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1 Introduction

After spaces of differential forms were introduced in [1,2], the study of A-
harmonic equations for differential forms has been developed rapidly. Many
interesting results concerning A-harmonic equations have been established re-
cently (see [3-5] and the references therein). Differential forms has many im-
portant applications in many fields, such as general relativity (see [6]), theory
of elasticity (see [7]), electromagnetism (see [8-9]), and differential geometry
(see [10]) etc. Hence, differential forms have become invaluable tools for many
fields. With the in-depth study of nonlinear problems in natural science and
engineering, constant exponent spaces express their limitations in applications.
For example, constant exponent spaces are not adequate in studies on nonlin-
ear problems with variable exponential growth. This is a new research field
and reflects physical phenomena of a new kind. After Kováčik and Rákosnik
first discussed the Lp(x)(Ω) and W 1,p(x)(Ω) spaces in [11], a lot of research has
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been done concerning these kinds of variable exponent spaces (see [12-15] and
the references therein). In recent years, the theory of problems with variable
exponential growth conditions has important applications in nonlinear elastic
mechanics (see [16]), electrorheological fluids (see [17]) and image processing
(see [18]).

The paper is organized as follows. In Section 2, we will first introduce
the weighted spaces of differential forms Lp(x)(Ω,Λl, ω) and W 1,p(x)(Ω,Λl, ω),
which are the spaces Lp(Ω,Λl) and W p

d (Ω,Λl) respectively (See [2]) when the
variable exponent p(x) reduced to a constant p (1 < p < ∞) and weighted
ω(x) ≡ 1. In Section 3, we will prove our main results. We will always assume
p(x) satisfies

1 < p∗ ≤ p(x) ≤ p∗ <∞ for a.e. x ∈ Ω. (1)

2 Preliminaries

Let e1, e2, ..., en denote the standard orthogonal basis of Rn. The space of all
l-forms in Rn is denoted by Λl(Rn). The dual basis to e1, e2, · · ·, en is denoted
by e1, e2, · · ·, en and referred to as the standard basis for 1-form Λ1(Rn). The
Grassman algebra Λ(Rn) = ⊕Λl(Rn) is a graded algebra with respect to the
exterior products. The standard ordered basis for Λ(Rn) consists of the forms

1, e1, e2, · · ·, en, e1 ∧ e2, · · ·, en−1 ∧ en, · · ·, e1 ∧ e2 · · · ∧en.

For u =
∑
uIe

I ∈ Λl(Rn) and v =
∑
vIe

I ∈ Λl(Rn), the inner product is
obtained by 〈u, v〉 =

∑
uIvI with summation over all l–tuples I = (i1, · · ·il)

and all integers l = 0, 1, · · ·, n. The Hodge star operator (see [20]) ? : Λ(Rn)→
Λ(Rn) defined by the formulas:

?1 = e1 ∧ e2 · · · ∧ en, u ∧ ?v = v ∧ ?u = 〈u, v〉 e1 ∧ e2 · · · ∧ en.

Hence the norm of u is given by the formula |u|2 = 〈u, u〉 = ?(u∧?u) =
∑
u2
I ∈

Λ0(Rn) = Rn. Notice, the Hodge star operator is an isometric isomorphism on
Λ(Rn). Moreover

? : Λl(Rn)→ Λn−l(Rn), ?? = (−I)l(n−l) : Λl(Rn)→ Λl(Rn)

where I denotes the identity map.
Let Ω ⊂ Rn be a bounded domain. The coordinate function x1, x2, · · ·, xn

in Ω ⊂ Rn are considered to be differential forms of degree 0. The 1-forms
dx1, dx2, ..., dxn are constant functions from Ω into Λ1(Rn). The value of dxi
is simply ei, i = 1, 2, · · ·, n. Therefore every l−form u : Ω → Λl(Rn) may be
written uniquely as

u(x) =
∑

uI(x)dxI =
∑

1≤i1<···<il≤n

ui1,···il(x) dxi1 ∧ · · · ∧ dxil
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where the coefficients ui1,···il(x) are distributions from D′(Ω). The exterior
differential d : D′(Ω,Λl)→ D′(Ω,Λl+1) is expressed by

du(x) =
n∑
k=1

∑
1≤i1<···<il≤n

∂ui1,···il(x)

∂xk
dxk ∧ dxi1 ∧ · · · ∧ dxil .

The formal adjoint operator, called the Hodge codifferential, is given by

d? = (−I)nl−1 ? d? : D′(Ω,Λl+1)→ D′(Ω,Λl).

C∞(Ω,Λl) denote the space of infinitely differentiable l-forms on Ω and C∞0 (Ω,Λl)
denote the space C∞(Ω,Λl) with compact support on Ω.

Next we recall the following classes of differential forms with Lp-integrable
coefficients.

Lp(Ω,Λl) is the space of differential l-forms u(x) with coefficients in Lp(Ω),
1 ≤ p ≤ ∞. The norm is given by

||u(x)||Lp(Ω,Λl) =
( ∫

Ω

|u(x)|pdx
) 1

p , 1 ≤ p <∞;

||u(x)||L∞(Ω,Λl) = ess sup
x∈Ω
|u(x)|.

W 1,p(Ω,Λl) is the space of differential l-forms u(x) ∈ Lp(Ω,Λl) such that
du ∈ Lp(Ω,Λl+1) with l = 0, 1, · · ·, n− 1. For W 1,p(Ω,Λl) the norm is

||u(x)||W 1,p(Ω,Λl) = ||u(x)||Lp(Ω,Λl) + ||du(x)||Lp(Ω,Λl+1).

W 1,p
0 (Ω,Λl) is the completion of C∞0 (Ω,Λl) in W 1,p(Ω,Λl) with respect to

the norm ||u(x)||W 1,p(Ω,Λl).

For u(x) =
∑
uI(x)dxI ∈ Lp(Ω,Λl) and ϕ(x) =

∑
ϕI(x)dxI ∈ Lp

′
(Ω,Λn−l)

we have the bilinear function

L(u, ϕ) =

∫
Ω

u ∧ ϕ

satisfying |L(u, ϕ)| ≤ ||u(x)||Lp(Ω,Λl)||ϕ(x)||Lp′ (Ω,Λn−l). For each form ϕ(x) ∈
Lp
′
(Ω,Λn−l) it correspond to a functional Lϕ on Lp

′
(Ω,Λn−l) by setting

Lϕ(u) =

∫
Ω

u ∧ ϕ =

∫
Ω

∑
uI(x)ϕI(x)dx.

Lp(Ω,Λl) and W 1,p(Ω,Λl) are two reflexive Banach spaces for 1 < p <∞. The
correspondence ϕ → Lϕ is an isometric isomorphism form the Banach space
Lp
′
(Ω,Λn−l) to the space [Lp(Ω,Λl)]′, which is dual to Lp(Ω,Λn−l), where p′ is

the conjugate number of p .
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Finally we recall some basic properties of weighted variable exponent Lebesgue
space Lp(x)(Ω, ω) and weighted variable exponent Sobolev space W k,p(x)(Ω, ω),
where Ω ⊂ Rn is a bounded domain.

Let P(Ω) be the set of all Lebesgue measurable functions p : Ω → [1,∞].
For p ∈ P(Ω) we put Ω1 = {x ∈ Ω : p(x) = 1}, Ω∞ = {x ∈ Ω : p(x) = ∞},
Ω0 = Ω\(Ω1 ∪ Ω∞), p∗ = essinfΩ0 p(x) and p∗ = esssupΩ0

p(x). We denote
by ω the Radon measure canonically associated with the weight ω(x) in the
following way:

ω(E) =

∫
E

ω(x)dx =

∫
E

dω.

The weighted variable exponent Lebesgue space Lp(x)(Ω, ω) is the class of all
functions u such that

∫
Ω\Ω∞ |λu(x)|p(x)dω + esssupΩ∞|λu(x)| < ∞ for some

λ = λ(u) > 0, the space Lp(x)(Ω, ω) is a reflexive Banach space equipped with
the following norm

||u||Lp(x)(Ω,ω) = inf
{
λ > 0 :

∫
Ω

|u
λ
|p(x)dω + esssupΩ∞|

u

λ
| ≤ 1

}
.

The weighted variable exponent Sobolev space W k, p(x)(Ω, ω) is the class of all
functions u ∈ Lp(x)(Ω, ω) such that δku = {Dαu : |α| ≤ k} ⊂ Lp(x)(Ω, ω), the
space W k, p(x)(Ω, ω) is a reflexive Banach space equipped with the following
norm

||u||Wk, p(x)(Ω,ω) =
∑
|α|≤k

||Dαu||Lp(x)(Ω,ω).

For a differential l-form u(x) on Ω we define the functional ρp(x) by

ρp(x),Λl(u) =

∫
Ω\Ω∞

|u(x)|p(x)dω + esssupΩ∞|u(x)|.

Definition 2.1. The weighted variable exponent Lebesgue spaces of dif-
ferential l-forms Lp(x)(Ω,Λl, ω) is the set of differential l-forms u such that
ρp(x),Λl(λu) < ∞ for some λ = λ(u) > 0 and we endow it with the following
norm:

||u||Lp(x)(Ω,Λl,ω) = inf{λ > 0 : ρp(x),Λl(
u

λ
) ≤ 1}.

Given p ∈ P(Ω) we define the conjugate function p ′ ∈ P(Ω) by

p ′(x) =


∞ ifx ∈ Ω1,

1 ifx ∈ Ω∞,
p(x)
p(x)−1

ifx ∈ Ω0.

Definition 2.2. The weighted variable exponent Sobolev spaces of differen-
tial l-forms W 1,p(x)(Ω,Λl, ω) is the space of differential l-forms u ∈ Lp(x)(Ω,Λl, ω)
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such that du ∈ Lp(x)(Ω,Λl+1, ω) with l = 0, 1, · · ·, n − 1. For W 1,p(x)(Ω,Λl, ω)
the norm is defined as

||u||W 1,p(x)(Ω,Λl,ω) = ||u||Lp(x)(Ω,Λl,ω) + ||du||Lp(x)(Ω,Λl+1,ω).

W
1,p(x)
0 (Ω,Λl, ω) is the completion of C∞0 (Ω,Λl, ω) in W 1,p(x)(Ω,Λl, ω) with

respect to the norm ||u||W 1,p(x)(Ω,Λl,ω).

3 Main results

Theorem 3.1. If p(x) satisfies (1), then the inequality∫
Ω

〈u(x), v(x)〉dω ≤ C||u(x)||Lp(x)(Ω,Λl,ω)||v(x)||Lp′(x)(Ω,Λl,ω)

holds for every u(x) ∈ Lp(x)(Ω,Λl, ω), v(x) ∈ Lp′(x)(Ω,Λl, ω) with the constant
C dependent on p(x) only.

Since the proof of Theorem 3.1 is similar to the proof of Theorem 2.1 in
[19], we omit it here.

Theorem 3.2. If p(x) satisfies (1), then the space Lp(x)(Ω,Λl, ω) is com-
plete.

Proof. Let {un : un(x) = ΣunI(x)dxI} be a Cauchy sequence in Lp(x)(Ω,Λl, ω).
Then {unI(x)} is a Cauchy sequence in Lp(x)(Ω, ω) for any I. In view of the
completeness of Lp(x)(Ω, ω), {unI(x)} converges in Lp(x)(Ω, ω). Suppose that
unI(x) → uI(x) in Lp(x)(Ω, ω). Now let u(x) = ΣuI(x)dxI ∈ Lp(x)(Ω,Λl, ω),
we obtain that un(x)→ u(x) in Lp(x)(Ω,Λl, ω). Now we complete the proof.

Theorem 3.3. If p(x) satisfies (1), then the space Lp(x)(Ω,Λl, ω) is reflex-
ive.

Proof. We will show that the dual of Lp(x)(Ω,Λl, ω) is Lp
′(x)(Ω,Λn−l, ω) in

steps.
(1) For fixed v(x) =

∑
vI(x)dxI ∈ Lp

′(x)(Ω,Λn−l, ω) we define a linear
functional

Lv(u) =

∫
Ω

ω(x) · (u ∧ v) =

∫
Ω

∑
uI(x)vI(x)dω. (2)

where u(x) =
∑
uI(x)dxI ∈ Lp(x)(Ω,Λl, ω). By Theorem 2.1 we have

|Lv(u)| ≤ C||u(x)||Lp(x)(Ω,Λl,ω)||v(x)||Lp′(x)(Ω,Λn−l,ω),

that is to say, Lv(·) is a bounded linear functional on Lp(x)(Ω,Λl, ω), i.e. Lv(·)
belongs to [Lp(x)(Ω,Λl, ω)]′.
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(2) By Theorem 2.3 in [19], we know that each continuous linear func-
tional L′ ∈ [Lp(x)(Ω, ω)]′ can be represented uniquely in the form L′(uI) =∫

Ω
uI(x)vL′(x)dω for some vL′ ∈ Lp

′(x)(Ω, ω). So we conclude that each con-

tinuous linear functional L ∈ [Lp(x)(Ω,Λl, ω)]′ can be represented uniquely in
the form (2).

(3) We shall show ||v(x)||Lp′(x)(Ω,Λn−l,ω) ≤ C||Lv|| with the constant C de-
pending only on p(x). We take

u(x) =
|v(x)|p′(x)−2

||v(x)||
1

p(x)−1

Lp′(x)(Ω,Λl,ω)

(
? v(x)

)
,

then

||u(x)||Lp(x)(Ω,Λl,ω) = inf{λ > 0 :

∫
Ω

(
|v(x)|

λp(x)−1||v(x)||Lp′(x)(Ω,Λn−l,ω)

)p
′(x)dω ≤ 1} = 1.

Moreover

|Lv(u)| =
∣∣ ∫

Ω

ω(x) · (u ∧ v)
∣∣

=

∫
Ω

(
|v|

||v(x)||Lp′(x)(Ω,Λl,ω)

)p
′(x)||v(x)||Lp′(x)(Ω,Λn−l,ω)dω

≥
||v(x)||Lp′(x)(Ω,Λl,ω)

2
p∗

p∗−1

∫
Ω

(
|v|

1
2
||v(x)||Lp′(x)(Ω,Λn−l,ω)

)p
′(x)dω

≥
||v(x)||Lp′(x)(Ω,Λl,ω)

2
p∗

p∗−1

.

Therefore
||v(x)||Lp′(x)(Ω,Λl,ω) ≤ 2

p∗
p∗−1 ||Lv||.

Now we reach the conclusion [Lp(x)(Ω,Λl, ω)]′ = Lp
′(x)(Ω,Λn−l, ω) and fur-

thermore Lp(x)(Ω,Λl, ω) is reflexive.

By Theorem 3.2 and Theorem 3.3, we have
Corollary 3.2. If p(x) satisfies (1), then the space Lp(x)(Ω,Λl, ω) is a

reflexive Banach space.
Theorem 3.4. If p(x) satisfies (1), then the space W 1,p(x)(Ω,Λl, ω) is a

reflexive Banach space.
Proof. We treat W 1,p(x)(Ω,Λl, ω) in a natural way as a subspace of the

product space Lp(x)(Ω,Λl, ω) × Lp(x)(Ω,Λl+1, ω). Then we need only to show
that W 1,p(x)(Ω,Λl, ω) is a closed subspace of Lp(x)(Ω,Λl, ω)×Lp(x)(Ω,Λl+1, ω).
Let {un : un(x) =

∑
unI(x)dxI} ⊂ W 1,p(x)(Ω,Λl, ω) be a convergent sequence.

Then {unI} is a convergent sequence in Lp(x)(Ω, ω). In view of Theorem 2.2
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in [19], there exists uI ∈ L p(x)(Ω, ω) such that unI → uI in L p(x)(Ω, ω) for any
I. Hence we conclude that un → u =

∑
uI(x)dxI in L p(x)(Ω,Λl, ω). Similarly

there exists ũ ∈ Lp(x)(Ω,Λl+1, ω) such that dun → ũ in Lp(x)(Ω,Λl+1, ω). For
any ϕ ∈ C∞0 (Ω,Λl+1) ⊂ L∞(Ω,Λl+1)∫

Ω

〈dun, ϕ〉dx =

∫
Ω

〈un, d?ϕ〉dx,

we have ∫
Ω

〈ũ, ϕ〉dx =

∫
Ω

〈u, d?ϕ〉dx.

by letting n → ∞. Since C∞0 (Ω) is dense in Lp(x)(Ω), we obtain that du = ũ.
Then it is immediate thatW 1,p(x)(Ω,Λl, ω) is a closed subspace of Lp(x)(Ω,Λl, ω)×
Lp(x)(Ω,Λl+1, ω). Now we complete the proof of Theorem 3.4.

Let weighted ω(x) = 1, we have
Corollary 3.2. If p(x) satisfies (1), then the spaces Lp(x)(Ω,Λl) and

W 1,p(x)(Ω,Λl) are a reflexive Banach space.

4 Open Problem

With regards to the problems solved, the this work can also be applied to
other spaces. For example, can discuss the properties on the weighted variable
exponent spaces of differential forms on Riemannian manifold.
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