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Abstract

This paper investigates G-GCD, finite conductor, and v-
coherence properties for various amalgamated duplication of a
ring along an ideal contexts. Our results generate new families
of examples of this classes of rings with zero-divisors.
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1 Introduction

All rings considered in this paper are commutative with identity element and
all modules are unitary. A ring is called a GCD ring, if all principal ideals
of R are projectives and the intersection of any two principal ideals of R is
a principal ideal of R. And a ring is called a generalized GCD ring (G-GCD
ring for short), if all principal ideals of R are projectives and the intersection
of any two finitely generated flat ideals of R is a finitely generated flat ideal of
R. For more details, see [4, 5].

In [4], Glaz extended the definition of a finite conductor domains to rings
with zero-divisors. Hence, a ring R is a finite conductor, if Ra ∩Rb and (0, c)
are finitely generated ideals of R for each a, b, c ∈ R. It is shown that R is a
finite conductor if and only if any ideal of R with µ(I) ≤ 2 is finitely presented,
where µ(I) denotes the cardinality of minimal set of generators of I; see [4,
Proposition 2.1]. For instance, see [4].
Thus the class of G-GCD ring and the class of coherent rings are included in
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the class of finite conductor rings.

Let I and J be two nonzero fractional ideals of R, and set (I : J) = {x ∈
Q(R)/xJ ⊂ I} (where Q(R) is the total ring of quotients) the fractional ideal
of I and J . We denote by I−1 and Iv respectively the ideals (R : I) and
(R : (R : I)). A nonzero fractional ideal I is said to be v-finite, if Iv = Jv for
some finitely generated fractional ideal J of R.
A ring R is called v-coherent, if (0 : a) and ∩1≤i≤nRai are a v-finite ideals of R
for any element a ∈ R and any finite set of elements a1....an ∈ R. For instance,
see [6].

For two rings A ⊂ B, we say that A is a module retract (or a subring
retract) of B if there exists an A-module homomorphism ϕ : B → A such that
ϕ |A= id |A. ϕ is called a module retraction map. If such a map ϕ exists, B
contains A as an A- module direct summand.

The amalgamated duplication of a ring R along an R-module E submod-
ule of the total ring of quotients T (R); R ./ E, introduced by D’Anna and
Fontana [2], is the following subring of R × T (R) (endowed with the usual
componentwise operations):

R ./ E := { (r, r + e) | r ∈ R and e ∈ E}.

It is obvious that, if in the R-module R⊕E we introduce a multiplicative
structure by setting (r, e)(s, f) := (rs, rf+se+ef), where r, s ∈ R and e, f ∈ E
then, we get the ring isomorphism R ./ E ∼= R ⊕ E. When E2 = 0, this new
construction coincides with the Nagata’s idealization. One main difference be-
tween this constructions, with respect to the idealization (or with respect to
any commutative extension, in the sense of Fossum) is that the ring R ./ E
can be a reduced ring and it is always reduced if R is a domain. If E = I
is an ideal in R then, the ring R ./ I is a subring of R × R. This extension
has been studied, in the general case, and from the different point of view of
pullbacks, by D’Anna and Fontana [2]. As it happens for the idealization, one
interesting application of this construction is the fact that it allows to produce
rings satisfying (or not satisfying) preassigned conditions. Recently, D’Anna
proved that, if R is a local Cohen-Macaulay ring with canonical module ωR

then, R ./ I is a Gorenstein ring if and only if I ∼= ωR, cf. [1]. For instance,
see [1, 2]

In this paper, we study the possible transfer of G-GCD, finite conductor
and v-coherence notions for various amalgamated duplication of a ring along an
ideal contexts. Thereby, new examples are provided which, particulary, enrich
the current literature with new classes of G-GCD rings, finite conductor rings,
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and v-coherence rings with zero-divisors.

2 Problem Formulations

We study the possible transfer of G-GCD, finite conductor and v-coherence
notions for various amalgamated duplication of a ring along an ideal contexts.

3 Main Results

We begin by studying the transfer of G-GCD property between R and his
amalgamated duplication along some ideal I of R.

Theorem 3.1 Let R be a ring and let I(6= 0) be a proper principal ideal of
R. Then R ./ I is not a G-GCD ring in the following cases:

1. R is an integral domain.

2. R is a local ring.

Proof.

1. Let a ∈ I such that I = Ra. Then it is easy to see that O1 = {(0, i), i ∈
I} and O2 = {(i, 0), i ∈ I} are a principal ideals of R ./ I. Consider the
short exact sequence of R ./ I-modules:

(1) 0 → ker(u) → R ./ I
u→ O1 → 0

where u(r, r+ i) = (r, r+ i)(0, a) = (0, (r+ i)a). Then, ker(u) = {(r, 0) ∈
R ./ I/r ∈ I} = O2. Consider also the short exact sequence of R ./ I-
modules:

(2) 0 → ker(v) → R ./ I
v→ O2 → 0

where v(r, r + i) = (r, r + i)(a, 0) = (ra, 0). Then, ker(v) = {(0, i) ∈ R ./
I/i ∈ I} = O1.
We claim that O1 is not projective. Deny. The ideal O1 is projective, and
so the short exact sequence (1) splits. Then O2 is generated by an idem-
potent element (x, 0) with x(6= 0) ∈ I. Hence, (x, 0)2 = (x, 0)(x, 0) =
(x2, 0) = (x, 0). Thus, x2 = x and so x = 1 or x = 0, a contradiction
since a I is a nonzero proper ideal of R. Consequently, O1 is not projec-
tive and so R ./ I cannot be a G-GCD.
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2. By hypothesis I is a principal ideal of R, then so is O1. We claim that
O1 is not projective. Deny O1 is projective. Since R is local, then so
is R ./ I (by [2, Theorem 3.5]). Then O1 is free, a contradiction since
O1O2 = 0. Therefore, O1 is not projective and so R ./ I cannot be a
G-GCD and this completes the proof of the Theorem.

Next, we give new examples of Noetherian rings that are not G-GCD. Note
that, if R is a ring and M is an R-module, as usual we use pdR(M) and fdR(M)
to denote the usual projective and flat dimensions of M , respectively. The clas-
sical global and weak dimension of R are respectively denoted by gldim(R)
and wdim(R).

Example 3.2 Let R be a Noetherian domain and let I be a principal ideal.
Then:

1. R ./ I is a Noetherian ring.

2. R ./ I is not a G-GCD ring.

Proof.

1. By hypothesis, R is a Noetherian domain. Then R ./ I is a Noetherian
ring by [2, Corollary 3.3].

2. Follows immediately from Theorem 4.1.

Example 3.3 Let Z be the ring of integers and let n be an integer. Then
Z ./ nZ is a Noetherian ring that is not G-GCD by Theorem 4.1.

Now, we study the transfer of v-coherence property between a ring R and
his amalgamated duplication along some ideal I of R.

Theorem 3.4 Let R be a ring and let I be an ideal of R. Then:

1. Assume that R is a total ring of quotients and I ⊆ Nil(R). Then R ./ I
is a total ring of quotients; in particular R ./ I is a v-coherent ring.

2. Assume that (R,M) is a local total ring of quotients. Then R ./ I is a
total ring of quotients; in particular R ./ I is a v-coherent ring.
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Proof. In (1) and (2), we have to prove that each element (r, r + i) of R ./ I
is invertible or zero-divisor.

(1) Since R is a total ring of quotients, r is invertible or zero-divisor.
If r is a zero-divisor element, by [?, Proposition 2.2], (r, r + i) is a zero-divisor
element of R ./ I.
If r is invertible in R, then (r, r) is invertible in R ./ I, and hence (r, r + i) =
(r, r) + (0, i) is invertible in R ./ I as a sum of an invertible element and a
nilpotent one (since I ⊆ Nil(R)).
(2) If r ∈ M , then r is non invertible in R, that’s a zero-divisor in R (since R
is a total ring of quotients). By [?, Proposition 2.2], (r, r + i) is a zero-divisor
element of R ./ I.
If r /∈ M , then (r, r + i) /∈ M ./ I, and M ./ I is the maximal ideal of the
local ring R ./ I. Then (r, r + i) is invertible in R ./ I.
Therefore, each element of R ./ I is invertible or zero-divisor, as desired.

Example 3.5 Let R = k[x, y]/(x, y)2 where k is a field, x, y are indetermi-
nates over k. R coincides with its total ring of quotients. Then k[x, y]/(x, y)2 ./
(x, y) is a v-coherent ring which is not G-GCD ring (by Theorem 4.1 and The-
orem 4.2).

Finally we study the the transfer of finite conductor (resp., G-GCD) prop-
erty, when I is a pure ideal of R.

Theorem 3.6 Let R be a semi local ring and let I be a pure ideal of R.
Then:

1. R is a finite conductor ring if and only if R ./ I is a finite conductor
ring.

2. R is a G-GCD ring if and only if R ./ I is a G-GCD ring.

To prove this Theorem, we need the following Lemmas.

Lemma 3.7 [4, page 2835]

1. Faithfully flat ring extensions descend the finite conductor properties.
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2. Let (Ri)i=1,...,m be a family of rings. If Ri is a finite conductor ring for
each i = 1, ...,m, then so is

∏m
i=1 Ri.

3. Every localization of a finite conductor ring at maximal ideal is a finite
conductor.

Lemma 3.8 Let R be a semi local ring with maximal ideals m1, ......mn such
that Rmi

are finite conductor rings for 1 ≤ i ≤ n. Then R is a finite conductor
ring.

Proof. Since Rmi
are a finite conductor rings for all 1 ≤ i ≤ n, then S =∏n

i=1 Rmi
is a finite conductor ring by Lemma 3.7 (2). Moreover, S is a faith-

fully flat extension of R. Consequently, R is a finite conductor ring by Lemma
3.7 (1).

Lemma 3.9 Let R be a commutative ring and let I be a proper ideal of R.
If R is a semi local ring, then so is R ./ I.

Proof. Let M be a maximal ideal of R ./ I. If m = Q ∩ R, then (by
[2, Theorem 3.5]) M ∈ {m1, m2} and mi is a maximal ideal of R, where
m1 = {(p, p + i)/p ∈ m, i ∈ I} and m2 = {(p + i, p)/p ∈ m, i ∈ I}. Since R is
semi local, it clear that R ./ I is semi local.

Lemma 3.10 Let R be a ring and let I be a flat ideal of R. If R ./ I is a
finite conductor (resp., G-GCD) ring, then so is R.

Proof. Since I is a flat ideal of R, R ./ I is a faithfully flat R-module. On the
other hand, by hypothesis, R ./ I is a finite conductor (resp., G-GCD) ring.
Then, by Lemma 3.7 (1) (resp., [4, page 2837]), R is a finite conductor (resp.,
G-GCD) ring.

Corollary 3.11 Let R be a local total ring of quotients and let I be a finitely
generated flat ideal of R. If R is a not finite conductor, then R ./ I is a v-
coherent ring that is not finite conductor .

Proof. Follows immediately from Theorem 4.2 and Lemma 3.10.
Proof. [of Theorem 4.3] The sufficient conditions in (1) and (2) follows from
Lemma 3.10. Hence, we have to prove the necessary conditions.
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(1) Suppose that R is a finite conductor ring. To prove that R ./ I is a
finite conductor ring, we have to show that (R ./ I)M is a finite conductor
ring whenever M is a maximal ideal of R ./ I (by Lemma 3.8 and Lemma 3.9
since R ./ I is semi local). For such ideal, set m := M ∩ R. Then necessarily
M ∈ {M, M ′} where M = {(r, r + i)/r ∈ m, i ∈ I} and M ′ = {(r + i, r)/r ∈
m, i ∈ I} (by [2, Theorem 3.5(b)]). Since I is a pure ideal, Im ∈ {0, Rm} for
any maximal ideal m of R (by [3, Theorem 1.2.15]). Then, testing all cases of
[1, Proposition 7] , we have two cases:

(a) (R ./ I)M
∼= Rm if Im = 0 or I * m.

(b) (R ./ I)M
∼= Rm ×Rm if Im = Rm or I ⊆ m.

Since R is a finite conductor ring, then Rm is also finite conductor ring. There-
fore, so is Rm×Rm (by Lemma 3.7(2)). Hence, (R ./ I)M is a finite conductor
ring. Accordingly, by Lemma 3.8, R ./ I is a finite conductor ring since R ./ I
is semi local.

(2) Assume that R is a G-GCD ring. By [5, Theorem 3.2], to show that
R ./ I is a G-GCD ring, we have to prove that R ./ I is a finite conductor
ring and that (R ./ I)M is a GCD domain whenever M is a maximal ideal of
R ./ I. Using [5, Theorem 3.2], it is clear by (1) that R ./ I is a finite con-
ductor ring. On the other hand, since R is a G-GCD ring, RM is a GCD ring.
Moreover, since I is a pure ideal, inspecting the cases above, we obtain that
(R ./ I)M is a GCD domain whenever M is a maximal ideal of R ./ I. Con-
sequently, R ./ I is a G-GCD ring and this completes the proof of the Theorem.

A simple example of Theorem 4.3 is given by introducing the notion of the
trace of modules. Recall that if M is an R-module, the trace of M , Tr(M),
is the sum of all images of morphisms M → RR, see [8]. Clearly Tr(M) is an
ideal of R.

Example 3.12 Let A be a finite conductor ring, set S = A r ∪Pi where
Pi are finitely many prime ideal, and set R = S−1A. Let M be a projective
R-module. Then:

1. Tr(M) is a pure ideal since M is projective R-module (by [9, pp. 269-
270]).

2. R is a semi local finite conductor ring (by [4, page 2835]).

3. R ./ Tr(M) is a finite conductor ring (by Theorem 4.3).
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4 Conclusion

These are the main results of the paper.

Theorem 4.1 Let R be a ring and let I(6= 0) be a proper principal ideal of
R. Then R ./ I is not a G-GCD ring in the following cases:

1. R is an integral domain.

2. R is a local ring.

Theorem 4.2 Let R be a ring and let I be an ideal of R. Then:

1. Assume that R is a total ring of quotients and I ⊆ Nil(R). Then R ./ I
is a total ring of quotients; in particular R ./ I is a v-coherent ring.

2. Assume that (R,M) is a local total ring of quotients. Then R ./ I is a
total ring of quotients; in particular R ./ I is a v-coherent ring.

Theorem 4.3 Let R be a semi local ring and let I be a pure ideal of R.
Then:

1. R is a finite conductor ring if and only if R ./ I is a finite conductor
ring.

2. R is a G-GCD ring if and only if R ./ I is a G-GCD ring.

5 Open Problem

Question. Let R be a commutative ring and let I be a proper ideal of R. Is R
finite conductor (resp., v-coherent) if and only if so is R ./ I, in general ?
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