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Abstract

Locations of eigenvalues of Fourth-order Sturm-Liouville
problems are investigated numerically by a combination of both
Tau and Lanczos methods. Numerical and theoretical results
indicate that the present method is efficient and accurate. Some
complexity results are also studied.
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1 Introduction

In the present paper we investigate the solution of the fourth-order Sturm-
Liouville problems given by

(p(x)y′′(x)) ′′ = (s(x)y′(x))
′
+ (λw(x)− q(x)) y(x), −1 ≤ x ≤ 1. (1)

subject to

α1y(−1) + β1y(1) = 0

α2y
′(−1) + β2y

′(1) = 0

α3y
′′(−1) + β3y

′′(1) = 0 (2)

α4y
′′′(−1) + β4y

′′′(1) = 0
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where p, s, w and q are piecewise continuous functions with p(x), w(x) ≥ 0.
Here αi and βi (for i = 1, 2, 3, 4) are constants.

The fourth-order Sturm-Liouville problems play very important roles in both
theory and applications. This is due to their use to describe a large number of
physical and engineering phenomenons such as the deformation of an elastic
beam under a variety of boundary conditions, for more details see [1],[2],[6],[7],
[9], and [11].

In this paper, we present a method for locating the eigenvalues of problem
(1)-(2). This method depends on applying the Tau method to discretize equa-
tion (1) to obtain a system of the form

M(λ)Y = 0,

where M(λ) is a matrix function of λ. Then we apply the Lenczos method to
scan a given interval to determine a value for λ.

This paper is organized as follows: The numerical methods of solution and
problem statement are presented in section (2). Numerical results are pre-
sented in Section 3 followed by some conclusion remarks.

2 Tau-Lanczos Method

In this section, we present the numerical method used to solve problem (1)-(2).
Essentially, this approach depends on applying the Tau method on equation
(1) to obtain a system of the form

M(λ)Y = 0,

where M(λ) is a matrix function of λ. According to the fact that problem (1)
has nonzero eigenvectors then M(λ) should be a singular matrix when λ is an
eigenvalue of equation (1). Moreover, to find a value for such λ in a specific
interval, we apply the Lenczos method. The full discussion of the methods of
solution for problem (1) is presented in the following three subsections:

2.1 Tau Method

For sake of simplicity we discuss the more general form of equation (1) given
by

P(x)y′′′′(x)+A(x)y′′′(x)+B(x)y′′(x)+C(x)y′(x)+Q(x)y(x)−λW(x)y(x) = 0.
(3)
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Firstly, we assume that the exact solution of (1) is approximated in terms of
the Chebyshev polynomials as

y(x) ≈ YN(x) =
N+4∑
k=0

yk Tk(x). (4)

where yk (k = 0 : N + 4) are unknown constants need to be determined.
Similarly, the functions P , A, B, C, Q and W can also be approximated as

P(x) ≈ PN(x) =
N+4∑
k=0

pk Tk(x),

A(x) ≈ AN(x) =
N+4∑
k=0

ak Tk(x),

B(x) ≈ BN(x) =
N+4∑
k=0

bk Tk(x), (5)

C(x) ≈ CN(x) =
N+4∑
k=0

ck Tk(x),

Q(x) ≈ QN(x) =
N+4∑
k=0

qk Tk(x),

W(x) ≈ WN(x) =
N+4∑
k=0

wk Tk(x),

where pk, ak, bk, ck, qk and wk are known constants. Direct substitutions of
(4) and (5) into (3) yield

RN(x) = PNYN
′′′′ +ANYN

′′′ + BN YN
′′ + CNYN

′ +QNYN − λWNYN , (6)

whereRN represents the residual function. In particular, the functions YN
′, YN

′′, YN
′′′

and YN
′′′′ can be written in the following forms

Y ′
N(x) =

N+3∑
k=0

y
(1)
k Tk(x),

Y ′′
N(x) =

N+2∑
k=0

y
(2)
k Tk(x), (7)

Y ′′′
N (x) =

N+1∑
k=0

y
(3)
k Tk(x),

Y ′′′′
N (x) =

N∑
k=0

y
(4)
k Tk(x),
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where y
(1)
k , y

(2)
k , y

(3)
k and y

(4)
k are linear combinations of the unknown coefficients

yi (i = 1, · · · , N + 4) through the following recurrence relations

cn−1y
(q)
n−1 − y

(q)
n+1 = 2ny(q−1)

n , n ≥ 1, q = 1, 2, 3, 4. (8)

Here c0 = 2, cn = 1 for n ≥ 1 and y
(0)
n = yn. One can see that the approxima-

tion of the function y given in equations (4) converge uniformly if y ∈ C4[−1, 1]
and y(5)(x) is piecewise continuous function on [−1, 1]. Define ζk, ηk, νk, ωk,
τk and σk so that

PN(x)YN
′′′′(x) ≈

N∑
k=0

ζk Tk(x),

AN(x)YN
′′′(x) ≈

N∑
k=0

ηk Tk(x),

BN(x)YN
′′(x) ≈

N∑
k=0

νk Tk(x), (9)

CN(x)YN
′(x) ≈

N∑
k=0

ωk Tk(x),

QN(x)YN(x) ≈
N∑

k=0

τk Tk(x),

WN(x)YN(x) ≈
N∑

k=0

σk Tk(x).

Consequently, equation (6) can be written in the form

RN(x) ≈
N∑

k=0

(ζk + ηk + νk + ωk + τk − λσk)Tk(x). (10)

To obtain the coefficients of Tk(x) in the right hand side of equation (10), we
use the fact that Tk(x) and RN(x) are orthogonal for k = 0 : N with respect
to the weight function w(x) = 1√

1−x2 , i.e.

〈RN(x), Tk(x)〉 = ζk + ηk + νk + ωk + τk − λσk = 0, for k = 0 : N, (11)

where

〈RN(x), Tk(x)〉 =

∫ 1

−1

RN(x) Tk(x)√
1− x2

dx.

It is more convenient to rewrite equations (11) in the following vector form

ζ + η + ν + ω + τ − λσ = 0, (12)
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where

ζ = (ζ0, ζ1, ..., ζN)T , η = (η0, η1, ..., ηN)T , ν = (ν0, ν1, ..., νN)T ,

ω = (ω0, ω1, ..., ωN)T , τ = (τ0, τ1, ..., τN)T , σ = (σ0, σ1, ..., σN)T .

If we assume that

Y = (y0, y1, ..., ζN+4)
T , Y(1) =

(
y

(1)
0 , y

(1)
1 , ..., y

(1)
N+3

)T

,

Y(2) =
(
y

(2)
0 , y

(2)
1 , ..., y

(2)
N+2

)T

, Y(3) =
(
y

(3)
0 , y

(3)
1 , ..., y

(3)
N+1

)T

,

Y(4) =
(
y

(4)
0 , y

(4)
1 , ..., y

(4)
N

)T

,

then equation (9) ensures the existence of six matrices G01, G02, G1, G2, G3

and G4 with dimensions (N+1)×(N+5), (N+1)×(N+5), (N+1)×(N+4),
(N + 1)× (N + 3), (N + 1)× (N + 2) and (N + 1)× (N + 1) respectively; so
that

σ = G01 Y, τ = G02 Y, ω = G1 Y(1)

(13)

ν = G2 Y(2), η = G3 Y(3), ζ = G4 Y(4).

However, equation (8) ensures the existence of another four matrices A1, A2,
A3 and A4 with dimensions (N+4)×(N+5), (N+3)×(N+5), (N+2)×(N+5)
and (N + 1)× (N + 5) respectively; so that

Y(1) = A1 Y, Y(2) = A2 Y, Y(3) = A3 Y, and Y(4) = A4 Y. (14)

Consequently, inserting the results from (13) and (14) into (12) leads to the
following eigenvalue problem

ΛY = λG01Y, (15)

where Λ = G4A4 +G3A3 +G2A2 +G1A1 +G02 is (N +1)× (N +5) matrix.
On the other hand, the boundary conditions (2) can be expressed as

α0y(−1) + β0y(1) = 0 ⇒
N+4∑
k=0

ε0k
yk = 0 (16)

α1y
′(−1) + β1y

′(1) = 0 ⇒
N+4∑
k=0

ε1k
yk = 0 (17)

α2y
′′(−1) + β2y

′′(1) = 0 ⇒
N+4∑
k=0

ε2k
yk = 0 (18)
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α3y
′′′(−1) + β3y

′′′(1) = 0 ⇒
N+4∑
k=0

ε3k
yk = 0, (19)

where

ε0k
= (−1)kα1 + β1, ε1k

= (−1)k+1k2α2 + β2k
2,

ε2k
= (−1)nn2

(
n2−1

3

)
α2 + n2

(
n2−1

3

)
β2, and

ε3k
= (−1)n+1n2

(
n2−1

3

) (
n2−4

5

)
α3 + n2

(
n2−1

3

) (
n2−4

5

)
β3.

Note that the above compact forms for εik , for i = 1, 2, 3, 4 and k = 0 : N + 4
are proven using the following form of the pth derivative of Tn (for n = 0, · · · )
at ±1:

T (p)
n (±1) = (±1)n+p

p−1∏
k=0

n2 − k2

2k + 1
.

Engaging the results of (15)-(19) gives the following algebraic eigenvalue prob-
lem

M(λ)Y = 0, (20)

where

M(λ) =


Λ
ε0
ε1
ε2
ε3

− λ


G01

0
0
0
0

 .

and εi =
(
εi0 , εi1 , · · · , εiN+4

)
(for i = 0, 1, 2, 3). Using the fact that the fourth-

order Sturm-Liouville problems (1) has nonzero eigenvectors, system (20) must
have nonzero solutions; therefore,

det(M(λ)) = 0 (21)

when λ is an eigenvalue of Problem (1). It is found that M(λ) is a large sparse
matrix, hence we apply the Lanczos method to locate those eigenvalues, λ′s,
and to approximate them as we explain in the next subsection.

2.2 Lanczos Method

Particulary, problem (21) is unstable problem; hence we replace it by a stable
problem using the following theorem (see [5]).

Theorem 1 The following statements are equivalent:

(C1) det(M(λ)) = 0.
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(C2) min
{
‖M(λ)u‖2 : u ∈ <s and ‖u‖ = 1

}
= 0.

(C3) min
{
‖M(λ)u‖2

‖u‖2 : u ∈ <s and u 6= 0
}

= 0.

(C4) The smallest eigenvalue of M(λ)∗M(λ) is zero,

where ∗ means the transpose of the matrix and ‖.‖ denotes the Euclidean
norm. Therefore, in our study we replace problem (21) with problem (C2).
For convenience, in what follow we assume that M = M(λ)∗M(λ). It is noted
that M is a large, square, and symmetric matrix; therefore the most suitable
method to use, in this case, is the Lanczos method which is described below.

Consider the Rayleigh quotient

R(u) =
u∗Mu

u∗u
, u 6= 0, (22)

then, the minimum of R(u) is the smallest eigenvalue of M. Moreover, if we
suppose that el ⊂ <s is the Lanczos orthonormal vectors and El = [%1 %2 ... %l],
then

E∗
l MEl = Πl =


κ1 %1 · · · 0

%1 κ2
. . .

...
...

. . . . . .
...

0 · · · %l−1 κl

 . (23)

One can verify that
ml = min

u 6=0
R(Elu) ≥ λmin.

Hence, m1 ≥ m2 ≥ · · · ≥ ms = Λmin, for more details see [5]. In general,
we obtain a good approximation for Λmin from ml for some l << s. How-
ever, we should note that Πl is tridiagonal matrix, so we can write it in the
computer as l × 3 matrix. The following algorithm shows how to calculate
κ1,κ2, ...,κl, %1, ..., %l−1.

Algorithm 2 • Input: Tol

• Output: calculate κ1,κ2, ...,κl, %1, ..., %l−1

• Step 1: Set i = 0; Υ = 0;and %0 = 1.

• Step 2: while %j ≥ tol and i < l, do steps 3-7

• Step 3: If i 6= 0, do steps 4-5

• Step 4: For k = 1 : s, do step 5
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• Step 5: Set π = ψk, ψk = Υk

%i
,Υk = −%iπ.

• Step 6: Set Υ = Υ + Mψ.

• Step 7: Set i = i+ 1,κi = ψ∗Υ; Υ = Υ− κiψ; and %i = ‖Υ‖2 .

The following remarks on Algorithm 2 should be noted:

1. In each step we do only one evaluation for Aψ. This means that if we
want to compute Πl, we need only l evaluations of Aψ.

2. We compute Mψ as follows:

(a) Compute u = M(λ)ψ.

(b) Compute M(λ)∗u.

3. If M(λ) has an average of about h nonzero per row, then approximately
(3h+ 8)s flops are involved in a single Lanczos step.

4. The Lanczos vectors are generated in the s-vector w.

5. Unfortunately, during the calculations in Algorithm 2, we lose the or-
thogonality of the Lanczos vectors which is due to the cancelation.

To avoid the problem of loss of the orthogonality, one can use either the
complete reorthogonalization or the selective orthogonalization. The first
method is very expensive and complicated to use. Therefor, we use the se-
lective orthogonalization in this paper.

Suppose that the symmetric QR method is applied to Πl, see [5]. Assume
that θ1, θ2, ..., θl are the computed Ritz values and Ωl is nearly orthogonal
matrix of eigenvectors. Let

Fl = [f1 f2 ... fl] = ElΩl

Then it can be shown that

|el+1fi| ≈
eps ‖M‖2

|%l| |Ωli|
and

‖Mfi − θifi‖ ≈ |%l| |Ωli| = %li

where eps is the machine precision. The computed Ritz pair (θ, f) is called
”good” if

‖Mf − θf‖ ≈ √
eps ‖M‖2 .
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We can measure the loss of orthogonality of Ei by

κi = ‖Ii − E∗
iEi‖ and κ1 = ‖1− e∗1e1‖ .

It can be easily seen that κi is an increasing function of i. We can measure the
value of κi+1 using κi via the following theorem.

Theorem 3 If κi ≤ µ, then κi+1 ≤ 1
2
(µ+ eps+

√
(µ− eps)2 + 4 ‖E∗

i ei+1‖2).

Fix κ, say for example κ = 0.01. If κi ≤ κ, then qi+1 is orthogonal on
all columns of Ei. In this case we will not do any reorthogonalization. If
κi > κ, then we orthogonalize ei+1 against each ”good” Ritz vector. In the
selective orthogonalization we apply the symmetric QR method on Πl which
has small size comparing with the size of M. Then, we apply the Rayleigh
quotient iteration to compute the smallest eigenvalue of the matrix Πj using
the following algorithm.

Algorithm 4 • Input: X(0) such that
∥∥X(0)

∥∥ = 1.

• Output: the smallest eigenvalue of the matrix Πj

• Step 1: For k = 0, 1, ..., do step 2-4.

• Step 2: Compute µk = X(k)∗TlX
(k)

X(k)∗X(k) .

• Step 3: Solve (Πl − µkIl)Z
(k+1) = X(k) for Z(k+1).

• Step 4: Set X(k+1) = Z(k+1)

‖Z(k+1)‖ .

For more details about the selective orthogonalization, see [5],[8] and [12].
Finally, we can summarize our technique in this section as follows.

1. Compute the matrix M (λ); as we did in section 2.

2. Set M = M∗(λ)M(λ), l = 1.

3. Use the Selective orthogonalization and the Lanczos method to compute
the matrix Tl.

4. Use Algorithm 9 to approximate ml.

5. If ml is good approximation for Λmin, stop
else l = l + 1; and repeat steps 3-5.

6. Stop.
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3 Numerical Results

It is important to mention that the present method was applied on many
different examples, but herein we only present the following two examples to
illustrate the efficiency and accuracy of this method. Consider the fourth-
order eigenvalue problem

y(4)(z)− µy(z) = 0, z ∈ (0, 1)

subject to
y(0) = y′(0) = y(1) = y′′(1) = 0.

Using the transformation
x = 2z − 1,

one obtains the following eigenvalue problem

y(4)(x)− λy(x) = 0, x ∈ (−1, 1)

subject to
y(−1) = y′(−1) = y(1) = y′′(1) = 0

where λ = µ
16
. We scan for a solution of the µ−parameter in the interval

[237, 148634.50] where the increment is 0.05. Table (1) shows the minimal
eigenvalues Λ and the number of evaluations of Mψ which were necessary to
obtain Λ, say ν.

Consider the fourth-order eigenvalue problem

y(4)(z) = 0.02z2y′′ + 0.04zy′ − (0.0001z4 − 0.02)y + µy(z), z ∈ (0, 5)

subject to
y(0) = y′′(0) = y(5) = y′′(5) = 0.

Using the transformation

x =
2z − 5

5
,

one obtains the following eigenvalue problem

y(4)(x) = (
625

16
)

[
0.02(x+ 1)2y′′ + 0.04(x+ 1)y′ − (0.0001(5x+5

2
)4

−0.02)y] + λy(x), x ∈ (−1, 1)

subject to
y(−1) = y′(−1) = y(1) = y′′(1) = 0

where λ = 625µ
16
. The solution of the µ−parameter is scanned in the interval

500, 173881.35] with increment 0.05. We make an entirely analogous analysis
to do that of Example 1. Table (2) shows the minimal eigenvalues Λ and the
number of evaluations of Mψ which were necessary to obtain Λ, say ν.
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µ Λ ν µ Λ ν
237 8.3e−02 7 2496.40 6.2e−06 5
237.05 7.4e−02 7 2496.45 2.2e−06 4
237.10 6.7e−02 7 2496.50 1.1e−07 4

237.15 4.2e−02 7
...

237.20 3.3e−02 7 10867.50 7.9e−06 5
237.25 2.2e−02 6 10867.55 5.7e−06 4
237.30 1.1e−02 6 10867.60 2.3e−07 4

237.35 7.5e−03 6
...

237.40 2.5e−03 6 31780.05 8.4e−06 6
237.45 1.8e−03 6 31780.10 1.4e−07 5

237.50 1.7e−03 6
...

237.55 2.7e−04 6 74000.80 9.1e−07 5
237.60 3.1e−05 6 74000.85 2.2e−09 4
237.65 4.2e−06 6 74000.90 5.5e−06 4

237.70 6.2e−7 5
...

237.75 2.1e−06 6 148634.45 4.8e−07 4
237.80 9.2e−06 6 148634.50 3.3e−06 4

Table (1)

µ Λ ν µ Λ ν
500 9.9e−02 6 3803.50 4.4e−07 4
500.05 9.4e−02 6 3803.55 3.1e−08 4
500.10 8.7e−02 6 3803.60 7.5e−07 4

500.15 5.2e−02 6
...

500.20 3.1e−03 6 14617.60 9.7e−08 5
500.25 2.1e−04 6 14617.65 4.5e−09 5
500.30 9.6e−05 6 14617.70 3.2e−08 5

500.35 8.5e−05 6
...

500.40 2.5e−06 6 39943.75 1.1e07 4
500.45 1.9e−06 6 39943.80 5.4e−09 4

500.50 1.8e−07 5
...

500.55 1.1e−08 5 89135.35 9.6e−08 4
500.60 4.1e−07 5 89135.40 8.9e−09 4
500.65 8.2e−06 5 89135.45 6.7e−07 4

500.70 7.4e−06 5
...

500.75 5.5e−05 5 173881.30 5.1e−08 4
500.80 6.7e−04 5 173881.35 4.3e−07 4

Table (2)
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4 Open problem

Future work will be on the extension of the present study to higher-order
Sturm-Liouville problems such as sixth-order of the form

[p(x)y′′′(x)] ′′′ = [s(x)y′′(x)]
′′ − [r(x)y′(x)]

′ − [λw(x)− q(x)] y(x), (24)

subject to
αjy

(j)(−1) + βjy
(j)(1) = 0, (j = 0, · · · , 5), (25)

where p, s, r, w and q are piecewise continuous functions with p(x) >
0 and w(x) ≥ 0 for all x ∈ (−1, 1). Here αj and βj (for j = 0, · · · , 5) are
constants.

5 Conclusion

We discuss the determination of the location of eigenvalues for the fourth order
Sturm–Liouville problems using a combination of Tau and Lanczos methods.
The numerical results for the examples demonstrate the efficacy and accuracy
of this method. Moreover, the number of evaluations ν shows that the present
approach is not expensive.
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