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Abstract 

        In this work we introduce an inverse method to analyze simple flows through 

variable permeability porous layers. Assuming that the velocity distribution is 

given, or specified as a function of the permeability, the governing equation is 

solved for the permeability distribution, then the velocity function is then 

recovered. Poiseuille-type flow involving Brinkman’s equation is considered 

together with other flow problems involving coupled parallel flow through 

composite layers. In case of flow through a Brinkman-Forchheimer layer over a 

Darcy layer, the governing equation was transformed into an Emden-Fowler 

equation whose solution provides a method for determining Beavers and Joseph 

slip parameter.  
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1      Introduction 

Many excellent reviews of flow through and over porous layers are available in the 

literature, (cf. [2,5,8,11]) and discuss all aspects of the flow phenomena, including the various flow 

models and their validity, applications, solutions and analysis of the model equation. 

Modelling fluid flow through porous layers with variable permeability can be argued to be 

more realistic in representing natural phenomena as compared to flow through constant 

permeability layers [1], and finds applications in industry and nature, and has implications in the 

analysis of the transition layer [9]. However, analysis of this type of flow presents challenges at 
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more than one front, including modelling permeability variations and solutions to the resulting 

governing equations. The momentum equation in this type of unidirectional flow involves two 

functions to be solved for: velocity and permeability. If permeability distribution is specified then 

velocity can be solved for.  

A number of variable permeability models have been introduced and successfully analyzed 

in the literature [1], and are based mainly on specifying the permeability distribution and solving 

the resulting governing equation for the velocity function (cf. [1,6] and the references therein). In 

a recent article however, [6], the authors used a non-dimensionalizing procedure that resulted in a 

variable permeability distribution, for Brinkman’s equation, that is tied to the velocity distribution. 

We capitalize on this idea in the current work where we consider simple flows in which the velocity 

is pre-defined in terms of the variable permeability in order to obtain a permeability equation that 

can be solved for the permeability distribution and subsequently the velocity is recovered. We 

illustrate this inverse approach by considering five flow configurations that involve Brinkman’s 

equation and the Brinkman-Forchheimer equation and obtain a permeability equation that is easily 

solved. In case of the Brinkman-Forchheimer equation, we reduce the permeability equation to the 

Emden-Fowler equation, [4,10], whose solution is readily available. Inverse analysis in this case 

can provide information on the slip parameter of the Beavers and Jospeh condition, [3].   

 

2      Problem Formulation 

The steady flow of a viscous, incompressible fluid, in the absence of body forces, through 

porous media is governed by the continuity equation, namely 

 

0• v


                                                                                                                                     …(1) 

 

and the following general momentum equation that incorporates Darcian and non-Darcian effects, 

known as the Brinkman- Forchheimer equation: 
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wherein p  is the pressure, k  is the permeability, v


is the velocity vector,   is the fluid density, 

fC is the Forchheimer drag coefficient,   is the base fluid viscosity, and eff  is the effective 

viscosity of the fluid saturating the porous medium.  

 

For parallel, unidirectional flow through a porous layer with variable permeability, 

governing equations (1) and (2) reduce to: 
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where )(yuu   is the tangential velocity component. 
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If the permeability distribution )(yk  is given, equation (3) can be solved for the velocity 

distribution )(yu . On the other hand, if the velocity distribution )(yu  is given as a function of the 

permeability, equation (3) gives an equation that the permeability has to satisfy. Once the 

permeability distribution is solved for, the associated velocity distribution can be obtained. Thus, 

if 

 

))(()( ykfyu                                                                                                                             …(4) 

 

then (3) takes the form 
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Clearly, with the knowledge of either )(yk  or ))(( ykf , equation (5) can be solved for the other 

function. In what follows we consider simple flows in which ))(( ykf  is given. 

 

3      Simple Flows 

3.1 Flow through a variable-permeability Brinkman porous layer between parallel plates 
 

 

Consider the unidirectional flow through a Brinkman porous layer between solid, parallel 

plates located at 0y  and hy  . On the solid walls, the no-slip velocity condition 

0)()0(  huu  and the non-penetrability condition 0)()0(  hkk are imposed. We assume that 

the channel is “squeezed” to the point that permeability is continuously varying. The flow is 

governed by Brinkman’s equation which takes the following form for the configuration in Fig. 1, 

obtained by setting fC  to zero in equation (3): 
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      y 

 

   

    y=h   

   Brinkman porous layer   Flow direction 

     y=0  

                            

            Fig. 1. Representative sketch of flow between parallel plates 
 

 

Assuming that equation (4) is valid for this flow, equation (5) reduces to: 
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Equation (7) can be solved for )(yk  if given the form of ))(( ykf . For the sake of 

illustration, assume that 

 

Akykfyu  ))(()(                                                                                                                    …(8) 

 

where A  is a constant. Using (8) in (7), we obtain 
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Solution to (9) satisfying 0)()0(  hkk  is given by 
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and velocity distribution (8) takes the form 
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Equations (10) and (11) give maximum permeability, maxk , and maximum velocity, maxu , at 

2/hy  respectively as  
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We note that equation (10) is the dimensional form of the permeability function obtained in [6] 

through non-dimensionalizing.   

 

 

3.2 Flow through a variable-permeability finite Brinkman porous layer over a semi-infinite 

Darcy layer 

 

Consider the unidirectional flow through a Brinkman porous layer between 0y  and 

hy  , over a semi-infinite Darcy layer of constant permeability, depicted in Fig. 2. The flow is 
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governed by Brinkman’s equation (6) in the Brinkman layer and in the Darcy layer by Darcy’s 

law, of the form 
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where 
D

u1  is the Darcy velocity, 1k  is the constant permeability in the Darcy layer and 0
dx

dp
 is 

the common driving pressure gradient. 

On the solid wall at hy  , the no-slip velocity condition 0)( hu  and the non-penetrability 

condition 0)( hk  are imposed. At the interface, 0y , the following Beavers and Joseph 

condition [3] is valid 

 

 
 

      y 

 

   

    y=h   

   Brinkman porous layer   Flow direction 

     y=0  

                        Darcy semi-infinite layer 

 

 

             Fig. 2. Representative sketch of flow through a finite Brinkman  

                         layer over a semi-infinite Darcy layer 
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where                 
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Assuming that (8) is valid, then using (8) in (6) results in 
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Solution to (17) takes the form 
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where  21,cc  are arbitrary constants. Velocity in the Brinkman layer is thus given by 
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and its derivative is given by 
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Using 0)( hu , in (19), we obtain 
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From (16) and (19) we obtain 
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and from (20) we obtain  
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Using (14), (22) and (23) in (15) we obtain 
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Equations (21) and (24) are solved for the arbitrary constants 1c  and 2c  and yield 
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With 1c  and 2c  determined, the flow quantities are described as follows. 
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3.3 Shear-driven flow in a semi-infinite Brinkman-Forchheimer porous layer 

 

Consider the flow through a semi-infinite porous layer, shown in Fig. 3. The flow is 

generated by an applied pressure gradient and a moving plate, with velocity U , located at hy  . 

The flow is governed by equation (3), valid on the interval  yh . Velocity conditions to be 

satisfied are: 

 

Uhu )( ;  0)( u ;  0)( u .                                                                                                   …(31) 

 

 

      y 

 

   

       

         Semi-infinite porous layer  

     y=h           Plate moving with velocity U 

                            

            Fig. 3. Representative sketch of moving plate 
 

 

In order to satisfy (4), (5) and (31) we assume that 
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Equation (5) thus reduces to 
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Comparing (33) with the Emden-Fowler equation, [4,10], namely 
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whose solution is given by 
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we see that 0n  and 
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Velocity distribution thus takes the form 
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Using (39), we obtain velocity of the moving plate as 
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Conditions (31) are thus satisfied, as can be seen from (39) and (40), wherein 0)()(  uu . 

Furthermore, equation (41) shows the parameters that the velocity of the moving plate depends on 

in order to have the permeability distribution given by (38). 
 

 

3.4 Flow through a Brinkman-Forchheimer layer over a Darcy layer 

 

Consider the coupled, parallel flow through a variable permeability Brinkman-

Forchheimer porous layer of semi-infinite extent (  yh ) over a constant permeability Darcy 

porous layer of semi-infinite extent ( hy  ), shown in Fig. 4.  

 
 

      y 

 

    Brinkman-Forchheimer semi-infinite porous layer  

     y=h          

               Darcy semi-infinite porous layer       

 

 

             Fig. 4. Representative sketch of coupled parallel flow 

 

The assumingly sharp interface between the layers is located at hy  . In the Brinkman-

Forchheimer layer, the flow is governed by equation (3), and in the Darcy layer the flow is 

governed by Darcy’s law, written as: 
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u

D 
1

1                                                                                                                             …(42) 

 

where 
D

u1  is the Darcy velocity and 1k  is the constant permeability in the Darcy layer. The flow 

in both layers is driven by a common constant pressure gradient, 0
dx

dp
. At the interface, hy  , 

Beavers and Joseph condition [3,7] is assumed to be valid, namely 
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where    is a slip parameter, )(1

 hyuu B  is the velocity at the interface obtained from solution 

to (3). Permeability and velocity distributions in the Brinkman-Forchheimer layer are obtained 

from solution to equation (3) and are given by (21) and (22), from which we obtain 
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Upon using (42), (44) and (45) in (43) we obtain the following expression for the slip parameter 

 : 
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Expression (46) indicates that the Beavers and Joseph slip parameter   depends on the 

Darcy constant permeability, viscosity of the base fluid, effective viscosity of the fluid saturating 

the porous layer, density of the fluid, the pressure gradient, location of the interface, thickness of 

the porous layer and the Forchheimer drag coefficient. In order to further illustrate dependence of 

the slip parameter on thickness of the porous layer we consider the situation in the next section. 

 

 

3.5 Flow through a Brinkman-Forchheimer layer sandwiched between two Darcy layers 

 

An interesting variation of the above problem of flow over a Darcy layer is the flow through 

a Brinkman-Forchheimer layer of variable permeability that is bounded from above and below by 

two semi-infinite Darcy layers of constant permeability, as shown in Fig. 5. 

 

 

 

    y 

                Darcy semi-infinite porous layer       

    y=2h    

                Brinkman-Forchheimer porous layer  

     y=h          

                Darcy semi-infinite porous layers       

 

 

 

          Fig. 5. Representative sketch of a Brinkman-Forchheimer porous core 

 

 

The Brinkman-Forchheimer layer spans hyh 2  while the Darcy layers span 

hy   and  yh2 . Equations governing the flow through the given configuration are 

equation (3) in the Brinkman-Forchheimer layer, equation (42) in the lower Darcy layer, and 
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in the upper Darcy layer. Conditions at the interfaces between layers are given by  
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In equations (47)-(49), 1  and 2  are the slip parameters associated with the lower and 

upper interfaces, respectively, 
B

u1  and 
B

u2  are the lower and upper interfacial velocities, 

respectively, Du1  and Du2  are the Darcy velocities in the lower and upper Darcy layers, 

respectively, and 1k  and 2k  are the constant permeabilities in the lower and upper Darcy layers, 

respectively. 

 

Permeability and velocity distributions in the Brinkman-Forchheimer layer are obtained 

from solution to equation (3) and are given by (38) and (39), which yield the following expressions 

for the lower and upper interfacial velocities, respectively: 
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and the following shear stress expressions at the lower and upper interfaces, respectively: 
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Upon using (42), (47) and (50) to (53) in (48) and (49), we can solve for the following 

expression for the slip parameters 1  and 2 : 
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It is clear from (54) and (55) that the slip parameters depend on fluid and medium 

properties, and on the location of the interfaces and the thickness of the Brinkman-Forchheimer 

porous layer. 

 

4      Conclusion 

In this work we introduced an inverse method to analyze simple, unidirectional flows in 

variable permeability porous layers. Rather than specifying a permeability distribution and then 

solving the momentum equation for the velocity, we imposed a velocity distribution that is a 

function of the permeability and solved the momentum equation for the necessary permeability 

distribution. We analyzed five situations that involve simple flows through porous layers where 

the flows were governed by Brinkman’s equation and the Brinkman-Forchheimer equation. In the 

latter case, the governing equation was transformed into an Emden-Fowler equation whose 

solution is well-documented in the literature. The analysis in this work provided some insights into 

the determination of the Beavers and Joseph slip parameter. 

 

5      Open Problem 

 In most of the inverse analysis above, we relied on the particular solution of the Emden-

Fowler equation to provide a variable permeability distribution that satisfies a prescribed velocity 

distribution. When the flow domain is composed of a Brinkman-Forchheimer variable 

permeability porous layer that is bounded by a lower and an upper solid wall on which no-slip and 

no-penetration conditions are imposed, the Brinkman-Forchheimer equation is reduced to the 

Emden-Fowler equation (33). Particular solution to this equation does not satisfy the no-slip, no-

penetration conditions on the solid boundary. There is a need to construct a solution that satisfies 

this Poiseuille-type flow. 
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