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Abstract

In this paper, we have introduced some subclasses S∗s (m, p, α, β), S∗c (m, p, α, β)
and S∗sc (m, p, α, β) consisting of analytic multivalent functions starlike with
respect to symmetric points, starlike with respect to conjugate points and
starlike with respect to symmetric conjugate points respectively and the cor-
responding subclasses with negative coefficients S∗sT (m, p, α, β) , S∗cT (m, p, α, β)
and S∗scT (m, p, α, β). Here, we obtain coefficients inequality, growth and dis-
trotion theorem, extreme points for the function of these subclasses. Also,
we have obtained some other geometric properties and subordination result.
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1 Introduction

Let A(p) denote the class of analytic p-valent functions in the open unit disc U = {z :
z ∈ C, |z| < 1}, defined by

f(z) = zp +
∞∑
n=1

an+pz
n+p (an+p ∈ C, p ∈ N) . (1)

We note that A(1) = A, the class of analytic univalent functions. Let T (p) be the subclass
of A(p) consisting of functions f of the form

f (z) = zp −
∞∑
n=1

an+pz
n+p (an+p ≥ 0, p ∈ N) . (2)

We denote by S∗(α) the subclass of A consisting of functions which are starlike of order
α in U and satisfies

Re

{
zf ′(z)

f(z)

}
> α, (z ∈ U, 0 ≤ α < 1) .

Also, we denote by K (α) the subclass of A consisting of functions which are convex of
order α in U and satisfies

<
{

1 +
zf
′′
(z)

f ′(z)

}
> α, (z ∈ U, 0 ≤ α < 1) .

The subclasses S∗(α) and K (α) were introduced by Robertson [14], (see also [24]).
Sakagchi [16], introduced the class S∗s of analytic univalent functions in U which are called
starlike with respect to symmetric points and satisfies

<
{

zf ′ (z)

f (z)− f (−z)

}
> 0, z ∈ U.

EL-Ashwah and Thomas in [2], had introduced two other subclass namely S∗c and
S∗sc. Kharinar and Rajas [9] (see also, [6, 25]) had discussed the subclass S∗sT (α, β, δ) of
analytic multivalent functions in U and satisfying the condition

∣∣∣∣ zf ′ (z)

f (z)− f (−z)
− (p+ δ)

∣∣∣∣ < β

∣∣∣∣ αf ′ (z)

f (z)− f (−z)
+ p− δ

∣∣∣∣ ,
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for some 0 ≤ α ≤ 1, 0 < β ≤ 1, 0 ≤ δ < p and z ∈ U.
For functions f(z) belonging to the class A(p), Orhan and Kiziltunc [13] defined the

following differential operator which extend the Salagean operator [17]

D0
pf (z) = f (z) ,

D1
pf (z) = Dpf (z) = zf ′ (z) = pzp −

∞∑
n−1

(n+ p) an+pz
n+p,

D2
pf (z) = Dp(Dpf (z)) = p2zp −

∞∑
n−1

(n+ p)2 an+pz
n+p,

...

Dm
p f (z) = Dp

(
Dm−1
p f (z)

)
= pmzp −

∞∑
n=1

(n+ p)m an+pz
n+p.

Now, for m ∈ N0, 0 ≤ α < 1, 0 < β < 1, 0 < 2(1−β)
1+αβ

< 1 and z ∈ U, we define three

subclasses of A(p) as follows:

Definition 1.1 A function f ∈ S∗s (m, p, α, β) is said to be p-valent starlike with respect
to symmetric points if it satisfies

∣∣∣∣ Dm+1
p f(z)

Dm
p f(z)−Dm

p f(−z)
− p
∣∣∣∣ ≤ β

∣∣∣∣ αDm+1
p f(z)

Dm
p f(z)−Dm

p f(−z)
+ p

∣∣∣∣ for p ∈ N and z ∈ U.

Definition 1.2 A function f ∈ S∗c (m, p, α, β) is said to be p-valent starlike with respect
to conjugate points if it satisfies

∣∣∣∣∣ Dm+1
p f(z)

Dm
p f(z) +Dm

p f(z)
− p

∣∣∣∣∣ ≤ β

∣∣∣∣∣ αDm+1
p f(z)

Dm
p f(z) +Dm

p f(z)
+ p

∣∣∣∣∣ for p ∈ N and z ∈ U.

Definition 1.3 A function f ∈ S∗sc (m, p, α, β) is said to be p-valent starlike with re-
spect to symmetric conjugate points if it satisfies

∣∣∣∣∣ Dm+1
p f(z)

Dm
p f(z)−Dm

p f(−z)
− p

∣∣∣∣∣ ≤ β

∣∣∣∣∣ αDm+1
p f(z)

Dm
p f(z)−Dm

p f(−z)
+ p

∣∣∣∣∣ for p ∈ N and z ∈ U.

Let S∗sT (m, p, α, β) = S∗s (m, p, α, β) ∩ T (p), S∗cT (m, p, α, β) = S∗c (m, p, α, β) ∩ T (p) and
S∗scT (m, p, α, β) = S∗sc (m, p, α, β) ∩ T (p).

By specializing the parameters in the above definitions, we obtain some spacial cases,
as follows:



4 R. M. El-Ashwah, A. Y. Lashin and A. E. El-Shirbiny

• For p = 1, we obtain the subclasses which introduced in ([1]);

• For p = 1 and m = 1, we obtain the subclasses which introduced in [7, 8] see also
([23] with k = 1 and σ = 0);

• For p = 1 and m = 0, we obtain the subclasses which introduced in [3, 5] see also
([4] with k = 1 and σ = 0 and [10] with δ = 0);

• For m = 0, we obtain the subclasses which introduced in ([9] with δ = 0).

In this paper, we obtain coefficients inequality, growth and distortion theorem, ex-
treme points for the function of these subclasses. Also, we have obtained integral operator
properties, integral mean and subordination result for these subclasses.

2 Coefficients estimates

Unless otherwise mentioned, we assume in the reminder of this paper that m ∈ N0, p ∈ N,
0 ≤ α < 1, 0 < β < 1, 0 < 2(1−β)

1+αβ
< 1 and z ∈ U. In this section, the authors obtained

coefficients estimates.

Theorem 2.1 Let f(z) defined by (1) and satisfied the condition

∞∑
n=1

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
β [α + (1− (−1)p)] + (−1)p

an+p ≤ 1, (3)

then f(z) ∈ S∗s (m, p, α, β).

Proof. Let the condition (3) is true. Then, we have

∣∣Dm+1
p f(z)− pDm

p f(z) + pDm
p f(−z)

∣∣− β ∣∣αDm+1
p f(z) + pDm

p f(z)− pDm
p f(−z)

∣∣

=

∣∣∣∣∣pm+1zp +
∞∑
n=1

(n+ p)m+1an+pz
n+p

−p

(
pmzp +

∞∑
n=1

(n+ p)man+pz
n+p − (−1)ppmzp −

∞∑
n=1

(−1)n+p(n+ p)man+pz
n+p

)∣∣∣∣∣
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−β

∣∣∣∣∣αpm+1zp + α
∞∑
n=1

(n+ p)man+pz
n+p

+p

(
pmzp +

∞∑
n=1

(n+ p)man+pz
n+p − (−1)ppmzp −

∞∑
n=1

(−1)n+p(n+ p)man+pz
n+p

)∣∣∣∣∣
≤

∞∑
n=1

[
(n+ p) (αβ + 1) + (β − 1)

(
1− (−1)n+p

)
p
]

(n+ p)m an+p

−
[
β
(
α +

(
1− (−1)P

))
+ (−1)p

]
pm+1 ≤ 0

Hence, by the maximum modulus theorem, we have f ∈ S∗s (m, p, α, β) .

Theorem 2.2 The function f(z) given by (2) is in the subclass S∗sT (m, p, α, β) if and
only if

∞∑
n=1

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
β [α + (1− (−1)p)] + (−1)p

an+p ≤ 1. (4)

Proof. We only need to prove the only if part of Theorem 2.1. For function
f(z) ∈ T (p), we can write∣∣∣∣∣∣

Dm+1
p f(z)

Dmp f(z)−Dmp f(−z)
− p

αDm+1
p f(z)

Dmp f(z)−Dmp f(−z)
+ p

∣∣∣∣∣∣
=

∣∣∣∣ (−1)ppm+1zp −
∑∞

n=1(n+ p)m [(n+ p)− p+ (−1)n+pp] an+pz
n+p

(α + 1− (−1)p)pm+1zp −
∑∞

n=1(n+ p)m [(n+ p)α + p− (−1)n+pp] an+pzn+p

∣∣∣∣
< β,

since <(z) ≤ |z| for all z, we have

<
{

−(−1)ppm+1zp +
∑∞

n=1(n+ p)m [(n+ p)− p+ (−1)n+pp] an+pz
n+p

(α + 1− (−1)p)pm+1zp −
∑∞

n=1(n+ p)m((n+ p)α + p− (−1)n+pp)an+pzn+p

}
< β.

(5)

Choose values of z on the real axis so that
Dm+1
p f(z)

Dmp f(z)−Dmp f(−z)
is real andDm

p f(z)−Dm
p f(−z) 6=

0 for z 6= 0. Upon clearing the denominator in (5) and letting z → 1− through real values,
we obtain.

−(−1)ppm+1 +
∞∑
n=1

(n+ p)m
[
(n+ p)− p+ (−1)n+pp

]
an+p

−β

[
(α + 1− (−1)p)pm+1 −

∞∑
n=1

(n+ p)m((n+ p)α + p− (−1)n+pp)an+p

]
≤ 0.

This gives the required condition (4).
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Corollary 2.3 If f ∈ S∗sT (m, p, α, β) if and only if

an+p ≤
(

p

n+ p

)m
β (α + (1− (−1)p)) + (−1)p(

n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

) . (6)

The equality in (6) is attained for the function f(z) given by

f(z) = zp −
(

p

n+ p

)m
β (α + (1− (−1)p)) + (−1)p(

n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)zn+p. (7)

Theorem 2.4 Let f(z) defined by (1) and satisfied the condition

∞∑
n=1

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + 2 (β − 1)

]
β (α + 2)− 1

an+p ≤ 1. (8)

then f(z) ∈ S∗c (m, p, α, β).

Proof. Let the condition (8) is true. Then, we have∣∣∣Dm+1
p f(z)− pDm

p f(z) + pDm
p f(z)

∣∣∣− β ∣∣∣αDm+1
p f(z) + pDm

p f(z)− pDm
p f(z)

∣∣∣
=

∣∣∣∣∣pm+1zp +
∞∑
n=1

(n+ p)m+1an+pz
n+p −p

(
pmzp +

∞∑
n=1

(n+ p)man+pz
n+p − pmzp

−
∞∑
n=1

(n+ p)man+pz
n+p

)∣∣∣∣∣− β
∣∣∣∣∣αpm+1zp + α

∞∑
n=1

(n+ p)man+pz
n+p

+p

(
pmzp +

∞∑
n=1

(n+ p)man+pz
n+p − pmzp −

∞∑
n=1

(n+ p)man+pz
n+p

)∣∣∣∣∣
≤

∞∑
n=1

[(n+ p) (αβ + 1) + 2 (β − 1) p] (n+ p)m an+p − [β (α + 2) + 1] pm+1 ≤ 0.

Hence, by the maximum modulus theorem, we have f ∈ S∗c (m, p, α, β) .

Theorem 2.5 The function f(z) given by (2) is in the subclass S∗cT (m, p, α, β) if and
only if

∞∑
n=1

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + 2 (β − 1)

]
β (α + 2)− 1

an+p ≤ 1. (9)
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Proof. We only need to prove the only if part of Theorem 2.5. For function f(z) ∈ T (p),
we can write∣∣∣∣∣∣

Dm+1
p f(z)

Dmp f(z)+D
m
p f(z)

− p
αDm+1

p f(z)

Dmp f(z)+D
m
p f(z)

+ p

∣∣∣∣∣∣ =

∣∣∣∣ pm+1zp −
∑∞

n=1(n+ p)m [(n+ p)− 2p] an+pz
n+p

(α + 2)pm+1zp −
∑∞

n=1(n+ p)m [(n+ p)α + 2p] an+pzn+p

∣∣∣∣ < β,

since <(z) ≤ |z| for all z, we have

<
{

−pm+1zp +
∑∞

n=1(n+ p)m [(n+ p)− 2p] an+pz
n+p

(α + 2)pm+1zp −
∑∞

n=1(n+ p)m((n+ p)α + 2p)an+pzn+p

}
< β. (10)

Choose values of z on the real axis so that
Dm+1
p f(z)

Dmp f(z)−Dmp f(z)
is real and Dm

p f(z)−Dm
p f(z) 6= 0

for z 6= 0. Upon clearing the denominator in (10) and letting z → 1− through real values,
we obtain

−pm+1+
∞∑
n=1

(n+p)m [(n+ p)− 2p] an+p−β

[
(α + 2)pm+1 −

∞∑
n=1

(n+ p)m((n+ p)α + 2p)

]
an+p ≤ 0.

This gives the required condition (9).

Corollary 2.6 If f ∈ S∗cT (m, p, α, β) then

an+p ≤
(

p

n+ p

)m
β (α + 2)− 1(

n+p
p

)
(αβ + 1) + 2 (β − 1)

. (11)

The equality in (11) is attained for the function f(z) given by

f(z) = zp −
(

p

n+ p

)m
β (α + 2)− 1(

n+p
p

)
(αβ + 1) + 2 (β − 1)

zn+p. (12)

Using the method of Theorem 2.1 and Theorem 2.2, we can prove the following theorems

Theorem 2.7 Let f(z) defined by (1) and satisfied the condition

∞∑
n=1

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
β [α + (1− (−1)p)] + (−1)p

an+p ≤ 1, (13)

then f(z) ∈ S∗sc(m, p, α, β).

Theorem 2.8 A function f ∈ S∗scT (m, p, α, β) if and only if

∞∑
n=1

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
β [α + (1− (−1)p)] + (−1)p

an+p ≤ 1.
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Corollary 2.9 If f ∈ S∗scT (m, p, α, β) then

an+p ≤
(

p

n+ p

)m
β (α + (1− (−1)p)) + (−1)p(

n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

) . (14)

The equality in (14) is attained for the function f(z) given by

f(z) = zp −
(

p

n+ p

)m
β (α + (1− (−1)p)) + (−1)p(

n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)zn+p. (15)

Remark 2.10

• Putting m = 0 in the above theorems , we obtain the result obtained in ([9] with
δ = 0);

• Putting p = 1 in the above theorems, we obtain the result obtained in [1];

• Putting p = 1 and m = 0 in the above theorems, we obtain the result obtained in
[3, 5] see also ([4] with k = 1 and σ = 0 and [10] with δ = 0);

• Putting p = 1 and m = 1 in the above theorems, we obtain the result obtained in
[7, 8] see also ([23] with k = 1 and σ = 0).

3 Growth and Distortion Theorems

In this section, we give results concerning the growth and extreme points of the three
subclasses S∗sT (m, p, α, β) , S∗cT (m, p, α, β) , S∗scT (m, p, α, β).

Theorem 3.1 Let the function f be defined by (2) and belong to the subclass S∗sT (m, p, α, β).
Then for {z : 0 < |z| = r < 1} ,

rp −
(

p

1 + p

)m
β (α + (1− (−1)p)) + (−1)p(

1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)p+1)r1+p ≤ |f(z)|

≤ rp +

(
p

1 + p

)m
β (α + (1− (−1)p)) + (−1)p(

1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)p+1)r1+p.

Proof. Let f (z) defined by (2). From Theorem 2.2, we have(
1 + p

p

)m (1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

)
β (α + (1− (−1)p)) + (−1)p

∞∑
n=1

an+p

≤
∞∑
n=1

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
β (α + (1− (−1)p)) + (−1)p

an+p ≤ 1.
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That is
∞∑
n=1

an+p ≤
(

p

1 + p

)m
β (α + (1− (−1)p)) + (−1)p(

1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

) . (16)

Using (2) and (16), we have

|f (z)| ≤ |z|p +
∞∑
n=1

an+p |z|n+p

≤ |z|p + |z|1+p
∞∑
n=1

an+p

≤ |z|p + |z|1+p
(

p

1 + p

)m
β (α + (1− (−1)p)) + (−1)p(

1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

)
= rp +

(
p

1 + p

)m
β (α + (1− (−1)p)) + (−1)p(

1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

)r1+p.
Similarly,

|f (z)| ≥ |z|p −
∞∑
n=1

an+p |z|n+p

≥ |z|p − |z|1+p
∞∑
n=1

an+p

≥ |z|p − |z|1+p
(

p

1 + p

)m
β (α + (1− (−1)p)) + (−1)p(

1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

)
= rp −

(
p

1 + p

)m
β (α + (1− (−1)p)) + (−1)p(

1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

)r1+p.
This gives the proof of Theorem 3.1.

We note that result in Theorem 3.1 is sharp for the following function. Next, we state
similar results for functions belongs to S∗cT (m, p, α, β) and S∗scT (m, p, α, β) .

f (z) = zp −
(

p

1 + p

)m
β (α + (1− (−1)p)) + (−1)p(

1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

)z1+p at z = ±r.

Theorem 3.2 Let the function f(z) be defined by (2) and belong to the subclass S∗cT (m, p, α, β).
Then for {z : 0 < |z| = r < 1} ,

rp −
(

p

1 + p

)m
β (α + 2)− 1(

1+p
p

)
(αβ + 1) + 2 (β − 1)

r1+p ≤ |f (z)|
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≤ rp +

(
p

1 + p

)m
β (α + 2)− 1(

1+p
p

)
(αβ + 1) + 2 (β − 1)

r1+p.

The result is the sharp for

f (z) = zp −
(

p

1 + p

)m
β (α + 2)− 1(

1+p
p

)
(αβ + 1) + 2 (β − 1)

z1+p, at z = ±r.

Theorem 3.3 Let the function f(z) be defined by (2) and belong to the subclass S∗scT (m, p, α, β).
Then for {z : 0 < |z| = r < 1} ,

rp −
(

p

1 + p

)m
β (α + (1− (−1)p)) + (−1)p(

1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)r1+p ≤ |f (z)|

≤ rp +

(
p

1 + p

)m
β (α + 1− (−1)p) + (−1)p(

1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)r1+p.
The result sharp for

f (z) = zp −
(

p

1 + p

)m
β [α + (1− (−1)p)] + (−1)p(

1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)z1+p, at z = ±r.

Theorem 3.4 Let f ∈ S∗sT (m, p, α, β) then for {z : 0 < |z| < 1}

prp−1 −
(

p

1 + p

)m
(1 + p) {β [α + (1− (−1)p)] + (−1)p}(
1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

)rp ≤ |f ′ (z)|

≤ prp−1 +

(
p

1 + p

)m
(1 + p) {β [α + (1− (−1)p)] + (−1)p}(
1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

)rp.
Theorem 3.5 Let f ∈ S∗cT (m, p, α, β) then for {z : 0 < |z| < 1}

prp−1 −
(

p

1 + p

)m
(1 + p) [β(α + 2)− 1](

1+p
p

)
(αβ + 1) + 2 (β − 1)

rp ≤ |f ′ (z)|

≤ prp−1 +

(
p

1 + p

)m
(1 + p) [β(α + 2)− 1](

1+p
p

)
(αβ + 1) + 2 (β − 1)

rp.
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Theorem 3.6 Let f ∈ S∗scT (m, p, α, β) then for {z : 0 < |z| < 1}

prp−1 −
(

p

1 + p

)m
(1 + p) {β [α + (1− (−1)p)] + (−1)p}(
1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

)rp ≤ |f ′ (z)|

≤ prp−1 +

(
p

p+ 1

)m
(1 + p) {β [α + (1− (−1)p)] + (−1)p}(
1+p
p

)
(βα + 1) + (β − 1)

(
1− (−1)1+p

)rp.
Remark 3.7

• Putting m = 0 in the above theorems , we obtain the result obtained in ([9] with
δ = 0);

• Putting p = 1 in the above theorems, we obtain the result obtained in ([1] with
i = 1);

• Putting p = 1 and m = 0 in the above theorems, we obtain the result obtained in
[3, 5] see also ([4] with k = 1 and σ = 0 and [10] with δ = 0);

• Putting p = 1 and m = 1 in the above theorems, we obtain the result obtained in
[8].

4 Closure theorems

All three subclasses discussed here are closed under convex linear combinations. In this
section, We obtained the closure theorems for the subclasses S∗sT (m, p, α, β) , S∗cT (m, p, α, β)
and S∗scT (m, p, α, β) . We consider the functions fj(z) defined as

fj (z) = zp −
∞∑
n=1

an+p,jz
n+p (an,j ≥ 0, j = 1, 2, ..., l) . (17)

Theorem 4.1 Let the function fj(z) be in the subclass S∗sT (m, p, α, β) , then g(z)
defined as

g(z) =
l∑

j=1

cjfj(z),
l∑

j=1

cj = 1,

also belongs to the subclass S∗sT (m, p, α, β) .

Proof. Since fj(z) are in the subclass S∗sT (m, p, α, β) , it follows from Theorem 2.2 that

∞∑
n=1

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
β [α + (1− (−1)p)] + (−1)p

an+p,j ≤ 1, (j = 1, 2, ..., l).
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Hence,

∞∑
n=1

l∑
j=1

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
β [α + (1− (−1)p)] + (−1)p

cjan+p,j

=
l∑

j=1

 ∞∑
n=1

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
β [α + (1− (−1)p)] + (−1)p

an+p,j

 cj
≤

l∑
j=1

cj = 1.

From Theorem 2.2, it follows that g(z) ∈ S∗sT (m, p, α, β) . This completes the proof of
Theorem 4.1.

Corollary 4.2 Let the function fj(z) be in the subclass S∗cT (m, p, α, β) , then g(z)
defined as

g(z) =
l∑

j=1

cjfj(z),
l∑

j=1

cj = 1,

also belongs to the subclass S∗cT (m, p, α, β) .

Corollary 4.3 Let the function fj(z) be in the subclass S∗scT (m, p, α, β) , then g(z)
defined as

g(z) =
l∑

j=1

cjfj(z),
l∑

j=1

cj = 1,

also belongs to the subclass S∗scT (m, p, α, β) .

Corollary 4.4 Let fj(z) (j = 1, 2) defined by (17) be in the subclass S∗sT (m, p, α, β) ,
then

h1(z) = λf1(z) + (1− λ)f2(z) (0 ≤ λ ≤ 1),

belongs to S∗sT (m, p, α, β) .

5 Extrem points

In this section, we determine the extreme points of the subclasses S∗sT (m, p, α, β) , S∗cT (m, p, α, β)
and S∗scT (m, p, α, β) .

Theorem 5.1 Let fp (z) = zp and

fn+p (z) = zp −
(

p

n+ p

)m
β [α + (1− (−1)p)] + (−1)p(

n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)zn+p, p ∈ N, n ≥ 1,
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then f ∈ S∗sT (m, p, α, β) if and only if it can be expressed as follows

f (z) =
∞∑
n=0

λn+pfn+p (z) ,

where λn+p ≥ 0,
∞∑
n=0

λn+p = 1, p ∈ N.

Proof. Let

f (z) =
∞∑
n=0

λn+pfn+p (z)

= zp −
∞∑
n=1

(
p

n+ p

)m
β [α + (1− (−1)p)] + (−1)p(

n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)λn+pzn+p.
Now, since f(z) ∈ S∗sT (m, p, α, β)

∞∑
n=1

(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p(

p

n+ p

)m
β [α + (1− (−1)p)] + (−1)p(

n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)λn+p
=

∞∑
n=1

λn+p = 1− λp ≤ 1, p ∈ N.

Conversely, suppose that f(z) ∈ S∗sT (m, p, α, β) . Then

an+p ≤
(

p

n+ p

)m
β [α + (1− (−1)p)] + (−1)p(

n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

) , n ≥ 1.

Set

λn+p =

(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p

an+p, n ≥ 1, p ∈ N,

and λp = 1−
∞∑
n=1

λn+p then f(z) =
∞∑
n=0

λn+pfn+p(z). This completes the proof of Theorem

5.1.

Corollary 5.2 The extreme points of the subclass S∗sT (m, p, α, β) are the functions
fn+p(z) given by Theorem 5.1.
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Method of proving next Theorems are similarly to that of Theorem 5.1 and extreme
points for functions belonging to S∗cT (m, p, α, β) and S∗scT (m, p, α, β) are obtained.

Theorem 5.3 Let fp (z) = zp,

fn+p (z) = zp −
(

p

n+ p

)m
β(α + 2)− 1(

n+p
p

)
(αβ + 1) + 2 (β − 1)

zn+p, p ∈ N, n ≥ 1

then f ∈ S∗cT (m, p, α, β) if and only if it can be expressed as follows

f (z) =
∞∑
n=0

λn+pfn+p (z) ,

where λn+p ≥ 0,
∞∑
n=0

λn+p = 1, p ∈ N.

Corollary 5.4 The extreme points of the subclass S∗cT (m, p, α, β) are the functions
fn+p(z) given by Theorem 5.3.

Theorem 5.5 Let fp (z) = zp,

fn+p (z) = zp −
(

p

n+ p

)m
β [α + (1− (−1)p)] + (−1)p(

n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)zn+p, p ∈ N, n ≥ 1,

then f ∈ S∗scT (m, p, α, β) if and only if it can be expressed as follows

f (z) =
∞∑
n=0

λn+pfn+p (z)

where λn+p ≥ 0,
∞∑
n=0

λn+p = 1, p ∈ N.

Corollary 5.6 The extreme points of the subclass S∗scT (m, p, α, β) are the functions
fn+p(z) given by Theorem 5.5.

6 Radii of close to convexity, starlikeness and con-

vexity

In this section, radii of close to convexity, starlikeness and convexity for functions belong-
ing to the subclass S∗sT (m, p, α, β) are obtained.
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Theorem 6.1 Let the function f (z) defined by (2) be in the subclass S∗sT (m, p, α, β)
then f (z) is close to convex of order δ in |z| < r1, where

r1 = inf
n≥1


(
p− δ
n+ p

)(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p


1
n

,

0 ≤ δ < 1, n ≥ 1.

(18)

The result is sharp with the extremal function given by (7).

Proof. For close to convexity, it is sufficient to show that
∣∣∣f ′(z)zp−1 − p

∣∣∣ ≤ p− δ for |z| < r1,

we have ∣∣∣∣f ′ (z)

zp−1
− p
∣∣∣∣ ≤ ∞∑

n=1

(n+ p) an+p |z|n .

Thus,
∣∣∣f ′(z)zp−1 − p

∣∣∣ ≤ p− δ if
∞∑
n=1

(
n+ p

p− δ

)
an+p |z|n ≤ 1. (19)

According to Theorem 2.2, we have

∞∑
n=1

(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p

an+p ≤ 1.

Hence (19) will be true if(
n+ p

p− δ

)
|z|n ≤

(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p

or, if

|z| ≤


(
p− δ
n+ p

)(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p


1
n

. (20)

The result follows easily from (20). This completes the proof of Theorem 6.1.

Theorem 6.2 Let the function f (z) define by (2) be in the subclass S∗sT (m, p, α, β) .
Then f (z) is starlike in |z| < r2, where

r2 = inf
n≥1


(

p− δ
n+ p− δ

)(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p


1
n

, 0 ≤ δ < 1, n ≥ 1.

(21)
The result is sharp with the extremal function given by (7).
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Proof. To find the required result, it is sufficient to prove that∣∣∣∣zf ′ (z)

f (z)
− p
∣∣∣∣ ≤ p− δ, |z| ≤ r2,

where r2 is given by (21). Now

∣∣∣∣zf ′ (z)

f (z)
− p
∣∣∣∣ ≤

∞∑
n=1

nan+p |z|n

1−
∞∑
n=1

an+p |z|n
.

The above expression is less then p− δ, if

∞∑
n=1

(
n+ p− δ
p− δ

)
an+p |z|n ≤ 1. (22)

Using the fact f (z) ∈ S∗sT (m, p, α, β) if and only if

(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p

an+p ≤ 1.

Hence (22) will be true if

(
n+ p− δ
p− δ

)
|z|n ≤

(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p

.

Or, equivalently,

|z| ≤


(

p− δ
n+ p− δ

)(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p


1
n

. (23)

The result follows easily from (23). This completes the proof of Theorem 6.2.

Theorem 6.3 Let the function f (z) defined by (2) be in the subclass S∗sT (m, p, α, β) ,
then f (z) is convex in |z| < r3, where

r3 = inf
n≥1


(
n+ p

p

)m
(
n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p

( p (p− δ)
(n+ p) (n+ p− δ)

)
1
n

(24)
The result is sharp with the extremal function given by (7).
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Proof. It is sufficient to prove that∣∣∣∣zf ′′ (z)

f ′ (z)
+ 1− p

∣∣∣∣ ≤ p− δ, |z| ≤ r3,

where r3 given by (24). Indeed, we find that

∣∣∣∣zf ′′ (z)

f ′ (z)
+ 1− p

∣∣∣∣ ≤
∞∑
n=1

n (n+ p) an+p |z|n

p−
∞∑
n=1

(n+ p) an+p |z|n
.

Thus
∣∣∣ zf ′′(z)f ′(z)

+ 1− p
∣∣∣ ≤ p− δ, if

∞∑
n=1

(n+ p) (n+ p− δ) an+p |zn|
p (p− δ)

≤ 1. (25)

Using Theorem 2.2 then (25) will be true if

(n+ p) (n+ p− δ)
p (p− δ)

|z|n ≤
(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p

.

Or, equivalent

|z| ≤


(
n+ p

p

)m
(
n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p

( p (p− δ)
(n+ p) (n+ p− δ)

)
1
n

,

(n ≥ 1) .

(26)

The theorem follows easily from (26).

7 Integral Mean inequalities

In this section, integral means for functions belonging to the subclass S∗sT (m, p, α, β) are
obtained. In [18], Silverman found that the function f2(z) = z− z2

2
is often extremal over

the family T . He applied this function to resolve his integral means inequality, conjectured
in [19] and settled in [20]. In this section, we prove Silverman’s conjecture for functions
in the subclass S∗sT (m, p, α, β).

Lemma 7.1 [11] let f, g ∈ A if f ≺ g, then for z = reiθ (0 < r < 1) and δ > 0, we
have

2π∫
0

∣∣f (reiθ)∣∣δ dθ ≤ 2π∫
0

∣∣g (reiθ)∣∣δ dθ,
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Theorem 7.2 Suppose f ∈ S∗sT (m, p, α, β) , δ > 0 and 0 < r < 1 then

2π∫
0

|f (z) |δdθ ≤
2π∫
0

|fp+1 (z)|δ dθ (0 < r < 1, δ > 0) , (27)

where

fp+1(z) = zp −
(

p

1 + p

)m
β [α + (1− (−1)p)] + (−1)p(

1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)zp+1. (28)

Proof. For function f (z) given by (2) the inequality (27) is equivalent to

2π∫
0

∣∣∣∣∣1−
∞∑
n=1

an+pz
n

∣∣∣∣∣
δ

dθ ≤
2π∫
0

∣∣∣∣∣∣1−
(

p

1 + p

)m
β [α + (1− (−1)p)] + (−1)p(

1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)z
∣∣∣∣∣∣
δ

dθ

by Lemma 7.1, it suffices to show that

1−
∞∑
n=1

an+pz
n ≺ 1−

(
p

1 + p

)m
β [α + (1− (−1)p)] + (−1)p(

1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)z.
Thus, by setting

∞∑
n=1

an+pz
n =

(
p

1 + p

)m
β [α + (1− (−1)p)] + (−1)p(

1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)ω (z) ,

and use Theorem 2.2

|ω (z)| =

∣∣∣∣∣∣
∞∑
n=1

(
1 + p

p

)m (1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)
β [α + (1− (−1)p)] + (−1)p

an+pz
n

∣∣∣∣∣∣
≤ |z|

∞∑
n=1

(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p

an+p

≤ |z| .

This completes the proof of Theorem 7.2.

8 A family of integral operator

Saitoh et al.[15] defined the integral operator Jc,p by

Jc,p =
c+ p

zc

∫ z

0

tc−1f(t)dt, (f(z) ∈ S, c > −p, p ∈ N)

= zp +
∞∑
n=1

c+ p

c+ p+ n
an+pz

n+p.
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In this section, a family of integral operators for functions belonging to the subclass
S∗sT (m, p, α, β) are discussed.

Theorem 8.1 Let f(z) defined by (2) be in the subclass S∗sT (m, p, α, β) and c be a
real number such that c > −p. Then the function F (z) defined by

F (z) =
c+ p

zc

z∫
0

tc−1f (t) dt, (29)

also belongs to the subclass S∗sT (m, p, α, β) .

Proof. From the representation of F (z), it follows that

F (z) = zp −
∞∑
n=1

bn+pz
n+p, bn+p =

c+ p

c+ n+ p
an+p.

Therefore

∞∑
n=1

(
n+ p

p

)m [(
n+ p

p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
bn+p

=
∞∑
n=1

(
n+ p

p

)m [(
n+ p

p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)] c+ p

c+ n+ p
an+p

≤
∞∑
n=1

(
n+ p

p

)m [(
n+ p

p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
an+p

≤ β [α + (1− (−1)p)] + (−1)p ,

since f (z) ∈ S∗sT (m, p, α, β). By Theorem 2.2, F (z) ∈ S∗sT (m, p, α, β) .

Theorem 8.2 Let c be a real number such that c > −p. If F (z) ∈ S∗sT (m, p, α, β),
then the function F (z) define by (29) is p-valent in |z| < r∗, where

r∗ = inf
n≥1

 (c+ p)

(n+ p) (c+ n+ p)

(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p


1
n

.

The result is sharp.

Proof. Let F (z) given by (2) . It follows from (29) that

f (z) =
z1−c

c+ p
[zcF (z)]′ = zp −

∞∑
n=1

c+ n+ p

c+ p
an+pz

n+p, c > −p.
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In order to obtain the required result, it suffices to show that
∣∣∣f ′(z)zp−1 − p

∣∣∣ < 1 in |z| < r∗.

Now ∣∣∣∣f ′ (z)

zp−1
− p
∣∣∣∣ =

∞∑
n=1

(n+ p) (c+ n+ p)

(c+ p)
an+pz

n.

Thus
∣∣∣f ′(z)zp−1 − p

∣∣∣ < 1, if
∞∑
n=1

(n+ p) (c+ n+ p)

(c+ p)
an+pz

n < 1. (30)

Hence, by using (3) and (30) will be satisfied if

(n+ p) (c+ n+ p)

(c+ p)
|z|n <

(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p

i.e., if

|z| <


(

c+ p

(n+ p) (c+ n+ p)

)(
n+ p

p

)m (n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)
β [α + (1− (−1)p)] + (−1)p


1
n

.

Therefore F (z) in p-valent in |z| < r∗. Sharpness follows, if we take

f (z) = zp−
(

(n+ p) (c+ n+ p)

c+ p

)(
p

n+ p

)m
β [α + (1− (−1)p)] + (−1)p(

n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)zn+p.
9 Partial sums

Silvia [22] studies the partial sums of convex functions of order α (0 ≤ α < 1) . Later on,
Silverman [21] and several researchers studied and generalized the results on partial sums
for various subclasses of analytic functions. In this section, inequalities involving partial
sums of f (z) ∈ A(p) have discussed Let non zero partial sums of f (z) ∈ A(p) of the form
(1) define as follows.

fp (z) = zp, fk (z) = zp +
k∑

n=1

an+pz
n+p, k ≥ 1.

Theorem 9.1 Let f (z) ∈ S∗s (m, p, α, β) be given by (1) and satisfies the condition (3)
and

cn+p ≥
{

1, n = 1, 2, ..., k;
ck+p+1 n = k + 1, k + 2, ...,
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where

cn+p =

(
n+ p

p

)m [(n+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
β [α + (1− (−1)p)] + (−1)p

. (31)

Then

<
{
f (z)

fk (z)

}
> 1− 1

ck+p+1

(z ∈ U ;n ∈ N) (32)

and

<
{
fk (z)

f (z)

}
>

ck+p+1

1 + ck+p+1

(33)

Proof. For the coefficients cn+p given by (31) , it is not difficult to verify that

cn+p+1 > cn+p > 1.

Therefore, we have

k∑
n=1

|an+p|+ ck+p+1

∞∑
n=k+1

|an+p| ≤
∞∑
n=1

cn+p |an+p| ≤ 1. (34)

Set

g1 (z) = ck+p+1

{
f (z)

fk (z)
−
(

1− 1

ck+p+1

)}

= 1 +

ck+p+1

∞∑
n=k+1

an+pz
n

1 +
k∑

n=1

an+pzn
,

and applying (34), we find that

∣∣∣∣g1 (z)− 1

g1 (z) + 1

∣∣∣∣ ≤ cn+p+1

∞∑
n=k+1

|an+p|

2− 2
k∑

n=1

|an+p| − ck+p+1

∞∑
n=k+1

|an+p|
≤ 1,

if
∞∑
n=1

|an+p|+ ck+p+1

∞∑
n=k+1

|an+p| ≤ 1.

From the condition (4), it is sufficient to show that

∞∑
n=1

|an+p|+ ck+p+1

∞∑
n=k+1

|an+p| ≤
∞∑
n=1

cn+p |an+p|
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which is equivalent to

k∑
n=1

(cn+p − 1) |an+p|+
∞∑

n=k+1

(cn+p − ck+p+1) |an+p| ≥ 0,

which readily yields the assertion (32) of Theorem 9.1. In order to see that

f(z) = zp +
zk+p+1

ck+p+1

(35)

gives sharp result, we observe that for z = re
iπ
k+1 that f(z)

fk(z)
= 1 + zk+1

ck+p+1
→ 1 − 1

ck+p+1
as

z → 1−. Similarly, if we take

g2 (z) = (1 + ck+p+1)

{
fk (z)

f (z)
− ck+p+1

1 + ck+p+1

}

= 1−
(1 + ck+p+1)

(
∞∑

n=k+1

an+pz
n

)
1 +

∞∑
n=1

an+pzn

and making use of (34), we find that

∣∣∣∣g2 (z)− 1

g2 (z) + 1

∣∣∣∣ ≤ (1 + ck+p+1)
∞∑

n=k+1

|an+p|

2− 2
k∑

n=1

|an+p| − (1− ck+p+1)
∞∑

n=k+1

|an+p|

which leads us immediately to the assertion (33) of Theorem 9.1.

Theorem 9.2 Let f (z) ∈ S∗s (m, p, α, β) be given by (1) and satisfies the condition
(3). Then

<
{
f ′ (z)

f ′k (z)

}
≥ 1− k + p+ 1

ck+p+1

(36)

and

<
{
f ′k (z)

f ′ (z)

}
≥ ck+p+1

k + p+ 1 + ck+p+1

, (37)

where cn+pdefined by (31) and satisfies the condition

cn+p ≥

{ n+p
p
, n = 1, 2, ..., k, p ∈ N;(

ck+p+1

k+p+1

)(
n+p
p

)
n = k + 1, k + 2, ...,

The results are sharp with the function f(z) given by (35).
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Proof. Set

g (z) =
ck+p+1

k + p+ 1

{
f ′ (z)

f ′k (z)
−
(

1− k + p+ 1

ck+p+1

)}

=

1 +
ck+p+1

k+p+1

∞∑
n=k+1

(n+p
p

)an+pz
n +

k∑
n=1

(n+p
p

)an+pz
n

1 +
k∑

n=1

(n+p
p

)an+pzn
,

then, we find that

∣∣∣∣g (z)− 1

g (z) + 1

∣∣∣∣ ≤
ck+p+1

k+p+1

∞∑
n=k+1

(n+p
p

) |an+p|

2− 2
k∑

n=1

(n+p
p

) |an+p| − ck+p+1

k+p+1

∞∑
n=k+1

(n+p
p

) |an+p|
≤ 1,

if
k∑

n=1

(
n+ p

p
) |an+p|+

ck+p+1

k + p+ 1

∞∑
n=k+1

(
n+ p

p
) |an+p| ≤ 1. (38)

Since the left side of (38) is bounded above by
∞∑
n=1

cn+p |an+p| if

k∑
n=1

(
cn+p −

(
n+ p

p

))
|an+p|+

∞∑
n=k+1

(
cn+p −

ck+p+1

k + p+ 1

(
n+ p

p

))
|an+p| ≥ 0

and the proof of (36) is completed.
To prove the result (37), we define the function h(z) by

h (z) =
k + p+ 1 + ck+p+1

k + p+ 1

{
f ′k (z)

f ′ (z)
− ck+p+1

k + p+ 1 + ck+p+1

}

= 1−

(
1 +

ck+p+1

k+p+1

) ∞∑
n=k+1

(n+p
p

)an+pz
n

1 +
∞∑
n=1

(n+p
p

)an+pzn
,

then, we find that

∣∣∣∣h (z)− 1

h (z) + 1

∣∣∣∣ ≤
(

1 +
ck+p+1

k+p+1

) ∞∑
n=k+1

(n+p
p

)an+p

2− 2
k∑

n=1

(n+p
p

) |an+p| −
(

1 +
ck+p+1

k+p+1

) ∞∑
n=k+1

(n+p
p

) |an+p|
≤ 1,

which leads us to the assertion (37) of Theorem 9.2.
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10 Subordination Result

In this section we obtain subordination theorem for the subclass S∗s (m, p, α, β). To prove
our result we need the following definitions and lemma.

Definition 10.1 [12] For f, g ∈ A, we say that the function f is subordinate to g,
if there exists a Schwarz function w, with w(0) = 0 and |w(z)| < 1, z ∈ U, such that
f(z) = g(w(z)) for all z ∈ U. This subordination is usually denoted by f(z) ≺ g(z). It
is well-known that, if the function g is univalent in U , then f(z) ≺ g(z) is equivalent to
f(0) = g(0) and f(U) ⊂ g(U).

Definition 10.2 [26] A sequence {bn}∞n=1 of complex numbers is said to be a subordi-
nating factor sequence, if for each function f of the form f(z) =

∑∞
n=1 anz

n is analytic,
univalent and convex in U, we have the subordination given by

∞∑
n=1

bnanz
n ≺ f (z) (z ∈ U, a1 = 1) .

Lemma 10.3 [26] The sequence {bn}∞n=1 is a subordinating factor sequence if and only
if

<

(
1 + 2

∞∑
n=1

bnz
n

)
> 0 (z ∈ U) . (39)

Theorem 10.4 Let f ∈ S∗s (m, p, α, β) and g ∈ K then(
1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)
p
]

2
{(

1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)
p
]

+ β [α + (1− (−1)p)] + (−1)p
}

f (z)

zp−1
∗ g (z) ≺ g (z) , (z ∈ U) , (40)

and

<
(
f (z)

zp−1

)
(41)

> −

{(
1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
+ β [α + (1− (−1)p)] + (−1)p

}
(

1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)] .

The constant factor(
1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
2
{(

1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
+ β [α + (1− (−1)p)] + (−1)p

}
cannot be replaced by a larger number.
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Proof. Let a function f of the form (1) belong to the subclass S∗s (m, p, α, β) and suppose
that a function g of the form

g (z) =
∞∑
n=1

cnz
n (c1 = 1; z ∈ U) ,

belongs to the subclass K. Then(
1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
2
{(

1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
+ β [α + (1− (−1)p)] + (−1)p

}
(
f (z)

zp−1
∗ g (z)

)
=
∞∑
n=1

bncnz
n.

where

bn =


( 1+p

p )
m

[( 1+p
p )(αβ+1)+(β−1)(1−(−1)1+p)]

2{( 1+p
p )

m
[( 1+p

p )(αβ+1)+(β−1)(1−(−1)1+p)]+β[α+(1−(−1)p)]+(−1)p} if n = 1,

( 1+p
p )

m
[( 1+p

p )(αβ+1)+(β−1)(1−(−1)1+p)]
2{( 1+p

p )
m

[( 1+p
p )(αβ+1)+(β−1)(1−(−1)1+p)]+β[α+(1−(−1)p)]+(−1)p}an+p+1 if n > 1.

Thus, by Definition the subordination result (39) holds true if {bn}∞n=1 is the subordinating
factor sequence. Since(

n+ p

p

)m [(
n+ p

p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
an+p

≥
(

1 + p

p

)m [(
1 + p

p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
an+p, (n ≥ 1, n ∈ N) ,

we have

<

(
1 + 2

∞∑
n=1

bnz
n

)

≥ 1−

(
1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
(β − 1)

(
1− (−1)1+p

){(
1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
+ β [α + (1− (−1)p)] + (−1)p

}r
−
∞∑
n=2

(
1+p
p

)m [(
1+p
p

)
(αβ + 1) +

]
{(

1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
+ β [α + (1− (−1)p)] + (−1)p

}
|an+p| rn+p.
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Thus, by using Theorem 2.1 we obtain

<

(
1 + 2

∞∑
n=1

bnz
n

)

≥ 1−

(
1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]{(
1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
+ β [α + (1− (−1)p)] + (−1)p

}r
− β [α + (1− (−1)p)] + (−1)p{(

1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)]
+ β [α + (1− (−1)p)] + (−1)p

}r
= 1− r > 0 (|z| = r < 1) .

This evidently proves the inequality (39) and hence the subordination result inequality
(40). Inequality (41) follows from (40) by taking

g (z) =
z

1− z
=
∞∑
n=1

zn (z ∈ U)

Next, we observe that the function

f(z) = z −
(

p

n+ p

)m
β [α + (1− (−1)p)] + (−1)p(

1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)1+p

)z1+p (z ∈ U)

clearly f(z) belongs to the subclass S∗s (m, p, α, β) for this function (40) becomes(
1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
2
{(

1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
+ β [α + (1− (−1)p)] + (−1)p

} f (z)

zp−1
≺ z

1− z

it is easily verified that

min

{
<
(

( 1+p
p )

m
[( 1+p

p )(αβ+1)+(β−1)(1−(−1)n+p)]
2{( 1+p

p )
m

[( 1+p
p )(αβ+1)+(β−1)(1−(−1)n+p)]+β[α+(1−(−1)p)]+(−1)p}

f (z)

zp−1

)}
= −1

2

and the constant (
1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
2
{(

1+p
p

)m [(
1+p
p

)
(αβ + 1) + (β − 1)

(
1− (−1)n+p

)]
+ β [α + (1− (−1)p)] + (−1)p

}
can not be replaced by any larger one.

11 Open Problem

Discuss all the classes properties using integral operator.
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