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Abstract

In this note, we give some series representations for inte-
grals involving sine and cosine functions.
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1 Introduction

In 2017, V. Furdui posed the following problem in Jozsef Widt International
Mathematical Competition:

W11. Calculate
∫ π/2

0
sinx

(1+
√

sin 2x)
2dx.

Motivated by this problem, we consider four similar integrals involving sine
and cosine functions. For the sake of convenience, let us denote

I =
∫ π/2

0
sinx

(1+
√

sin 2x)
2dx,

J =
∫ π/2

0
cosx

(1+
√

sin 2x)
2dx,

M =
∫ π/4
−π/4

sinx

(1+
√

cos 2x)
2dx,

N =
∫ π/4
−π/4

cosx

(1+
√

cos 2x)
2dx.



2 H. -Zh. Xu and L. Yin

Very obvious, the substitution x = π
2
− t yields I = J . Since the function

sinx

(1+
√

cos 2x)
2 is odd on [π

4
,−π

4
], so, we easily get M = 0. In addition, simple

computation results in

I = I+J
2

= 1
2

∫ π/2
0

sinx+cosx

(1+
√

sin 2x)
2dx

=
√

2
2

∫ π/2
0

cos(x−π/4)

(1+
√

sin 2x)
2dx

∫ π/2
0

cos(x−π/4)

(1+
√

sin 2x)
2dx

=
√

2
∫ π/4

0
cosu

(1+
√

cos 2u)
2du

=
√

2
2
N

by using substitution x − π
4

= u. Comprehensive the above, we only think
about the first integral.

2 main results

Theorem 2.1 The following identity holds true:

I =
∞∑
n=0

Tn
(2n+ 1)4n+1

(2.1)

where Tn = 2·6·10···(4n−10)
3·4·5···(n−1)

.

Proof. Simple computation yields

I = I+J
2

=
√

2
∫ π/4

0
cosu

(1+
√

cos 2u)
2du

=
√

2
∫ π/4

0
cosu

1+2
√

cos 2u+cos 2u
du

=
√

2
∫ π/4

0
cosu

2−2 sin2 u+2
√

1−2 sin2 u
du.

By using substitution sinu = t, we have

I =

√
2

2

∫ √2/2

0

dt

1− t2 +
√

1− 2t2
.

Applying the formula[see [2]]

1− 2x−
√

1− 4x

2x
=
∞∑
n=0

Tnx
n,

we easily obtain
2

1− 2x+
√

1− 4x
=
∞∑
n=0

Tnx
n.



On a Furdui problem 3

So, we have

1

1− t2 +
√

1− 2t2
=
∞∑
n=0

Tn
2n+1

t2n.

Hence, we have

I =
√

2
2

∞∑
n=0

Tn
2n+1

∫ √2/2

0
t2ndt

=
∞∑
n=0

Tn
(2n+1)4n+1 .

This complete the proof.

Corollary 2.2 The sequence Tn first appeared in a letter dated September 4,
1751, Euler proposed to Goldbach. This sequence Tn is closely related to famous
Catalan sequence. In detail, the reader may see reference [[2]].

Theorem 2.3 The following identity holds true:

I =
π

2Γ2 (3/4)

∞∑
n=0

(−1)n(n+ 1)
∞∑
k=0

(−1)k
(
n/4
k

)
22k+1

(4k + 3)[3 · 7 · · · (4k − 1)]2
.

(2.2)

Proof. Using series representation

1

(1 + x)2 =
∞∑
n=0

(−1)n(n+ 1)xn

and substitutions 2x = t, t = π − u, we have

I =
∞∑
n=0

(−1)n(n+ 1)
∫ π/2

0
sinx (sin 2x)n/2dx

= 1
2

∞∑
n=0

(−1)n(n+ 1)
∫ π

0
sin
(
t
2

)
(sin t)n/2dt

= 1
2

∞∑
n=0

(−1)n(n+ 1)
∫ π

0
cos
(
u
2

)
(1− cos2 u)

n/4
du

= 1
2

∞∑
n=0

(−1)n(n+ 1)
∫ π

0
cos
(
u
2

) ∞∑
k=0

(−1)k
(
n/4
k

)
cos2k udu

= 1
2

∞∑
n=0

(−1)n(n+ 1)
∞∑
k=0

(−1)k
(
n/4
k

)∫ π
0

cos
(
u
2

)
cos2k udu.

Using the formula(See the reference [1])∫ π/2

0

cosp−1 x cos(bx)dx =
π

2p
Γ(p)

Γ
(
p+b+1

2

)
Γ
(
p−b+1

2

) (2.3)
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with p = 2k + 1, b = 1
2
, we have

I = 1
2

∞∑
n=0

(−1)n(n+ 1)
∞∑
k=0

(−1)k
(
n/4
k

)
π

22k+1

Γ(2k+1)
Γ(k+5/4)Γ(k+3/4)

= π
2Γ2(3/4)

∞∑
n=0

(−1)n(n+ 1)
∞∑
k=0

(−1)k
(
n/4
k

)
22k+1

(4k+3)[3·7···(4k−1)]2
.

This complete the proof.

3 Open Problem

Open problem 3.1 Let p, q > 0 be two integers. Compute

I(p, q) =

∫ π/n

0

sinx(
1 + p
√

sin qx
)pdx. (3.1)

Open problem 3.2 Compute

T =

∫ π/4

0

tanx(
1 +
√

tan 2x
)2dx. (3.2)
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