,d}(x,\lambda) d\mu_{\alpha,d}(x),$$

where $f \in L^1(\mathbb{R}^{d+1}_+, \mu_{\alpha,d}(x))$ and $\mu_{\alpha,d}$ is the measure on \mathbb{R}^{d+1}_+ given by: (1.4) $d\mu_{\alpha,d}(x) = C_{\alpha,d} x_{d+1}^{2\alpha+1} dx,$

dx is the Lebesgue measure on \mathbb{R}^{d+1} and $C_{\alpha,d}$ is the constant given by

(1.5)
$$C_{\alpha,d} = \frac{1}{(2\pi)^{\frac{d}{2}} 2^{\alpha} \Gamma(\alpha+1)}$$

If $T \in (\mathcal{D}^p_{\alpha,d})'$, we define the Weinstein transform $\mathcal{F}^{\alpha,d}_W(T)$ as following:

$$\forall \phi \in \mathcal{D}^p_{\alpha,d}, \ \langle \mathcal{F}^{\alpha,d}_W(T), \phi \rangle = \langle T, \mathcal{F}^{\alpha,d}_W(\phi) \rangle.$$

We analyze the behaviour of the Weinstein transform $\mathcal{F}_W^{\alpha,d}$ on the spaces $\mathcal{D}_{\alpha,d}^p$ and $(\mathcal{D}_{\alpha,d}^p)'$. We study the Weinstein convolutors on $\mathcal{D}_{\alpha,d}^p$, that is, the functional $T \in (\mathcal{D}_{\alpha,d}^p)'$ such that $T *_W \phi \in \mathcal{D}_{\alpha,d}^p$ for every $\phi \in \mathcal{D}_{\alpha,d}^p$. We show that the convolutors of $\mathcal{D}_{\alpha,d}^1$ or of $\mathcal{D}_{\alpha,d}^\infty$ are the elements of $(\mathcal{D}_{\alpha,d}^\infty)'$ and we characterize the convolutors of $\mathcal{D}_{\alpha,d}^2$. We prove S is a convolutor in $\mathcal{D}_{\alpha,d}^2$ if and only if there exists $l \in \mathbb{N}$ such that

$$(1+||\xi||^2)^{-l}\mathcal{F}_W^{\alpha,d}(S) \in L^{\infty}_{\alpha}(\mathbb{R}^{d+1}_+).$$

On the other hand, we prove that every convolutor of $\mathcal{D}^p_{\alpha,d}$ is also a convolutor of $\mathcal{D}^q_{\alpha,d}$ for every q satisfying :

$$\min\{p, p'\} \le q \le \max\{p, p'\}.$$

The surjectivity of the Weinstein convolution operator on $\mathcal{D}^2_{\alpha,d}$ is characterized. Moreover, we show that such a surjective operator admits a continuous linear right inverse. A partial result concerning the surjectivity of the Dunkl convolution operator on $\mathcal{D}^p_{\alpha,d}$ is also obtained. The contents of the paper is as follows :

In the second section, we recapitulate some results related to the harmonic analysis associated with the Weinstein operator $\Delta_W^{\alpha,d}$ given by the relation (1.1).

The section 3 is devoted to studied the space $\mathcal{D}^p_{\alpha,d}$ and its dual $(\mathcal{D}^p_{\alpha,d})'$. We give somes property of theme. In particular, we prove that T is in $(\mathcal{D}^p_{\alpha,d})'$ if and only if there exist $r \in \mathbb{N}$ and $\psi_k \in L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$, k = 0, 1, ..., r, for which

$$T = \sum_{k=0}^{r} \left(\triangle_{W}^{\alpha,d} \right)^{k} \psi_{k}, \text{ on } \mathcal{D}_{\alpha,d}^{p}.$$

In the last section, we investigate the convolutors in $\mathcal{D}^p_{\alpha,d}$, where their surjectivity in $\mathcal{D}^p_{\alpha,d}$ is descussed at is the functionals $T \in (\mathcal{D}^p_{\alpha,d})'$ such that $T *_W \varphi \in \mathcal{D}^p_{\alpha,d}$ for every $\varphi \in \mathcal{D}^p_{\alpha,d}$.

2. Preliminaires

In this section, we shall collect some results and definitions from the theory of the harmonic analysis associated with the Weinstein operator $\Delta_W^{\alpha,d}$ defined on \mathbb{R}^{d+1}_+ by the relation (1.1).

Let us begin by the following result, which gives the eigenfunction $\Psi_{\lambda}^{\alpha,d}$ of the Weinstein operator $\Delta_{W}^{\alpha,d}$.

Proposition 1. (see [3, 4]) For all $\lambda = (\lambda_1, \lambda_2, ..., \lambda_{d+1}) \in \mathbb{C}^{d+1}$, the system

(2.1)
$$\begin{cases} \frac{\partial^2 u}{\partial x_j^2}(x) = -\lambda_j^2 u(x), & \text{if } 1 \le j \le d\\ L_{\alpha} u(x) = -\lambda_{d+1}^2 u(x), \\ u(0) = 1, \ \frac{\partial u}{\partial x_{d+1}}(0) = 0 & \text{and} \ \frac{\partial u}{\partial x_j}(0) = -i\lambda_j, & \text{if } 1 \le j \le d \end{cases}$$

has a unique solution $\Psi_{\lambda}^{\alpha,d}$ given by :

(2.2)
$$\forall z \in \mathbb{C}^{d+1}, \ \Psi_{\lambda}^{\alpha,d}(z) = e^{-i\langle z',\lambda' \rangle} j_{\alpha}(\lambda_{d+1}z_{d+1}),$$

where $z = (z', x_{d+1}), z' = (z_1, z_2, ..., z_d)$ and j_{α} is the normalized Bessel function of index α , defined by :

$$\forall \xi \in \mathbb{C}, \ j_{\alpha}(\xi) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(n+\alpha+1)} (\frac{\xi}{2})^{2n}$$

The Weinstein kernel $\Lambda_{\alpha,d}$: $(\lambda, z) \mapsto \Psi_{\lambda}^{\alpha,d}(z)$ has a unique extention to $\mathbb{C}^{d+1} \times \mathbb{C}^{d+1}$ and satisfies the following properties.

Proposition 2. (see [3, 4, 5]) i) For all λ , $z \in \mathbb{C}^{d+1}$ and $t \in \mathbb{R}$, we have $\Lambda_{\alpha,d}(\lambda, 0) = 1$, $\Lambda_{\alpha,d}(\lambda, z) = \Lambda_{\alpha,d}(z, \lambda)$ and $\Lambda_{\alpha,d}(\lambda, tz) = \Lambda_{\alpha,d}(t\lambda, z)$.

ii) For all $\nu \in \mathbb{N}^{d+1}$, $x \in \mathbb{R}^{d+1}_+$ and $z \in \mathbb{C}^{d+1}$, we have

(2.3)
$$|D_z^{\nu} \Lambda_{\alpha,d}(x,z)| \le ||x||^{|\nu|} \exp(||x|| || \operatorname{Im} z||).$$

where $D_z^{\nu} = \frac{\partial^{\nu}}{\partial z_1^{\nu_1} \dots \partial z_{d+1}^{\nu_{d+1}}}$ and $|\nu| = \nu_1 + \dots + \nu_{d+1}$. In particular

(2.4)
$$\forall x, y \in \mathbb{R}^{d+1}_+, \ |\Lambda_{\alpha, d}(x, y)| \le 1.$$

Notations. In what follows, we need the following notations:

• $C_*(\mathbb{R}^{d+1})$, the space of continuous functions on \mathbb{R}^{d+1} , even with respect to the last variable.

• $C_{*,c}(\mathbb{R}^{d+1})$, the space of continuous functions on \mathbb{R}^{d+1} with compact support, even with respect to the last variable.

• $C^0_{*,0}(\mathbb{R}^{d+1})$, the space of continuous functions on \mathbb{R}^{d+1} , even with respect to the last variable and vanishing to 0 when $||x|| \to +\infty$.

• $C^p_*(\mathbb{R}^{d+1})$, the space of functions of class C^p on \mathbb{R}^{d+1} , even with respect to the last variable.

• $\mathcal{E}_*(\mathbb{R}^{d+1})$, the space of C^{∞} -functions on \mathbb{R}^{d+1} , even with respect to the last variable.

• $S_*(\mathbb{R}^{d+1})$, the Schwartz space of rapidly decreasing functions on \mathbb{R}^{d+1} , even with respect to the last variable.

• $\mathcal{D}_*(\mathbb{R}^{d+1})$, the space of C^{∞} -functions on \mathbb{R}^{d+1} which are of compact support, even with respect to the last variable.

• $L^p_{\alpha}(\mathbb{R}^{d+1}_+)$, $1 \leq p \leq +\infty$, the space of measurable functions on \mathbb{R}^{d+1}_+ such that

$$\|f\|_{\alpha,p} = \left[\int_{\mathbb{R}^{d+1}_+} |f(x)|^p d\mu_{\alpha,d}(x) \right]^{\frac{1}{p}} < +\infty, \text{ if } 1 \le p < +\infty,$$

$$\|f\|_{\alpha,\infty} = \operatorname{ess}\sup_{x \in \mathbb{R}^{d+1}_+} |f(x)| < +\infty,$$

where $\mu_{\alpha,d}$ is the measure given by the relation (1.4). • $\mathcal{H}_*(\mathbb{C}^{d+1})$, the space of entire functions on \mathbb{C}^{d+1} , even with respect to the last variable, rapidly decreasing and of exponential type.

Definition 1. The Weinstein transform is given for $f \in L^1_{\alpha}(\mathbb{R}^{d+1}_+)$ by

(2.5)
$$\forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathcal{F}^{\alpha,d}_W(f)(\lambda) = \int_{\mathbb{R}^{d+1}_+} f(x) \Lambda_{\alpha,d}(x,\lambda) d\mu_{\alpha,d}(x).$$

where $\mu_{\alpha,d}$ is the measure on \mathbb{R}^{d+1}_+ given by the relation (1.2).

Some basic properties of the transform $\mathcal{F}_{W}^{\alpha,d}$ are summarized in the following results.

42

÷

Proposition 3. (see [3, 4, 5]) i) For all $f \in L^1_{\alpha}(\mathbb{R}^{d+1}_+)$, we have

(2.6)
$$\|\mathcal{F}_W^{\alpha,d}(f)\|_{\alpha,\infty} \le \|f\|_{\alpha,1}.$$

ii) Let $m \in \mathbb{N}$ and $f \in \mathcal{S}_*(\mathbb{R}^{d+1})$, for all $y \in \mathbb{R}^{d+1}_+$, we have

(2.7)
$$\mathcal{F}_{W}^{\alpha,d}\left[\left(\bigtriangleup_{W}^{\alpha,d}\right)^{m}f\right](y) = (-1)^{m} \|y\|^{2m} \mathcal{F}_{W}^{\alpha,d}(f)(y).$$

iii) For all $f \in \mathcal{S}_*(\mathbb{R}^{d+1})$ and $m \in \mathbb{N}$, we have

(2.8)
$$\forall \lambda \in \mathbb{R}^{d+1}_+, \ \left(\triangle^{\alpha,d}_W\right)^m \left[\mathcal{F}^{\alpha,d}_W(f)\right](\lambda) = \mathcal{F}^{\alpha,d}_W(P_m f)(\lambda),$$

where $P_m(\lambda) = (-1)^m \|\lambda\|^{2m}$.

Theorem 1. (see [3, 4, 5])

i) The Weinstein transform $\mathcal{F}_{W}^{\alpha,d}$ is a topological isomorphism from $\mathcal{S}_{*}(\mathbb{R}^{d+1})$ onto itself and from $\mathcal{D}_{*}(\mathbb{R}^{d+1})$ onto $\mathcal{H}_{*}(\mathbb{C}^{d+1})$.

ii) Let
$$f \in \mathcal{S}_*(\mathbb{R}^{d+1})$$
. The inverse transform $\left(\mathcal{F}_W^{\alpha,d}\right)^{-1}$ is given by :

(2.9)
$$\forall x \in \mathbb{R}^{d+1}_+, \ \left(\mathcal{F}^{\alpha,d}_W\right)^{-1}(f)(x) = \mathcal{F}^{\alpha,d}_W(f)(-x)$$

iii) Let $f \in L^1_{\alpha}(\mathbb{R}^{d+1}_+)$. If $\mathcal{F}^{\alpha,d}_W(f) \in L^1_{\alpha}(\mathbb{R}^{d+1}_+)$, then we have

(2.10)
$$f(x) = \int_{\mathbb{R}^{d+1}_+} \mathcal{F}^{\alpha,d}_W(f)(y) \Lambda_{\alpha,d}(-x,y) d\mu_{\alpha,d}(y), \ a.e. \ x \in \mathbb{R}^{d+1}_+.$$

Theorem 2. (see [3, 4, 5])

i) For all $f, g \in \mathcal{S}_*(\mathbb{R}^{d+1})$, we have the following Parseval formula :

(2.11)
$$\int_{\mathbb{R}^{d+1}_+} f(x)\overline{g(x)}d\mu_{\alpha,d}(x) = \int_{\mathbb{R}^{d+1}_+} \mathcal{F}^{\alpha,d}_W(f)(\lambda)\overline{\mathcal{F}^{\alpha,d}_W(g)(\lambda)}d\mu_{\alpha,d}(\lambda).$$

ii) (*Plancherel formula*). For all $f \in \mathcal{S}_*(\mathbb{R}^{d+1})$, we have :

(2.12)
$$\int_{\mathbb{R}^{d+1}_{+}} |f(x)|^2 d\mu_{\alpha,d}(x) = \int_{\mathbb{R}^{d+1}_{+}} \left| \mathcal{F}^{\alpha,d}_W(f)(\lambda) \right|^2 d\mu_{\alpha,d}(\lambda).$$

iii) (*Plancherel Theorem*) :

The transform $\mathcal{F}_W^{\alpha,d}$ extends uniquely to an isometric isomorphism on $L^2_{\alpha}(\mathbb{R}^{d+1}_+).$

Proposition 4. Let f be in $L^p_{\alpha}(\mathbb{R}^{d+1}_+)$, $p \in [1,2]$. Then $\mathcal{F}^{\alpha,d}_W f$ belongs to $L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$, with p' the conjugate exponent of p, that is $\frac{1}{p} + \frac{1}{p'} = 1$ and we have

(2.13)
$$\left\| \mathcal{F}_{W}^{\alpha,d}(f) \right\|_{L^{p'}_{\alpha}\left(\mathbb{R}^{d+1}_{+}\right)} \leq \left\| f \right\|_{L^{p}_{\alpha}\left(\mathbb{R}^{d+1}_{+}\right)}.$$

Proof. From the relation (2.6) and the Theorem 2 iii), we deduce that the relation (2.13) is true in the cases p = 1 and p = 2.

Hence from the Riez-Thorin interpolation (see [12] and [13]), deduce that $\mathcal{F}_{W}^{\alpha,d}$ can be extended as a continuous mapping from $L_{\alpha}^{p}\left(\mathbb{R}^{d+1}_{+}\right)$ into $L_{\alpha}^{p'}\left(\mathbb{R}^{d+1}_{+}\right)$ and we have the relation (2.13).

Definition 2. The translation operator T_x , $x \in \mathbb{R}^{d+1}_+$, associated with the Weinstein operator $\Delta_W^{\alpha,d}$ is defined on $C_*(\mathbb{R}^{d+1})$, for all $y \in \mathbb{R}^{d+1}_+$, by : (2.14)

$$T_x f(y) = \frac{a_{\alpha}}{2} \int_0^{\pi} f\left(x' + y', \sqrt{x_{d+1}^2 + y_{d+1}^2 + 2x_{d+1}y_{d+1}\cos\theta}\right) (\sin\theta)^{2\alpha} d\theta$$

where $x' + y' = (x_1 + y_1, ..., x_d + y_d)$ and a_α is the constant given by the relation (1.3).

Proposition 5. (see [3, 4, 5]) i) For $f \in C_*(\mathbb{R}^{d+1})$, we have

$$\forall x, y \in \mathbb{R}^{d+1}_+, T_x f(y) = T_y f(x) \text{ and } T_0 f = f.$$

ii) For all $f \in \mathcal{E}_*(\mathbb{R}^{d+1})$ and $y \in \mathbb{R}^{d+1}_+$, the function $x \mapsto T_x f(y)$ belongs to $\mathcal{E}_*(\mathbb{R}^{d+1})$.

iii) We have

(2.15)
$$\forall x \in \mathbb{R}^{d+1}_+, \ \Delta^{\alpha,d}_W \circ T_x = T_x \circ \Delta^{\alpha,d}_W.$$

iv) Let $f \in L^p_{\alpha}(\mathbb{R}^{d+1}_+)$, $1 \leq p \leq +\infty$ and $x \in \mathbb{R}^{d+1}_+$. Then $T_x f$ belongs to $L^p_{\alpha}(\mathbb{R}^{d+1}_+)$ and we have

(2.16)
$$||T_x f||_{\alpha,p} \le ||f||_{\alpha,p}$$

v) The function $\Lambda_{\alpha,d}(.,\lambda)$, $\lambda \in \mathbb{C}^{d+1}$, satisfies on \mathbb{R}^{d+1}_+ the following product formula:

(2.17)
$$\forall y \in \mathbb{R}^{d+1}_+, \ \Lambda_{\alpha,d}(x,\lambda) \Lambda_{\alpha,d}(y,\lambda) = T_x \left[\Lambda_{\alpha,d}(.,\lambda) \right](y).$$

vi) Let $f \in L^p_{\alpha}(\mathbb{R}^{d+1}_+)$, p = 1 or 2 and $x \in \mathbb{R}^{d+1}_+$, we have

(2.18)
$$\forall y \in \mathbb{R}^{d+1}_{+}, \ \mathcal{F}^{\alpha,d}_{W}(T_{x}f)(y) = \Lambda_{\alpha,d}(x,y) \mathcal{F}^{\alpha,d}_{W}(f)(y).$$

vii) The space $\mathcal{S}_*(\mathbb{R}^{d+1})$ is invariant under the operators $T_x, x \in \mathbb{R}^{d+1}_+$.

Definition 3. The Weinstein convolution product of $f, g \in L^1_{\alpha}(\mathbb{R}^{d+1}_+)$ is given by :

(2.19)
$$\forall x \in \mathbb{R}^{d+1}_+, \ f *_W g(x) = \int_{\mathbb{R}^{d+1}_+} T_x f(y) g(y) \, d\mu_{\alpha,d}(y).$$

Proposition 6. (see [3, 4, 5])

i) Let $p, q, r \in [1, +\infty]$ such that $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} = 1$. Then for all $f \in L^p_{\alpha}(\mathbb{R}^{d+1}_+)$ and $g \in L^q_{\alpha}(\mathbb{R}^{d+1}_+)$, the function $f *_W g$ belongs to $L^r_{\alpha}(\mathbb{R}^{d+1}_+)$ and we have

(2.20) $\|f *_W g\|_{\alpha,r} \le \|f\|_{\alpha,p} \|g\|_{\alpha,q}.$

ii) For all $f, g \in L^1_{\alpha}(\mathbb{R}^{d+1}_+)$, $(resp. \mathcal{S}_*(\mathbb{R}^{d+1}))$, $f *_W g \in L^1_{\alpha}(\mathbb{R}^{d+1}_+)$ $(resp. \mathcal{S}_*(\mathbb{R}^{d+1}))$ and we have

(2.21)
$$\mathcal{F}_{W}^{\alpha,d}(f *_{W} g) = \mathcal{F}_{W}^{\alpha,d}(f) \mathcal{F}_{W}^{\alpha,d}(g).$$

3. The spaces
$$\mathcal{D}^p_{\alpha,d}$$
 and $(\mathcal{D}^p_{\alpha,d})^r$

In this section, we introduce new function spaces that are denoted by $\mathcal{D}^p_{\alpha,d}$, $1 \leq p \leq \infty$, $\alpha > \frac{-1}{2}$. Some properties of these spaces are studied. We study the convolutors and the surjective Weinstein convolution operator acting on the dual space of $\mathcal{D}^p_{\alpha,d}$ denoted by $(\mathcal{D}^p_{\alpha,d})'$. In the case p = 2, we obtain complete characterization. Now, we define the new spaces $\mathcal{D}^p_{\alpha,d}$, $1 \leq p \leq \infty$.

Definition 4. i) The space $\mathcal{D}_{\alpha,d}^p$, $1 \leq p < \infty$ is the set of all C^{∞} -functions φ in \mathbb{R}^{d+1} such that, for all $n \in \mathbb{N}$, $\left(\bigtriangleup_W^{\alpha,d} \right)^n \varphi$ is in $L^p_{\alpha}(\mathbb{R}^{d+1}_+)$ which is equipped with the topology generated by the countable norms

(3.1)
$$\forall m \in \mathbb{N}, \ \mu_{\alpha,d}^{m,p}\left(\varphi\right) = \left(\sum_{n=0}^{m} ||\left(\bigtriangleup_{W}^{\alpha,d}\right)^{n}\varphi||_{L_{\alpha}^{p}\left(\mathbb{R}^{d+1}_{+}\right)}^{p}\right)^{\frac{1}{p}}$$

ii) A function $u \in \mathcal{E}(\mathbb{R}^{d+1})$ is in $\mathcal{B}^{\infty}_{\alpha,d}$ when for each $m \in \mathbb{N}$, $\mu^{m,\infty}_{\alpha,d}(u) < \infty$, where

(3.2)
$$\mu_{\alpha,d}^{m,\infty}(\varphi) = \sum_{n=0}^{m} || \left(\triangle_W^{\alpha,d} \right)^n \varphi ||_{L_{\alpha}^{\infty}(\mathbb{R}^{d+1})}$$

iii) We denote by $\mathcal{D}_{\alpha,d}^{\infty}$ the subspace of $\mathcal{B}_{\alpha,d}^{\infty}$ that consists of all those functions $u \in \mathcal{B}_{\alpha,d}^{\infty}$ for which $\lim_{\|x\|\to+\infty} \left(\Delta_W^{\alpha,d}\right)^m u(x) = 0$ for each $m \in \mathbb{N}$.

The space $\mathcal{B}_{\alpha,d}^{\infty}$ is endowed with the topology generated by the system $\{\mu_{\alpha,d}^{m,\infty}\}_{m\in\mathbb{N}}$.

In the following results, we give some topological properties of the spaces $\mathcal{D}^{p}_{\alpha,d}$.

Proposition 7. i) For every $1 \le p \le \infty$, $\mathcal{D}^p_{\alpha,d}$ is a Fréchet space. ii) Let $1 \le p \le 2 \le q \le \infty$. Then the space $\mathcal{D}^p_{\alpha,d}$ is continuously contained in $\mathcal{D}^q_{\alpha,d}$.

iii) If $1 then <math>\mathcal{D}^p_{\alpha,d}$ is a reflexive space. iv) $\mathcal{B}^{\infty}_{\alpha,d}$ is the strong bidual of $\mathcal{D}^{\infty}_{\alpha,d}$. v) For every $1 \le p \le \infty$, the space $\mathcal{D}(\mathbb{R}^{d+1}_+)$ is dense in $\mathcal{D}^p_{\alpha,d}$.

Proof. i) Let $1 \leq p \leq \infty$ and $(\varphi_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in $\mathcal{D}^p_{\alpha,d}$. Since $L^p_{\alpha}(\mathbb{R}^{d+1}_+)$ is a Banach space, then there exists $\psi_m \in L^p_{\alpha}(\mathbb{R}^{d+1}_+)$ such that for each $m \in \mathbb{N}$, $(\Delta^{\alpha,d}_W)^m \varphi_n \to \psi_m$, as $n \to \infty$, in $L^p_{\alpha}(\mathbb{R}^{d+1}_+)$. On the other hand, it is easy to see that

$$\forall m \in \mathbb{N}, \ \left(\triangle_W^{\alpha, d}\right)^m \psi_0 = \psi_m.$$

Hence this implies that $(\varphi_n)_{n\in\mathbb{N}}$ converge to ψ_0 in $\mathcal{D}^p_{\alpha,d}$.

ii) Let $1 \leq p \leq 2 \leq q \leq \infty$, p' the conjugate exponent of p, that is, $\frac{1}{p} + \frac{1}{p'} = 1$ and $f \in \mathcal{D}^p_{\alpha,d}$. For all $n \in \mathbb{N}$, the function $\lambda \to \lambda^{2n} \mathcal{F}^{\alpha,d}_W(f)(\lambda)$ belongs to the space $L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$. By applying Holder's inequality it follows that this last function belongs to the space $L^{q'}_{\alpha}(\mathbb{R}^{d+1})$ where q' the conjugate exponent of q. On the other hand, for all $x \in \mathbb{R}^{d+1}_+$, we have

$$\left(\triangle_W^{\alpha,d} \right)^n f(x) = \int_{\mathbb{R}^{d+1}_+} \lambda^{2n} \mathcal{F}_W^{\alpha,d}(f)(\lambda) \Lambda_{\alpha,d}(x,\lambda) d\mu_{\alpha,d}(x)$$
$$= \left(\mathcal{F}_W^{\alpha,d} \right)^{-1} (\lambda^{2n} \mathcal{F}_W^{\alpha,d}(f))(x)$$

and this implies that for all $n \in \mathbb{N}$, the function $\triangle_W^{\alpha,d} f$ belongs to the space $L^q_{\alpha}(\mathbb{R}^{d+1}_+)$.

iii) To see iii) it is sufficient to argue like in [11].

iv) See [11].

v) If $1 \leq p < \infty$, it sufficient to observe that $\mathcal{D}(\mathbb{R}^{d+1}_+)$ is dense in $L^p_{\alpha}(\mathbb{R}^{d+1}_+)$.

On the other hand, if $p = \infty$, the result follows immediately from the definition of $\mathcal{D}_{\alpha,d}^{\infty}$ and the fact that the space $\mathcal{D}(\mathbb{R}^{d+1}_+)$ is dense in $C^0_{*,0}(\mathbb{R}^{d+1})$.

As usual, by $(\mathcal{D}^p_{\alpha,d})'$ we represent the dual space of $\mathcal{D}^p_{\alpha,d}$.

In the following proposition, we give a representation for the elements of $\mathcal{D}^{p}_{\alpha,d}$.

Proposition 8. Let T be a functional on $\mathcal{D}^p_{\alpha,d}$, $1 \leq p < \infty$ and p' the conjugate of p. Then T is in $(\mathcal{D}^p_{\alpha,d})'$ if and only if, there exist $r \in \mathbb{N}$ and $\psi_k \in L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$, k = 0, 1, ..., r, for which

(3.3)
$$T = \sum_{k=0}^{\prime} \left(\bigtriangleup_{W}^{\alpha,d} \right)^{k} \psi_{k}, \text{ on } \mathcal{D}_{\alpha,d}^{p}.$$

Proof. Suppose that $T \in (\mathcal{D}^p_{\alpha,d})'$. Then there exist an integer r and a positive constant C such that

(3.4)
$$\forall \phi \in \mathcal{D}^p_{\alpha,d}, \ |\langle T, \phi \rangle| \le C \max_{k \le r} \mu^{\alpha}_{k,p}(\phi).$$

We put $E_p^{r+1} = L_{\alpha}^p(\mathbb{R}^{d+1}_+) \times \dots^{r+1} \times L_{\alpha}^p(\mathbb{R}^{d+1}_+)$, we define the mappings :

$$\begin{array}{rccc} I: \mathcal{D}^p_{\alpha,d} & \longrightarrow & E^{r+1}_p \\ \phi & \longmapsto & (\left(\bigtriangleup^{\alpha,d}_W\right)^k \phi)_{k=0}^r \end{array}$$

and

$$L: J\mathcal{D}^{p}_{\alpha, d} \longrightarrow \mathbb{C}$$
$$(\left(\triangle^{\alpha, d}_{W}\right)^{k} \phi)^{r}_{k=0} \longmapsto \langle T, \phi \rangle.$$

Note that, since J is one to one, the mapping L is well defined. On the other hand, according to (3.4), L is a continuous linear mapping when in $J\mathcal{D}_{\alpha,d}^p$ we consider the topology induced by E_p^{r+1} . Then by invoking Hahn-Banach theorem, we can extended L continuously to E_p^{r+1} as an element of $(E_p^{r+1})'$. Then, there exists $u_k \in L_{\alpha}^{p'}(\mathbb{R}^{d+1}_+), k = 0, ..., r$ such that (3.3) holds.

Conversely, if T takes the form (3.3), for some $u_k \in L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$ where k = 0, ..., r and $r \in \mathbb{N}$, using the Hölder's inequality, we deduce that $T \in (\mathcal{D}^p_{\alpha,d})'$.

Definition 5. If T is in $(\mathcal{D}^p_{\alpha,d})'$, we define the Weinstein transform $\mathcal{F}^{\alpha,d}_W(T)$ as following :

(3.5)
$$\forall \phi \in \mathcal{D}^p_{\alpha,d}, \ \langle \mathcal{F}^{\alpha,d}_W(T), \phi \rangle = \langle T, \mathcal{F}^{\alpha,d}_W(\phi) \rangle.$$

Now we analyze the behaviour of the Weinstein transform $\mathcal{F}_{W}^{\alpha,d}$ on the spaces $\mathcal{D}_{\alpha,d}^{p}$ and $(\mathcal{D}_{\alpha,d}^{p})'$.

Proposition 9. i) If $u \in \mathcal{D}_{\alpha,d}^p$ with $1 \le p \le 2$, then for every polynomial P, we have $P(||\xi||^2)\mathcal{F}_W^{\alpha,d}(u) \in L^p_{\alpha}(\mathbb{R}^{d+1}_+)$. ii) If $T \in (\mathcal{D}_{\alpha,d}^p)'$, with $2 \le p < \infty$, then $\mathcal{F}_W^{\alpha,d}(T) = P(||\xi||^2)F$, where P is a polynomial and $F \in L^p_{\alpha}(\mathbb{R}^{d+1}_+)$.

Proof. i) Let $u \in \mathcal{D}^p_{\alpha,d}$, with $1 \leq p \leq 2$. Then from the relation (2.13), it follows that

$$\forall k \in \mathbb{N}, \ \mathcal{F}_W^{\alpha, d}(\left(\triangle_W^{\alpha, d}\right)^k u) \in L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$$

where p' the conjugate exponent of p. On the other hand, from relation (2.7), we have

$$\forall \xi \in \mathbb{R}^{d+1}_+, \ \mathcal{F}^{\alpha,d}_W \left[\left(\triangle^{\alpha,d}_W \right)^k u \right] (\xi) = (-1)^k \, \|\xi\|^{2k} \mathcal{F}^{\alpha,d}_W(u)(\xi).$$

This gives the result.

ii) Let $T \in (\mathcal{D}_{\alpha,d}^p)'$, with $2 \leq p < \infty$. From Proposition ?? there exist $r \in \mathbb{N}$ and u_k belongs to $L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+), k = 0, ..., r$, such that

$$T = \sum_{k=0}^{r} \left(\bigtriangleup_{W}^{\alpha, d} \right)^{k} u_{k}.$$

Hence, from the relation (2.7), we obtain :

$$\mathcal{F}_{W}^{\alpha,d}(T) = \sum_{k=0}^{r} \mathcal{F}_{W}^{\alpha,d}(\left(\triangle_{W}^{\alpha,d}\right)^{k} u_{k}) = \left(1 + \left\|\xi\right\|^{2}\right)^{r} F(y)$$

where the function F defined by :

$$F(\xi) = \sum_{n=0}^{r} \frac{(-1)^{k} \|\xi\|^{2k} \mathcal{F}_{W}^{\alpha,d}(u_{k})(\xi)}{\left(1 + \|\xi\|^{2}\right)^{r}}.$$

It is clear that $F \in L^p_{\alpha}(\mathbb{R}^{d+1}_+)$.

In the following we give a necessary and sufficient condition for that a distribution T belongs to $(\mathcal{D}^2_{\alpha,d})'$.

Proposition 10. Let $T \in \mathcal{S}'(\mathbb{R}^{d+1}_+)$. Then $T \in (\mathcal{D}^2_{\alpha,d})'$, if and only if, there exist a polynomial P and a function F in $L^2_{\alpha}(\mathbb{R}^{d+1}_+)$ such that $\mathcal{F}_W^{\alpha,d}(T) = P(\|\xi\|^2)F.$

Proof. Assume that $\mathcal{F}_{W}^{\alpha,d}(T) = P(\|\xi\|^2)F$, where P is a polynomial and $F \in L^2_{\alpha}(\mathbb{R}^{d+1}_+)$. Then according to the relation (2.9),

$$T = \left(\mathcal{F}_W^{\alpha,d}\right)^{-1} \left(P(\|\xi\|^2)F\right) = P(-\triangle_W^{\alpha,d}) \left(\mathcal{F}_W^{\alpha,d}\right)^{-1} (F)$$

Since $\left(\mathcal{F}_{W}^{\alpha,d}\right)^{-1}(F) \in L^{2}_{\alpha}(\mathbb{R}^{d+1}_{+})$, from Proposition 8, we deduce that $T \in (\mathcal{D}^2_{\alpha,d})'.$

The conversely is immediately from Proposition 9 ii).

Proposition 11. Let $1 \leq p \leq \infty$, $S \in (\mathcal{D}^p_{\alpha,d})'$ and $\varphi \in \mathcal{D}(\mathbb{R}^{d+1}_+)$ be given. Then $S *_W \varphi \in L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$, where p' is the conjugate exponent of p.

Proof. Firstly we take $1 \leq p < \infty$. Let $S \in (\mathcal{D}^p_{\alpha,d})'$. According to Proposition 8, there exist $r \in \mathbb{N}$ and $\psi_k \in L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+), k = 0, 1, ..., r$, for which

$$S = \sum_{k=0}^{r} \left(\triangle_{W}^{\alpha,d} \right)^{k} \psi_{k}.$$

For every $\varphi \in \mathcal{D}(\mathbb{R}^{d+1}_+)$, we put $\widetilde{\varphi}(x) = \varphi(-x)$. For all $x \in \mathbb{R}^{d+1}_+$, we have

$$S *_{W} \varphi(x) = \langle S, T_{x} \widetilde{\varphi} \rangle = \sum_{k=0}^{r} \langle \left(\bigtriangleup_{W}^{\alpha, d} \right)^{k} \psi_{k}, T_{x} \widetilde{\varphi} \rangle = \sum_{k=0}^{r} \langle \psi_{k}, \left(\bigtriangleup_{W}^{\alpha, d} \right)^{k} T_{x} \widetilde{\varphi} \rangle$$
$$= \sum_{k=0}^{r} \langle \psi_{k}, \left(\bigtriangleup_{W}^{\alpha, d} \right)^{k} T_{x} \widetilde{\varphi} \rangle = \sum_{k=0}^{r} (-1)^{k} \langle \psi_{k}, T_{x} \left(\bigtriangleup_{W}^{\alpha, d} \right)^{k} \widetilde{\varphi} \rangle$$
$$= \sum_{k=0}^{r} (-1)^{k} \psi_{k} *_{W} \left(\left(\bigtriangleup_{W}^{\alpha, d} \right)^{k} \widetilde{\varphi} \right).$$

Since for each $\varphi \in \mathcal{D}(\mathbb{R}^{d+1}_+)$, $\left(\triangle_W^{\alpha,d}\right)^k \widetilde{\varphi} \in \mathcal{D}(\mathbb{R}^{d+1}_+) \subset L^1_\alpha(\mathbb{R}^{d+1}_+)$, then from the relation (2.20), we deduce that $S *_W \varphi$ belongs to $L^{p'}_\alpha(\mathbb{R}^{d+1}_+)$. Suppose now that $p = \infty$ and for every $x \in \mathbb{R}^{d+1}_+$, we have $S *_W \varphi(x) \in \mathbb{R}$. We define two open sets U_+ and U_- as follows:

$$U_+ = \left\{ x \in \mathbb{R}^{d+1}_+, v *_W \varphi(x) > 0 \right\}$$

and

$$U_{-} = \Big\{ x \in \mathbb{R}^{d+1}_{+}, v *_{W} \varphi(x) < 0 \Big\}.$$

If $K \neq \emptyset$ is a compact subset of U_+ , we choose $\phi \in D(\mathbb{R}^{d+1}_+)$ such that $\phi \equiv 1$ on K, $0 \leq \phi \leq 1$ and $supp \phi \subset U_+$. Then

$$\int_{K} |S \ast_{W} \varphi(x)| d\mu_{\alpha,d}(x) \leq \int_{\mathbb{R}^{d+1}_{+}} (S \ast_{W} \varphi(x)) \phi(x) d\mu_{\alpha,d}(x)$$
$$\leq C \mu^{\alpha}_{m,1}(\varphi) ||\phi||_{L^{\infty}_{\alpha}(\mathbb{R}^{d+1}_{+})}.$$

Hence $S *_W \varphi \in L^1_{\alpha}(U_+)$.

In a similar way, we show that $S *_W \varphi \in L^1_{\alpha}(U_-)$. Then $S *_W \varphi \in L^1_{\alpha}(\mathbb{R}^{d+1}_+)$.

In the general case it is sufficient to consider the real and imaginary part of $S *_W \varphi$ to conclude.

Proposition 12. For every $p \in \mathbb{N}$ and $\varepsilon > 0$, there exist $m_0 \in \mathbb{N}$ such that for any $m \in \mathbb{N}$, $m \ge m_0$, we can find two functions $\gamma_m \in \mathcal{D}(\mathbb{R}^{d+1}_+)$

and $\Gamma_m \in \mathcal{D}^{2p}(B(o,\varepsilon))$ such that

(3.6)
$$\delta = (I - \triangle_W^{\alpha,d})^m \Gamma_m + \gamma_m$$

where δ is the Dirac distribution and

$$B(o,\varepsilon) = \left\{ x \in \mathbb{R}^{d+1}, \|x\| \le \varepsilon \right\}.$$

Proof. The proposition can be proved in the same way of Proposition 3.6 in [9](see also [8]) \Box

Proposition 13. Let $1 \leq p \leq q \leq \infty$, the space $\mathcal{D}^p_{\alpha,d}$ is continuously contained in $\mathcal{D}^q_{\alpha,d}$.

Proof. Using the relations (3.6), (2.15) and (2.20), we deduce the result.

Proposition 14. Let $1 \leq p \leq \infty$ and $S \in D'(\mathbb{R}^{d+1}_+)$ be given. Suppose that $S *_W \varphi \in L^p_\alpha(\mathbb{R}^{d+1}_+)$ for every $\varphi \in D(\mathbb{R}^{d+1}_+)$. Then, there exist $m \in \mathbb{N}$ and $f, g \in L^p_\alpha(\mathbb{R}^{d+1}_+)$ for which $S = (I - \Delta^{\alpha, d}_W)^m f + g$.

Proof. Let $1 \leq p \leq \infty$, $S \in D'(\mathbb{R}^{d+1}_+)$ and $V_{p'}$ be the unit ball of $L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$.

Assume that $\varphi \in V_{p'} \cap D(\mathbb{R}^{d+1}_+)$. We have

$$\forall \phi \in D(\mathbb{R}^{d+1}_+), \ |\langle S *_W \widetilde{\varphi}, \widetilde{\phi} \rangle| = |\langle S *_W \phi, \varphi \rangle|.$$

On the other hand, using the Hölder inequality, we obtain

 $(3.7) |\langle S *_W \phi, \varphi \rangle| \le ||S *_W \phi||_{L^p_\alpha(\mathbb{R}^{d+1}_+)} ||\varphi||_{L^{p'}_\alpha(\mathbb{R}^{d+1}_+)} \le ||S *_W \phi||_{L^p_\alpha(\mathbb{R}^{d+1}_+)}.$

Thus the set

$$\left\{S *_W \widetilde{\varphi}: \quad \varphi \in V_{p'} \bigcap D(\mathbb{R}^{d+1}_+)\right\}$$

is bounded in $D'(\mathbb{R}^{d+1}_+)$ when we consider in $D'(\mathbb{R}^{d+1}_+)$ the weak topology, and hence, equicontinuous on $D'(\mathbb{R}^{d+1}_+)$. Therefore, if $K_1 = \overline{B}(o, 2) = \{x \in \mathbb{R}^{d+1}, \|x\| \leq 2\}$, we can find $m \in \mathbb{N}$ such that

$$\forall \phi \in D(K_1) \text{ and } \varphi \in V_{p'} \bigcap D(\mathbb{R}^{d+1}_+), \ |\langle S *_W \widetilde{\varphi}, \widetilde{\phi} \rangle| \leq C ||\phi||_{K_1, m}$$

where

$$||\phi||_{K_{1,m}} = \sup_{\substack{x \in K_{1} \\ k \le m}} |\left(\bigtriangleup_{W}^{\alpha,d}\right)^{k} \phi(x)|.$$

Hence, for every $\phi \in D(K_1)$ and $\varphi \in D(\mathbb{R}^{d+1}_+)$, we have

(3.8)
$$|\langle S *_W \widetilde{\varphi}, \widetilde{\phi} \rangle| \le C ||\phi||_{K_1, m} ||\varphi||_{L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)}.$$

Now we want to prove that, if we take $K_2 = \overline{B}(o, 1) = \{x \in \mathbb{R}^{d+1}, \|x\| \le 1\}$, then

$$\forall \phi \in D^{2m}(K_2), \ S *_W \phi \in L^p_\alpha(\mathbb{R}^{d+1}_+).$$

Let $\psi \in D(K_2)$ such that $0 \le \psi \le 1$ and $\int_{\overline{B}(o,1)} \psi(x) d\mu_{\alpha,d}(x) = 1$. Let $0 \le \alpha \le 1$, we put :

Let $0 < \varepsilon < 1$, we put :

$$\forall x \in \mathbb{R}^{d+1}, \ \psi_{\varepsilon}(x) = \varepsilon^{-2\alpha - d - 2} \psi\left(\frac{x}{\varepsilon}\right).$$

For $\phi \in D^{2m}(K_2)$, $\phi *_W \psi_{\varepsilon} \in D(K_1)$ and $\phi *_W \psi_{\varepsilon} \to \phi$, as $\varepsilon \to 0^+$, in $D^m(K_1)$. Consequently, $S *_W (\phi *_W \psi_{\varepsilon}) \in L^p_{\alpha}(\mathbb{R}^{d+1}_+)$ and we deduce from (3.8) that

(3.9)
$$||S *_W (\phi *_W \psi_{\varepsilon})||_{L^p_{\alpha}(\mathbb{R}^{d+1}_+)} \le C ||\phi *_W \psi_{\varepsilon}||_{K_1,m} \le C ||\phi||_{K_1,m}.$$

Observe that we also get from (3.9) that $S *_W (\phi *_W \psi_{\varepsilon})$ is a Cauchy net in $L^p_{\alpha}(\mathbb{R}^{d+1}_+)$, thus convergent. Since $S \in D'(\mathbb{R})$, there exist $l \in \mathbb{N}$ and C > 0 such that

$$\forall \varphi \in D(K_2), \ |\langle S, \varphi \rangle| \le C ||\varphi||_{K_2, l}.$$

Then S can be continuously extended to $D^{l}(K_{2})$. Hence, if m large enough, we conclude that for all $x \in \mathbb{R}^{d+1}_{+}$, we have

$$|(S*_{W}(\phi*_{W}\psi_{\varepsilon})(x)-S*_{W}\phi)(x)| \leq C||\phi*_{W}\psi_{\varepsilon}-\phi||_{K_{2},l} \leq C||\phi*_{W}\psi_{\varepsilon}-\phi||_{K_{1},m}$$

Thus $S*_{W}(\phi*_{W}\psi_{\varepsilon}) \to S*_{W}\phi$, as $\varepsilon \to 0^{+}$, in $C_{b}(\mathbb{R}^{d+1})$.
From (3.9), we deduce that $S*_{W}\phi \in L^{p}_{\alpha}(\mathbb{R}^{d+1}_{+})$.

According to Proposition 12, we can write

$$\delta = (I - \Delta_W^{\alpha, d})^m \Gamma_m + \gamma_m,$$

where $\gamma_m \in D(K_2)$ and $\Gamma_m \in D^{2m}(K_2)$. Then, we obtain :

$$S = S *_W \delta = S *_W \left((I - \triangle_W^{\alpha,d})^m \Gamma_m + \gamma_m \right) = (I - \triangle_W^{\alpha,d})^m f + g$$

where $f = S *_W \Gamma_m$ and $g = S *_W \gamma_m$.

Now we can establish the following property, where we present as a necessary and sufficient condition in order that a distribution belongs to $(\mathcal{D}^p_{\alpha,d})'$.

Theorem 3. Let $1 \le p \le \infty$ and $S \in D'(\mathbb{R}^{d+1}_+)$. The following assertions are equivalent:

i) $S \in (\mathcal{D}^p_{\alpha,d})'.$ ii) $S *_W \phi \in L^{p'}_{\alpha}((\mathbb{R}^{d+1}_+) \text{ for every } \phi \in D(\mathbb{R}^{d+1}_+).$

iii) There exist $m \in \mathbb{N}$ and $f_m \in L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$ such that $S = (I - \Delta^{\alpha, d}_W)^m f_m.$

Proof. The results follow directly from Proposition 14.

We give now an allternative description of the space $\mathcal{D}^{p}_{\alpha,d}$. that will be useful in the sequel.

Proposition 15. Let $1 \le p \le \infty$. The family of seminorms

$$\Gamma = \left\{ q_{\alpha,d}^{m,p} : \quad m \in \mathbb{N} \right\}$$

where for all $m \in \mathbb{N}$ and $\phi \in \mathcal{D}^p_{\alpha,d}$

(3.10)
$$q_{\alpha,d}^{m,p}(\phi) = ||(I - \triangle_W^{\alpha,d})^m \phi||_{L^p_\alpha(\mathbb{R}^{d+1}_+)}$$

generates the topology of $\mathcal{D}^{p}_{\alpha,d}$. Moreover, every continuous seminorm $\mu^{m,p}_{\alpha,d}$ is dominated by some $q^{m,p}_{\alpha,d} \in \Gamma$.

Proof. It is clear that the family Γ defines on $\mathcal{D}^p_{\alpha,d}$ a topology weaker than the one associated with $\{\mu^{n,p}_{\alpha,d}\}_{n\in\mathbb{N}}$. Let $n\in\mathbb{N}$. There exist a positive constant C and a bounded subset B of $(\mathcal{D}^p_{\alpha,d})'$ for which

$$\forall \varphi \in \mathcal{D}^p_{\alpha,d}, \ \mu^{n,p}_{\alpha,d}(\varphi) \le C \sup_{S \in B} |\langle S, \varphi \rangle|.$$

From Theorem 3 there exists $m \in \mathbb{N}$ and a positive constant C such that, for every $S \in B$, we can find $f_S \in L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$, satisfying

$$S = (I - \Delta_W^{\alpha,d})^m f_S, \quad ||f_S||_{L^{p'}_{\alpha}(\mathbb{R})} \le C.$$

On the other hand, for all $\varphi \in \mathcal{D}^p_{\alpha,d}$, we have

$$\begin{aligned} |\langle S, \varphi \rangle| &\leq \Big| \int_{\mathbb{R}} f_S(x) (I - \triangle_W^{\alpha, d})^m \varphi(x) d\mu_{\alpha, d}(x) \Big| \\ &\leq C || (I - \triangle_W^{\alpha, d})^m \varphi ||_{L^p_\alpha(\mathbb{R}^{d+1}_+)}. \end{aligned}$$

Thus there exists $m \in \mathbb{N}$ such that

$$\forall \varphi \in \mathcal{D}^p_{\alpha,d}, \ \mu^{n,p}_{\alpha,d}(\varphi) \le C || (I - \triangle^{\alpha,d}_W)^m \varphi ||_{L^p_\alpha(\mathbb{R}^{d+1}_+)}.$$

Then we conclude that Γ generates the topology of $\mathcal{D}^p_{\alpha d}$.

From the previous proposition we deduce an interesting characterization of the functions in $\mathcal{D}^{p}_{\alpha,d}$ as follows :

Proposition 16. i) Let $1 \leq p < \infty$. A function $\varphi \in L^p_{\alpha}(\mathbb{R}^{d+1}_+)$ is in $\mathcal{D}^p_{\alpha,d}$ if and only if

$$\forall m \in \mathbb{N}, \ (I - \Delta_W^{\alpha, d})^m \varphi \in L^p_\alpha(\mathbb{R}^{d+1}_+).$$

ii) A function $\phi \in L^{\infty}_{\alpha}(\mathbb{R}^{d+1}_{+})$ is in $\mathcal{B}^{\infty}_{\alpha,d}$ if and only if $\forall m \in \mathbb{N}, \ (I - \Delta^{\alpha,d}_{W})^{m} \phi \in L^{\infty}_{\alpha}(\mathbb{R}^{d+1}_{+}).$

4. Convolutors in $\mathcal{D}^p_{\alpha,d}$

In this section we study the convolutors in $\mathcal{D}_{\alpha,d}^p$, $1 \leq p \leq \infty$, where their surjectivity in $\mathcal{D}_{\alpha,d}^p$ is descussed at is the functionals $T \in (\mathcal{D}_{\alpha,d}^p)'$ such that $T *_W \varphi \in \mathcal{D}_{\alpha,d}^p$ for every $\varphi \in \mathcal{D}_{\alpha,d}^p$.

Definition 6. The generalized convolution of $S \in (\mathcal{D}^p_{\alpha,d})'$, $1 \le p \le \infty$ and $\varphi \in \mathcal{D}^p_{\alpha,d}$ is given by :

(4.1)
$$\forall x \in \mathbb{R}^{d+1}_+, \ S *_W \varphi(x) = \langle S, \ T_x \widetilde{\varphi} \rangle$$

where $\widetilde{\varphi}(x) = \varphi(-x)$.

The functionnel $S \in (\mathcal{D}^p_{\alpha,d})'$ is called convolutor in $\mathcal{D}^p_{\alpha,d}$ if for every $\varphi \in \mathcal{D}^p_{\alpha,d}$, we have $S *_W \varphi \in \mathcal{D}^p_{\alpha,d}$.

Remark 1. Using the fact that for all $x \in \mathbb{R}^{d+1}_+$ and $\varphi \in \mathcal{D}^p_{\alpha,d}$, we have $T_x \widetilde{\varphi} \in \mathcal{D}^p_{\alpha,d}$, we deduce that the Definition 6 is meaningful.

Proposition 17. Let $S \in (\mathcal{D}^p_{\alpha,d})'$, $1 \leq p \leq \infty$, be a convolutor in $\mathcal{D}^p_{\alpha,d}$. Then the mapping F_S defined by :

$$\forall \varphi \in \mathcal{D}^p_{\alpha,d}, \ F_S(\varphi) = S *_W \varphi$$

is continuous from $\mathcal{D}^p_{\alpha,d}$ into itself.

Proof. Let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{D}^p_{\alpha,d}$ such that $\varphi_n \to \varphi$, as $n \to \infty$, and $F_S(\varphi_n) \to \phi$, as $n \to \infty$, in $\mathcal{D}^p_{\alpha,d}$, for certain $\varphi, \phi \in \mathcal{D}^p_{\alpha,d}$. Since, for every $x \in \mathbb{R}^{d+1}_+$, the mapping $\varphi \to T_x \widetilde{\varphi}$ is continuous from $\mathcal{D}^p_{\alpha,d}$ into $\mathcal{D}^p_{\alpha,d}$, then for every $x \in \mathbb{R}^{d+1}_+$, we have $S *_W \varphi_n(x) \to S *_W \varphi(x)$ as $n \to \infty$, . Then $F_S(\varphi) = \phi$ and the closed graph theorem implies that F_S is continuous.

Now, using Definition 6 and the proposition 17, the following definition have a sense.

Definition 7. Let $S \in (\mathcal{D}^p_{\alpha,d})', 1 \leq p \leq \infty$ and $T \in (\mathcal{D}^{p'}_{\alpha,d})'$ where p' the conjugate of p. Then the Weinstein convolution $S *_W T$ is the functional given by :

(4.2)
$$\forall \varphi \in \mathcal{D}^p_{\alpha,d}, \ \langle S *_W T, \varphi \rangle = \langle S, T *_W \varphi \rangle,$$

where $\langle \widetilde{T}, \varphi \rangle = \langle T, \widetilde{\varphi} \rangle).$

Proposition 18. *i)* Let $S \in (\mathcal{D}^p_{\alpha,d})'$, $1 \leq p \leq \infty$ and $T \in (\mathcal{D}^{p'}_{\alpha,d})'$, where p' the conjugate of p, that $S *_W T = T *_W S$. *ii)* Let $S, T \in (\mathcal{D}^{\infty}_{\alpha,d})'$, then $S *_W T \in (\mathcal{D}^{\infty}_{\alpha,d})'$. *iii)* Let $S \in (\mathcal{D}^{\infty}_{\alpha,d})'$ and $T \in (\mathcal{D}^1_{\alpha,d})'$, then $S *_W T \in (\mathcal{D}^1_{\alpha,d})'$. *iv)* For every $T \in \mathcal{B}^{\infty}_{\alpha,d}$ and $S \in (\mathcal{D}^{\infty}_{\alpha,d})'$, we have $S *_W T \in \mathcal{B}^{\infty}_{\alpha,d}$. *v)* Let $T \in (\mathcal{D}^1_{\alpha,d})'$ and $\varphi \in \mathcal{D}^1_{\alpha,d}$, then $T *_W \varphi \in \mathcal{B}^{\infty}_{\alpha,d}$.

Proof. i) By a standard argument, it is easy to see i)

ii) We deduce this result by Theorem 3 and i)

iii) The proof is similar to that of part ii).

iv) Since $\mathcal{B}_{\alpha,d}^{\infty}$ is contained in $(\mathcal{D}_{\alpha,d}^1)'$, then from Theorem 3 and Proposition 17 we get the conclusion.

v) The proof is similar to that of part iv).

As a consequence of Theorem 3, we characterize $(\mathcal{D}_{\alpha,d}^{\infty})'$ as the space of convolutors in $\mathcal{D}_{\alpha,d}^1$ and in $\mathcal{D}_{\alpha,d}^{\infty}$.

Proposition 19. Let $S \in (\mathcal{D}^{1}_{\alpha,d})'$. Then $S \in (\mathcal{D}^{\infty}_{\alpha,d})'$ if and only if $S *_{W} \varphi \in \mathcal{D}^{1}_{\alpha,d}$ for every $\varphi \in \mathcal{D}^{1}_{\alpha,d}$. Moreover, for each $1 \leq p \leq \infty$, we have $S *_{W} \varphi \in \mathcal{D}^{p}_{\alpha,d}$ whenever $S \in (\mathcal{D}^{\infty}_{\alpha,d})'$ and $\varphi \in \mathcal{D}^{p}_{\alpha,d}$.

In the following result, we characterize the Weinstein convolution in $\mathcal{D}^2_{\alpha,d}$ via the Weinstein transform.

Proposition 20. i) Let S be a convolutor in $\mathcal{D}^2_{\alpha,d}$ and $\varphi \in \mathcal{D}^2_{\alpha,d}$. Then we have

(4.3)
$$\mathcal{F}_{W}^{\alpha,d}(S *_{W} \varphi) = \mathcal{F}_{W}^{\alpha,d}(S) \mathcal{F}_{W}^{\alpha,d}(\varphi).$$

ii) Let $S, T \in (\mathcal{D}^2_{\alpha,d})'$. Then $\mathcal{F}^{\alpha,d}_W(S)\mathcal{F}^{\alpha,d}_W(T) \in \mathcal{S}'(\mathbb{R}^{d+1}_+)$. If moreover, S is a convolutor in $\mathcal{D}^2_{\alpha,d}$ then

(4.4)
$$\mathcal{F}_W^{\alpha,d}(S *_W T) = \mathcal{F}_W^{\alpha,d}(S)\mathcal{F}_W^{\alpha,d}(T).$$

Proof. i) The results follow immediatly from the relations (4.1) and (2.18).

ii) Using the relations (4.2) and (4.3), we get the relation (4.4) \Box

Theorem 4. Let $S \in (\mathcal{D}^2_{\alpha,d})'$. We have S is a convolutor in $\mathcal{D}^2_{\alpha,d}$ if and only if there exists $l \in \mathbb{N}$ such that $(1 + ||\xi||^2)^{-l} \mathcal{F}^{\alpha,d}_W(S) \in L^{\infty}_{\alpha}(\mathbb{R}^{d+1}_+)$.

Proof. From Theorem 3, there exist $f \in L^2_{\alpha}(\mathbb{R}^{d+1}_+)$ and $l \in \mathbb{N}$ such that $S = (I - \triangle^{\alpha,d}_W)^l f$. Then $\mathcal{F}^{\alpha,d}_W(S) = (1 + ||\xi||^2)^l \mathcal{F}^{\alpha,d}_W(f)$. Assume that S is a convolutor in $\mathcal{D}^2_{\alpha,d}$, that is for each $\varphi \in \mathcal{D}^2_{\alpha,d}$, we have $S *_W \varphi \in \mathcal{D}^2_{\alpha,d}$.

Then, according to the relations (4.3), (2.13) and Proposition 15 for all $\varphi \in \mathcal{D}^2_{\alpha,d}$, we can write (4.5)

$$||\mathcal{F}_{W}^{\alpha,d}(S)\mathcal{F}_{W}^{\alpha,d}(\varphi)||_{L^{2}_{\alpha}(\mathbb{R}^{d+1}_{+})} = ||S*_{W}\varphi||_{L^{2}_{\alpha}(\mathbb{R}^{d+1}_{+})} \le C||(I-\triangle_{W}^{\alpha,d})^{l}\varphi||_{L^{2}_{\alpha}(\mathbb{R}^{d+1}_{+})}$$

where C > 0.

Let now $g \in L^2_{\alpha}(\mathbb{R}^{d+1}_+)$, it is not hard to see that there exists a sequence $(\varphi_n)_{n\in\mathbb{N}}$ in $D(\mathbb{R}^{d+1}_+)$ such that $(1+\|\xi\|^2)^l \mathcal{F}^{\alpha,d}_W(\varphi_n) \to g$, as $n \to \infty$, in $L^2_{\alpha}(\mathbb{R}^{d+1}_+)$.

From (4.5), we deduce that

$$||\frac{\mathcal{F}_{W}^{\alpha,d}(S)g}{(1+||\xi||^{2})^{l}}||_{L^{2}_{\alpha}(\mathbb{R}^{d+1}_{+})} \leq C||g||_{L^{2}_{\alpha}(\mathbb{R}^{d+1}_{+})}.$$

Hence, for certain C > 0 and $l \in \mathbb{N}$, we have

$$\forall \xi \in \mathbb{R}^{d+1}_+, \ |\mathcal{F}^{\alpha,d}_W(S)(\xi)| \le C(1 + \|\xi\|^2)^l.$$

Conversely assume now that $(1 + \|\xi\|^2)^{-l} \mathcal{F}_W^{\alpha,d}(S) \in L^{\infty}_{\alpha}(\mathbb{R}^{d+1}_+)$ for some $l \in \mathbb{N}$. Let $m \in \mathbb{N}$, for all $\varphi \in \mathcal{D}^2_{\alpha,d}$, we have

$$\begin{aligned} ||(I - \Delta_W^{\alpha,d})^m (S *_W \varphi)||_{L^2_{\alpha}(\mathbb{R}^{d+1}_+)} &= ||(1 + ||\xi||^2)^m \mathcal{F}_W^{\alpha,d}(S) \mathcal{F}_W^{\alpha,d}(\varphi)||_{L^2_{\alpha}(\mathbb{R}^{d+1}_+)} \\ &\leq C ||(1 + ||\xi||^2)^{l+m} \mathcal{F}_W^{\alpha,d}(\varphi)(\xi)||_{L^2_{\alpha}(\mathbb{R}^{d+1}_+)}. \end{aligned}$$

Hence, we obtain

$$\forall \varphi \in \mathcal{D}^2_{\alpha,d}, \ \left\| (I - \triangle^{\alpha,d}_W)^m (S *_W \varphi) \right\|_{L^2_\alpha(\mathbb{R}^{d+1}_+)} \le C \left\| (I - \triangle^{\alpha,d}_W)^{m+l} \varphi \right\|_{L^2_\alpha(\mathbb{R}^{d+1}_+)}.$$

Then we conclude that S is a convolutor in $\mathcal{D}^2_{\alpha,d}$.

Proposition 21. Let $1 \leq p \leq \infty$. Assume that $S \in (\mathcal{D}^p_{\alpha,d})'$ is a convolutor in $\mathcal{D}^p_{\alpha,d}$. Then for every $\min\{p,p'\} \leq q \leq \max\{p,p'\}$, S is a convolutor of $\mathcal{D}^q_{\alpha,d}$.

Proof. The cases p = 1 and $p = \infty$ are proved in Proposition 19. We first prove that S is a convolutor in $(\mathcal{D}_{\alpha,d}^{p'})'$.

Since for every $\varphi \in D(\mathbb{R}^{d+1}_+)$, $S *_W \varphi \in L^p_{\alpha}(\mathbb{R}^{d+1}_+)$, then from Theorem 3, we deduce that $S \in (\mathcal{D}^{p'}_{\alpha,d})'$.

We now take $T \in (\mathcal{D}_{\alpha,d}^{p'})'$ and we show that $S *_W T \in (\mathcal{D}_{\alpha,d}^{p'})'$. Since T is a convolutor in $\mathcal{D}_{\alpha,d}^p$ and $S *_W \varphi \in \mathcal{D}_{\alpha,d}^p$, we deduce that for

all
$$\varphi \in D(\mathbb{R}^{a+1}_+)$$
, we have

(4.6)
$$(S *_W T) *_W \varphi = T *_W (S *_W \varphi) \in L^p_\alpha(\mathbb{R}^{d+1}_+).$$

Then the Theorem 3 implies that $S *_W T \in (\mathcal{D}_{\alpha,d}^{p'})'$. Thus we have seen that the mapping F_S defined by :

$$\forall T \in (\mathcal{D}_{\alpha,d}^{p'})', \ F_S(T) = T *_W S$$

maps $(\mathcal{D}_{\alpha,d}^{p'})'$ into itself. Moreover, F_S has a sequentially closed graph. We apply the closed graph theorem (see [7]) to conclude that F_S is continuous.

By Proposition 7, the mapping F_S^* , transposed of F_S is continuous from $(\mathcal{D}_{\alpha,d}^{p'})'$ into itself. On the other hand, it follows from Definition 7 that

$$\forall \varphi \in D(\mathbb{R}^{d+1}_+), \ F^*_S(\varphi) = \widetilde{S} *_W \varphi$$

Hence, for every $m \in \mathbb{N}$, there exist C > 0 and $n \in \mathbb{N}$ such that

(4.7)
$$\forall \varphi \in D(\mathbb{R}^{d+1}_+), \ \mu^{\alpha}_{m,p'}(\widetilde{S} *_W \varphi) \le C \mu^{\alpha}_{n,p'}(\varphi).$$

Since $D(\mathbb{R}^{d+1}_+)$ is a dense subspace of $\mathcal{D}^{p'}_{\alpha,d}$, (4.7) implies that \widetilde{S} and hence S is a convolutor in $\mathcal{D}^{p'}_{\alpha,d}$.

To finish the proof of this proposition, we will assume that p > 2 and we will prove that

$$\forall S \in \mathcal{D}^q_{\alpha,d}, \ T *_W S \in (\mathcal{D}^q_{\alpha,d})'.$$

Let $f, g \in L^{q'}_{\alpha}(\mathbb{R}^{d+1}_{+})$ and $m \in \mathbb{N}$ such that $T = (I - \triangle^{\alpha,d}_{W})^{m} f$. We now observe that for every $\varphi \in D(\mathbb{R}^{d+1}_{+})$, we have $S *_{W} (I - \triangle^{\alpha,d}_{W})^{m} \varphi$ is a convolutor in $L^{q'}_{\alpha}(\mathbb{R}^{d+1}_{+})$. In fact, for every $g \in L^{p}_{\alpha}(\mathbb{R}^{d+1}_{+})$, we have $(I - \triangle^{\alpha,d}_{W})^{m} \varphi *_{W} g \in \mathcal{D}^{p}_{\alpha,d}$ and

$$g *_W (S *_W (I - \triangle_W^{\alpha, d})^m \varphi) = S *_W ((I - \triangle_W^{\alpha, d})^m \varphi *_W g) \in L^p_\alpha(\mathbb{R}^{d+1}_+).$$

Then $S *_W (I - \Delta_W^{\alpha,d})^m \varphi$ is a convolutor in $L^{p'}_{\alpha}(\mathbb{R}^{d+1}_+)$. By applying the Riesz-Thorin interpolation theorem, we deduce that $S *_W (I - \Delta_W^{\alpha,d})^m \varphi$ is a convolutor in $L^{q'}_{\alpha}(\mathbb{R}^{d+1}_+)$. Finally, for every $\varphi \in D(\mathbb{R}^{d+1}_+)$, we obtain

$$(T *_W S) *_W \varphi = f *_W (S *_W (I - \triangle_W^{\alpha, d})^m \varphi) \in L^{q'}_{\alpha}(\mathbb{R}^{d+1}_+)$$

and $T *_W S \in (\mathcal{D}^q_{\alpha,d})'$.

Remark 2. A consequence immediate of Proposition 21 is the following:

if $S \in (\mathcal{D}^p_{\alpha,d})'$ is a convolutor in $\mathcal{D}^p_{\alpha,d}$ for some $1 \leq p \leq \infty$, then S is a convolutor in $\mathcal{D}^2_{\alpha,d}$.

Corollary 1. Let $1 \leq p \leq \infty$. If $T \in (\mathcal{D}^p_{\alpha,d})'$ is a convolutor of $\mathcal{D}^p_{\alpha,d}$ then there exists $m \in \mathbb{N}$ such that

$$(1+||\xi||^2)^{-m}\mathcal{F}_W^{\alpha,d}(T) \in L^{\infty}_{\alpha}(\mathbb{R}^{d+1}_+).$$

Proof. The result follows directly from Proposition 21 and Theorem 4. \Box

Now, we study the convolutors and the surjective Weinstein convolution operator acting on $(\mathcal{D}_{\alpha,d}^p)'$, $1 \leq p \leq \infty$. In the case p = 2, we obtain complete characterization.

Theorem 5. Let $S \in (\mathcal{D}^2_{\alpha,d})'$ be a convolutor in $\mathcal{D}^2_{\alpha,d}$. The following assertions are equivalent:

i) $S *_W \mathcal{D}^2_{\alpha,d} = \mathcal{D}^2_{\alpha,d}$. ii) $S *_W (\mathcal{D}^2_{\alpha,d})' = (\mathcal{D}^2_{\alpha,d})'$. iii) There exists a convolutor R in $\mathcal{D}^2_{\alpha,d}$ such that $S *_W R = \delta$. iv) There exist M > 0 and $l \in \mathbb{N}$ such that

$$|\mathcal{F}_W^{\alpha,d}(S)(\xi)| \ge M(1+||\xi||^2)^{-l}, \ a.e. \ \xi \in \mathbb{R}^{d+1}_+.$$

Proof. i) \Longrightarrow ii) ? Firstly it is not hard to see that $\mathcal{F}_{W}^{\alpha,d}(S)(\xi) \neq 0$, a.e. $\xi \in \mathbb{R}^{d+1}_{+}$.

Assume now $S *_W \varphi = 0$, where $\varphi \in \mathcal{D}^2_{\alpha,d}$. Then $\mathcal{F}^{\alpha,d}_W(S)\mathcal{F}^{\alpha,d}_W(\varphi) = 0$ and $\varphi = 0$. Thus the Weinstein convolution operator defined by Sis one-to-one on $\mathcal{D}^2_{\alpha,d}$. It easily follows that the Weinstein convolution operator defined by \widetilde{S} is an automorphism of $\mathcal{D}^2_{\alpha,d}$. Then we obtain $S *_W (\mathcal{D}^2_{\alpha,d})' = (\mathcal{D}^2_{\alpha,d})'$.

ii) \implies iii) ? From the hypothesis ii), we deduce that there exists $R \in (\mathcal{D}^2_{\alpha,d})'$ such that $S *_W R = \delta$. Let now $\varphi \in \mathcal{D}^2_{\alpha,d}$. We choose $\phi \in \mathcal{D}^2_{\alpha,d}$ such that $\varphi = S *_W \phi$. Then

$$R *_W \varphi = R *_W (S *_W \phi) = (R *_W S) *_W \phi = \delta *_W \phi = \phi.$$

Thus R is a convolutor in $\mathcal{D}^2_{\alpha,d}$ and iii) is established. $iii) \implies i\nu$? Let $R \in (\mathcal{D}^2_{\alpha,d})'$ be a convolutor in $\mathcal{D}^2_{\alpha,d}$ such that $S *_W R = \delta$. Then $\mathcal{F}^{\alpha,d}_W(S)\mathcal{F}^{\alpha,d}_W(R) = 1$. By using now Theorem 4, we conclude that there exist M > 0 and $l \in \mathbb{N}$ for which

$$|\mathcal{F}_W^{\alpha,d}(S)(\xi)| \ge M(1+||\xi||^2)^{-l}$$
 a.e. $\xi \in \mathbb{R}^{d+1}_+$.

iv) \Longrightarrow i)? Let $\varphi \in \mathcal{D}^2_{\alpha,d}$. We define $\psi = \frac{\mathcal{F}^{\alpha,d}_W(\varphi)}{\mathcal{F}^{\alpha,d}_W(S)}$. If iv) holds then ψ is a measurable function and for all $m \in \mathbb{N}$, we have

$$\begin{aligned} ||(1+||\xi||^2)^m \psi||_{L^2_{\alpha}(\mathbb{R}^{d+1}_+)} &\leq C ||\mathcal{F}^{\alpha,d}_W((I-\triangle^{\alpha,d}_W)^{m+l}\psi)||_{L^2_{\alpha}(\mathbb{R}^{d+1}_+)} \\ &\leq C ||(I-\triangle^{\alpha,d}_W)^{m+l}\psi||_{L^2_{\alpha}(\mathbb{R}^{d+1}_+)} < \infty. \end{aligned}$$

Then using the Theorem 2 and Corollary 1, we deduce that the function $\phi = \left(\mathcal{F}_W^{\alpha,d}\right)^{-1}(\psi)$ is in $\mathcal{D}_{\alpha,d}^2$ and $S *_W \phi = \varphi$. Thus the proof of i) is completed.

Proposition 22. Let $1 \le p \le 2$. Assume that $S \in (\mathcal{D}^p_{\alpha,d})'$ is a convolutor in $\mathcal{D}^p_{\alpha,d}$. We consider the following assertions :

$$i) S *_W \mathcal{D}^p_{\alpha,d} = \mathcal{D}^p_{\alpha,d}.$$

ii) The Weinstein convolution operator defined by S is an automorphism of $\mathcal{D}^p_{\alpha,d}$.

- iii) There exists a convolutor R in $\mathcal{D}_{\alpha,d}^p$ such that $S *_W R = \delta$.
- iv) There exist M > 0 and $l \in \mathbb{N}$ such that

$$|\mathcal{F}_W^{\alpha,d}(S)(\xi)| \ge M(1+||\xi||^2)^{-l}, \ a.e. \ \xi \in \mathbb{R}^{d+1}_+.$$

Then, we have i \Leftrightarrow $ii) \Leftrightarrow iii) \Rightarrow iv$.

Proof. The proof of this results is in the same spirit with Theorem 5. \Box

Proposition 23. Let $2 \le p \le \infty$. Assume that $S \in (\mathcal{D}^p_{\alpha,d})'$ is a convolutor in $\mathcal{D}^p_{\alpha,d}$. We consider the following assertions :

 $i) S *_W (\mathcal{D}^p_{\alpha,d})' = (\mathcal{D}^p_{\alpha,d})'.$

ii) The Weinstein convolution operator defined by S is an automorphism of $\mathcal{D}^p_{\alpha,d}$,

iii) There exists a convolutor R in $\mathcal{D}_{\alpha,d}^p$ such that $S *_W R = \delta$.

iv) There exist M > 0 and $l \in \mathbb{N}$ such that

$$\mathcal{F}_{W}^{\alpha,d}(S)(\xi)| \ge M(1+||\xi||^2)^{-l}, \ a.e. \ \xi \in \mathbb{R}^{d+1}_+$$

Then, we have i \Leftrightarrow $ii) \Leftrightarrow iii) \Rightarrow iv$.

Proof. The proof of this results is in the same spirit with Theorem 5. \Box

References

- S. Abdullah, On convolution operator and multipliers of distributions of L^pgrowth, J. Math. Anal. Appl. 183 (1994), p. 196-207.
- [2] S. Abdullah, Solvability of convolution equations in D'_{L^p}, Hokkaido Math. J. 29 (2000), p. 247-254.

- [3] H. Ben Mohamed, N. Bettaibi and S.H. Jah Sobolev type spaces associated with the Weinstein operator, Int. Journal of Math. Analysis, Vol.5, Nr. 28, (2011), p. 1353-1373.
- [4] H. Ben Mohamed, B. Ghribi Weinstein-Sobolev spaces of exponential type and applications. Acta Mathematica Sinica, English Series, Vol.29, Nr.3, (2013), p.591-608.
- [5] H. Ben Mohamed, A. Gasmi and N. Bettaibi. "Inversion of the Weinstein intertwining operator and its dual using Weinstein wavelets.". An. St. Univ. Ovidius Constanta. Vol. 1, Nr1, (2016), p. 1-19.
- [6] J.J. Betancor and B.J. Gonzalez, Spaces of D_{L^p} type and Hankel convolution, Proc. Amer. Math. Soc. V. 129 N.1 (2001) 219-228.
- [7] H. Jarchow, Locally convex spaces, Teubner, Stuttgart, (1981).
- [8] L. Hörmander, On the division of distributions by polynomials, Arkiv för Mat. 3 (1958) 555- 568.
- [9] H. Mejjaoli and A. Ould Ahmed Salem. On the Dunkl convolution equations in spaces D^p_α type. Integ. Transf. and Special Func. Vol. 26, N 8,(2015), p. 619-634.
- [10] D.H. Pahak, On the convolution equations in the spaces of distributions of L_p-growth, Proc. Amer. Math. Soc, 94 (1985), p.81-86.
- [11] L.Schwartz, Théories des distributions, Hermann (Paris) 1966.
- [12] E.M. Stein. Interpolation of linear operators. Amer. Math. Soc. Vol. 83,(1956), p. 482-492.
- [13] E.M. Stein and G. Weiss. Introduction to Fourier Analysis on Euclidian spaces, Princeton Univ. Press, Princeton, NJ. (1971).

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES OF GABES TUNISIA *E-mail address*: hassenbenmohamed@yahoo.fr