Normal Families of Meromorphic Functions which Omit a Function Set

Xiang Gao
Department of Mathematics, Ocean University of China
e-mail:gaoxiangshuli@126.com

Abstract
In this paper, a particular family of meromorphic functions, which omits a function set is considered. By using the famous Zalcman-Pang lemma, we derive a sufficient condition for the normality of this particular meromorphic functions family.

Keywords: meromorphic functions family, normality, Zalcman-Pang lemma.

1 Introduction and Main Results

In complex analysis, the analytic or meromorphic functions family with particular analytic or meromorphic structure is interesting and significant (see [1], [2], [3] and [4] for examples).

In this paper we deal with the normality of the meromorphic functions family omitting some functions. In [5], Yang proved that for a family of meromorphic functions \(F \) on a domain \(D \) in \(\mathbb{C} \), and let \(h \) be a function holomorphic on \(D \) and \(h(z) \neq 0 \). Suppose that for each \(f \in F \), \(f(z) \neq 0 \) and \(f^{(k)}(z) \neq h(z) \) for \(z \in D \), then \(F \) is a normal family on \(D \).

More recently, Pang and Zalcman [6] and [7] observed the following results:

Theorem 1.1 Let \(F \) be a family of functions meromorphic on a domain \(D \) in \(\mathbb{C} \), all of whose zeros have multiplicity at least 4, and \(h \) be a function holomorphic on \(D \) such that \(h(z) \neq 0 \). Suppose that for each \(f \in F \), \(f(z) \neq 0 \) and \(f^{(k)}(z) \neq h(z) \) for \(z \in D \), then \(F \) is a normal family on \(D \).

Theorem 1.2 Let \(F \) be a family of functions meromorphic on a domain \(D \) in \(\mathbb{C} \), all of whose zeros have multiplicity at least \(k+3 \), and \(h \) be a function holomorphic on \(D \) such that \(h(z) \neq 0 \). Suppose that for each \(f \in F \), \(f(z) \neq 0 \) and \(f^{(k)}(z) \neq h(z) \) for \(z \in D \), then \(F \) is a normal family on \(D \).
In this paper, we deal with a generalization of the meromorphic functions family omitting a function, and study a particular family of meromorphic functions which omit a function set. We prove that this particular family of meromorphic functions has a well normality by using the famous Zalcman-Pang lemma. Firstly we present the definition of meromorphic functions omitting a function set.

Definition 1.3 (Meromorphic Functions Omitting a Function Set)

Let D be a domain in \mathbb{C}, f be a function meromorphic on D and S is a set including finite meromorphic functions on D:

$$S = \{ h_i(z) | z \in D, i = 1, \cdots l \}.$$

If for arbitrary $1 \leq i \leq l$ and $z \in D$ we have $f(z) \neq h_i(z)$, then the meromorphic function f is said to omit the function set S.

Remark 1. It obvious that the meromorphic functions family which omits a function set is a natural generalization of the one omitting a function.

In this paper we will generalize the results in [5], [6] and [7] for the meromorphic functions family which omits a function to the one omitting a function set, and the main result of our paper is as follows:

Theorem 1.4 Let F be a family of functions meromorphic on a domain D in \mathbb{C}, all of whose zeros have multiplicity at least k, and $S = \{ h_i(z) | z \in D, i = 1, \cdots l \}$ be a holomorphic functions set on D such that $h_i(z) \neq 0$ for arbitrary $1 \leq i \leq l$, the zeros of $h_i(z)$ have multiplicity m_i which satisfies $k \nmid m_i$ for arbitrary $1 \leq i \leq l$. Suppose that for each $f \in F$, $|f^{(k)}(z)| < \min_{1 \leq i \leq l} |h_i(z)|$ whenever $f(z) = 0$ and $f^{(k)}(z)$ omits the function set S, then F is a normal family on D.

The paper is organized as follows. In section 2, we present some preliminary lemmas. In section 3, we prove Theorem 1.4 by using Zalcman-Pang’s approach. In section 4, we give two interesting open problems.

2 Preliminary Results

In order to prove our main theorem, we need the following preliminary results.

Lemma 2.1 (Zalcman-Pang) Let F be a family of functions meromorphic on the unit disc Δ, all of whose zeros have multiplicity at least k, and suppose that there exists $M \geq 1$, such that $|f^{(k)}(z)| \leq M$ whenever $f(z) = 0$. Then if F is not normal at z_0, for each $-1 \leq \alpha \leq k$, there exist

a) points $z_n \in \Delta$, $z_n \to z_0$;
b) functions \(f_n \in F \);

c) positive numbers \(\rho_n \to 0^+ \), such that

\[
\frac{f_n(z_n + \rho_n \xi)}{\rho_n^k} = g_n(\xi) \to g(\xi)
\]

(1)

uniformly with respect to the spherical metric

\[
\|f(z) - g(z)\| = \frac{|f(z) - g(z)|}{\sqrt{1 + |f(z)|^2 \sqrt{1 + |g(z)|^2}}}
\]

(2)

on compact subsets of \(\mathbb{C} \), where \(g \) is a nonconstant meromorphic function on \(\mathbb{C} \), all of whose zeros have multiplicity at least \(k \), such that \(g^\#(\xi) \leq g^\#(0) = kM + 1 \). In particular, \(g \) has order at most 2 and \(g^\# \) denotes

\[
g^\#(z_0) = \lim_{z \to z_0} \frac{|g(z) - g(z_0)|}{|z - z_0|} = \frac{|g'(z_0)|}{1 + |g(z_0)|^2}.
\]

Lemma 2.2 (Hurwitz) Let \(\{f_n(z)\} \) be a family of functions meromorphic on a domain \(D \) in \(\mathbb{C} \) and converge to \(f(z) \) uniformly on compact subsets of \(D \). If \(f(z) = a \) has a solution on \(D \), then when \(n \) is large enough, \(f_n(z) = a \) also has solutions on \(D \).

3 Proof of the Main Theorem

With the help of above lemmas, we then prove our main theorem.

Proof of Theorem 1.4. First we show that \(F \) is normal on the subset \(D' \) of \(D \), where \(h_i(z) \neq 0 \) for arbitrary \(1 \leq i \leq l \). Suppose then that \(F \) is not normal at \(z_0 \in D' \), we may assume that \(D = \Delta \) and let \(M = \min_{1 \leq i \leq l} |h_i(z)| + 1 \geq 1 \). By Lemma 2.1, there exist \(f_n \in F \), \(z_n \in \Delta \), \(z_n \to z_0 \) and \(\rho_n \to 0^+ \) such that

\[
\frac{f_n(z_n + \rho_n \xi)}{\rho_n^k} = g_n(\xi) \to g(\xi)
\]

spherically uniformly on compact subsets of \(\mathbb{C} \), where \(g \) is a nonconstant meromorphic function on \(\mathbb{C} \), all of whose zeros have order at least \(k \) and satisfies

\[
g^\#(\xi) \leq g^\#(0) = kM + 1 = k \left(\min_{1 \leq i \leq l} |h_i(z)| + 1 \right) + 1.
\]

(3)

We then claim that:

Claim 3.1 If \(g(\xi) = 0 \), then \(|g^{(k)}(\xi)| \leq \min_{1 \leq i \leq l} |h_i(z_0)| \)
Proof of Claim 3.1. Indeed, suppose that if \(g(\xi_0) = 0 \) and \(g(\xi) \neq 0 \), by Hurwitz’s Theorem there exists \(\xi_n \rightarrow \xi_0 \) such that (for \(n \) sufficiently large)

\[
\frac{f_n(z_n + \rho_n \xi_n)}{\rho_n^k} = g_n(\xi_n) = 0,
\]

thus \(f_n(z_n + \rho_n \xi_n) = 0 \). It follows from the hypotheses on \(F \) that \(|f_n^{(k)}(z_n + \rho_n \xi_n)| < \min_{1 \leq i \leq l} |h_i(z_n + \rho_n \xi_n)| \), hence

\[
|g_n^{(k)}(\xi_n)| = |f_n^{(k)}(z_n + \rho_n \xi_n)| < \min_{1 \leq i \leq l} |h_i(z_n + \rho_n \xi_n)|
\]

Let \(n \rightarrow \infty \), then we complete the proof of Claim 3.1.

Since

\[
g_n^{(k)}(\xi) - h_i(z_n + \rho_n \xi) = f_n^{(k)}(z_n + \rho_n \xi) - h_i(z_n + \rho_n \xi) \neq 0
\]

for arbitrary \(1 \leq i \leq l \), by Hurwitz’s Theorem we have either

(i) there exists \(1 \leq i_0 \leq l \) such that \(g^{(k)}(\xi) \equiv h_{i_0}(z_0) \), or

(ii) for each \(1 \leq i \leq l \) we always have \(g^{(k)}(\xi) \neq h_i(z_0) \).

If (i) satisfies, since the zeros of \(g \) have order at least \(k \), we have \(g(\xi) = \frac{h_{i_0}(z_0)}{k!} (\xi - \xi_0)^k \), by Claim 3.1 it follows that

\[
|h_{i_0}(z_0)| = |g^{(k)}(\xi_0)| \leq \min_{1 \leq i \leq l} |h_i(z_0)|.
\]

Moreover from the expression of \(g \), one gets

\[
g^\#(0) \leq \begin{cases} \frac{k}{2}, & |\xi_0| \geq 1 \\ |h_{i_0}(z_0)|, & |\xi_0| < 1, \end{cases}
\]

then (4) and (5) lead a contradiction to (3).

If (ii) satisfies, it follows that \(g^{(k)}(\xi) = h_{i_0}(z_0) + a\xi + b \) for some \(1 \leq i_0 \leq l \). We divided this case into two parts:

(a) If \(a = 0 \), then \(g^{(k)}(\xi) = h_{i_0}(z_0) + c \), since the zeros of \(g \) have order at least \(k \), we have \(g(\xi) = \frac{h_{i_0}(z_0)+c}{k!} (\xi - \xi_1)^k \), then it follows from Claim 3.1 that

\[
|h_{i_0}(z_0) + c| = |g^{(k)}(\xi_1)| \leq \min_{1 \leq i \leq l} |h_i(z_0)|.
\]

Moreover

\[
g^\#(0) \leq \begin{cases} \frac{k}{2}, & |\xi| \geq 1 \\ |h_{i_0}(z_0) + c|, & |\xi| < 1, \end{cases}
\]
thus (6) and (7) also lead a contradiction to (3).

(b) If $a \neq 0$, we have $g(\xi) = \frac{h_{i_0}(z_0)}{k!} \xi^k + a_1 \xi^{k-1} + \cdots + a_k + \frac{e^{a\xi+b}}{a^k}$. It follows that there exist infinite $\xi_n \to \infty$ such that $g(\xi_n) = 0$, that is to say

$$a^k \left(\frac{h_{i_0}(z_0)}{k!} \xi_n^k + a_1 \xi_n^{k-1} + \cdots + a_k - \frac{h_{i_0}(z_0)}{a^k} \right) = -h_{i_0}(z_0) - e^{a\xi_n+b}.$$

By Claim 3.1 we have

$$|a^k| \left| \frac{h_{i_0}(z_0)}{k!} \xi_n^k + a_1 \xi_n^{k-1} + \cdots + a_k - \frac{h_{i_0}(z_0)}{a^k} \right| = |h_{i_0}(z_0) + e^{a\xi_n+b}| = |g^{(k)}(\xi_n)| \leq \min_{1 \leq i \leq l} |h_i(z_0)|,$$

which has a contradiction to $\xi_n \to \infty$.

By all of above, we prove that F is normal on the subset D' of D, where $h_i(z) \neq 0$ for arbitrary $1 \leq i \leq l$.

We now turn to prove F is normal at points for which exists $1 \leq i_0 \leq l$ such that $h_{i_0}(z) = 0$. Making standard normalizations, we may assume that $h_{i_0}(z) = z^m b(z)$ for $z \in D$, $m \geq 1$, $b(0) = 1$ and $h_{i_0}(z) \neq 0$ for $0 < |z| < 1$. Let

$$G = \left\{ G(z) = \frac{f(z)}{z^m} | f \in F \right\},$$

since $|f^{(k)}(0)| \neq \min_{1 \leq i \leq l} |h_i(0)| = 0$, $f(0) \neq 0$, we have $F(0) = \infty$. We then prove G is normal at 0. Suppose not, then by Lemma 2.1, there exist $G_n \in G$, $z_n \to 0$ and $\rho_n \to 0^+$ such that

$$g_n(\xi) = \frac{G_n(z_n + \rho_n \xi)}{\rho_n^k} = \frac{f_n(z_n + \rho_n \xi)}{\rho_n^k} \to g(\xi)$$

spherically uniformly on compact subsets of \mathbb{C}, where g is a nonconstant meromorphic function on \mathbb{C}, all of whose zeros have order at least k and satisfies

$$g^#(\xi) \leq g^#(0) = kM + 1. \quad (8)$$

We then consider the following two cases:

(i) Suppose $z_n/\rho_n \to \infty$, we have

$$f_n^{(k)}(z) = z^m G_n^{(k)}(z) + \sum_{j=1}^k c_j z^{m-j} G_n^{(k-j)}(z),$$
where
\[c_j = \begin{cases} m (m - 1) (m - j + 1), & j \leq m \\ 0, & j > m. \end{cases} \]

Since \(\rho_j g_n^{(k-j)} (\xi) = G_n^{(k-j)} (z_n + \rho_n \xi) \) for arbitrary \(0 \leq j \leq m \), we obtain
\[
\frac{f_n^{(k)} (z_n + \rho_n \xi)}{h_{io} (z_n + \rho_n \xi)} = \left(g_n^{(k)} (\xi) + \sum_{j=1}^{k} c_j \frac{g_n^{(k-j)} (z_n + \rho_n \xi)}{(z_n/\rho_n + \xi)^j} \right) \frac{1}{b(z_n + \rho_n \xi)}. \tag{9}
\]

Now
\[
\lim_{n \to \infty} \frac{c_j}{(z_n/\rho_n + \xi)^j} = 0 \tag{10}
\]
for arbitrary \(1 \leq j \leq m \) and
\[
\lim_{n \to \infty} \frac{1}{b(z_n + \rho_n \xi)} = 1. \tag{11}
\]

It follows from (9), (10) and (11) that
\[
\frac{f_n^{(k)} (z_n + \rho_n \xi)}{h_{io} (z_n + \rho_n \xi)} \to g^{(k)} (\xi) \tag{12}
\]
uniformly on compact subsets of \(\mathbb{C} \) disjoint from the poles of \(g \).

By \(\rho_j g_n^{(k-j)} (\xi) = G_n^{(k-j)} (z_n + \rho_n \xi) \) and (9) we obtain that the \(M \) in (8) is equal to 1, thus by using (12) we can prove the following claim as the proof of Claim 3.1.

Claim 3.2 If \(g(\xi) = 0 \), then \(|g^{(k)} (\xi)| \leq 1. \)

Moreover since it follows from (12) that
\[
g_n^{(k)} (\xi) + o(1) = \frac{f_n^{(k)} (z_n + \rho_n \xi)}{h_{io} (z_n + \rho_n \xi)} \neq 1,
\]
Hurwitz’s Theorem implies that either
(i) \(g^{(k)} (\xi) \equiv 1 \), or
(ii) \(g^{(k)} (\xi) \neq 1 \) for arbitrary \(\xi \).

If (i) satisfies, since the zeros of \(g \) have order at least \(k \), one get \(g(\xi) = \frac{1}{k!} (\xi - \xi_0)^k \), thus
\[
g^# (0) \leq \begin{cases} \frac{k}{2}, & |\xi_0| \geq 1 \\ 1, & |\xi_0| < 1, \end{cases}
\]
which contradicts \(g^# (0) = k + 1. \)
If (ii) satisfies, it follows that \(g^{(k)}(\xi) = 1 + e^{a\xi + b} \). We divided this case into two parts:

(a) If \(a = 0 \), then \(g^{(k)}(\xi) = 1 + c \xi \), since the zeros of \(g \) have order at least \(k \), it follows that \(g(\xi) = 1 + c(\xi - \xi_1)^k \). By Claim 3.2 we have
\[
|1 + c| = |g^{(k)}(\xi_1)| \leq 1. \tag{13}
\]
Moreover from the expression of \(g \), one gets
\[
g^\#(0) \leq \begin{cases} \frac{k}{2}, & |\xi_1| \geq 1 \\ |1 + c|, & |\xi_1| < 1 \end{cases}, \tag{14}
\]
thus (13) and (14) also lead a contradiction to \(g^\#(0) = k + 1 \).

(b) If \(a \neq 0 \), we have \(g(\xi) = \frac{1}{k!} \xi^k + a_1 \xi^k + \cdots + a_k + e^{a\xi + b} \). It follows that there exist infinite \(\xi_n \to \infty \) such that \(g(\xi_n) = 0 \), that is to say
\[
a^k \left(\frac{1}{k!} \xi_n^k + a_1 \xi_n^{k-1} + \cdots + a_k - \frac{1}{a^k} \right) = -1 - e^{a\xi_n + b}.
\]
By Claim 3.2, we have
\[
|a^k| \left| \frac{1}{k!} \xi_n^k + a_1 \xi_n^{k-1} + \cdots + a_k - \frac{1}{a^k} \right| = |1 + e^{a\xi_n + b}| = |g^{(k)}(\xi_n)| \leq 1,
\]
which has a contradiction to \(\xi_n \to \infty \).

(ii) So that we may assume that \(z_n/\rho_n \to \alpha \), which is a finite complex number. Then we have
\[
\frac{G_n(\rho_n \xi)}{\rho_n^k} = \frac{G_n(z_n + \rho_n (\xi - z_n/\rho_n))}{\rho_n^k} \to g(\xi - \alpha) = \tilde{g}(\xi),
\]
the convergence being spherically uniform on compact sets of \(\mathbb{C} \), hence uniform on compact disjoint from the poles of \(\tilde{g} \). Clearly, all zeros of \(\tilde{g} \) have order at least \(k \), and the pole of \(\tilde{g} \) at \(\xi = 0 \) has order at least \(m \). Now
\[
K_n(\xi) = \frac{f_n(\rho_n \xi)}{\rho_n^{k+m}} = \frac{G_n(\rho_n \xi) (\rho_n \xi)^m}{\rho_n^m} \to \xi^m \tilde{g}(\xi) = K(\xi) \tag{15}
\]
uniformly on compact subsets of \(\mathbb{C} \) disjoint from the poles of \(\tilde{g} \), and \(\lim_{n \to \infty} h_{k_n}(\rho_n \xi) = \xi^m \) uniformly on compact subsets of \(\mathbb{C} \). Note that since \(\tilde{g} \) has a pole of order at least \(k \) at \(\xi = 0 \), \(K(0) \neq 0 \) and all zeros of \(K \) have order at least \(k \). Furthermore since
\[
K^{(k)}(\xi) - \frac{h_{k_n}(\rho_n \xi)}{\rho_n^m} = \frac{f_n(\rho_n \xi) - h_{k_n}(\rho_n \xi)}{\rho_n^m} \neq 0,
\]
it follows from \(\lim_{n \to \infty} \frac{h_n(\rho_n \xi)}{\rho_n^m} = \xi^m \) and Hurwitz’s Theorem that either
(i) \(K^{(k)}(\xi) \equiv \xi^m \), or
(ii) \(K^{(k)}(\xi) \neq \xi^m \) for arbitrary \(\xi \).

If (i) satisfies, it follows that \(K \) is a polynomial of multiplicity \(m+k \). If all zeros of \(K \) has order \(k \), we have \(m+k = pk \), which has a contradiction to the zeros of \(h_i(z) \) having multiplicity \(m_i \) such that \(k \mid m_i \) for arbitrary \(1 \leq i \leq l \). If there exists a zero of \(K \) with order at least \(k+1 \), then \(K^{(k)}(\xi) \) must vanish at any points where \(K(\xi) \) vanishes. On the other hand, \(K^{(k)}(\xi) \neq 0 \) for \(\xi \neq 0 \), thus we have \(K(0) = 0 \), a contradiction.

If (ii) satisfies, we have \(g^{(k)}(\xi) = 1 + e^{a\xi+b} \), firstly we claim that:

Claim 3.3 If \(K(\xi) = 0 \), then \(|K^{(k)}(\xi)| \leq |\xi|^m \).

Proof of Claim 3.3. Indeed, suppose that if \(K(\xi_0) = 0 \) and \(K(\xi) \), by Hurwitz’s Theorem there exists \(\xi_n \to \xi_0 \) such that (for \(n \) sufficiently large)
\[
\frac{f_n(\rho_n \xi_n)}{\rho_n^{k+m}} = K_n(\xi_n) = 0,
\]
thus \(f_n(\rho_n \xi_n) = 0 \). It follows from the hypotheses on \(\mathcal{F} \) that \(|f_n^{(k)}(\rho_n \xi_n)| < \frac{1}{\min_{1 \leq i \leq l} |h_i(\rho_n \xi_n)|} \), hence
\[
|K_n^{(k)}(\xi_n)| = \left| \frac{f_n^{(k)}(\rho_n \xi_n)}{\rho_n^{m}} \right| \leq \left| \frac{h_n(\rho_n \xi_n)}{\rho_n^{m}} \right| = \left| \frac{(\rho_n \xi_n)^m b(\rho_n \xi_n)}{\rho_n^{m}} \right| = |\xi_n|^m |b(\rho_n \xi_n)|.
\]
Let \(n \to \infty \), we complete the proof of Claim 3.3.

We then divided this case into two parts:

(a) If \(a = 0 \), as the proof of case (i) we obtain a contradiction.

(b) If \(a \neq 0 \), we have
\[
K(\xi) = \frac{1}{(k+m)\cdots(m+1)}\xi^{k+m} + a_1\xi^{k-1} + \cdots + a_k + \frac{e^{a\xi+b}}{a^k}.
\]
It follows that there exist infinite \(\xi_n \to \infty \) such that \(K(\xi_n) = 0 \), that is to say
\[
da^k \left(\frac{1}{(k+m)\cdots(m+1)}\xi_n^{k+m} + a_1\xi_n^{k-1} + \cdots + a_k - \frac{\xi_n^m}{a^k} \right) = -\xi_n^m - e^{a\xi_n+b}.
\]
By using Claim 3.3, we have
\[
\left| a_k \right| \left| \frac{1}{(k + m) \cdots (m + 1)} \xi_n^{k+m} + a_1 \xi_n^{k-1} + \cdots + a_k - \frac{\xi_n^m}{a_k} \right| = \left| \xi_n^m + e^{a_n+b} \right| = \left| K^{(k)}(\xi_n) \right| \leq |\xi_n|^m,
\]
which also has a contradiction to \(\xi_n \to \infty \).

The contradiction establishes \(G \) is normal at 0. It remains to prove that \(F \) is normal at 0. Since \(G \) is normal at 0 and \(G(0) = \infty \) for each \(G(z) \in G \), there exists \(\delta > 0 \) such that if \(G(z) \in G \), then \(|G(z)| \geq 1 \) for all \(z \in \Delta_\delta = \{ z : |z| < \delta \} \). Thus \(f(z) \neq 0 \) for \(z \in \Delta_\delta \) and for all \(f \in F \), which is equivalent to \(1/f \) is analytic in \(\Delta_\delta \) for all \(f \in F \). Therefore, for all \(f \in F \), we have
\[
\left| \frac{1}{f(z)} \right| = \left| \frac{1}{G(z)} \frac{1}{|z|^k} \right| \leq \frac{2^k}{\delta^k} |z| = \frac{\delta}{2}, \quad (16)
\]
By the Maximum Principle and Montel’s Theorem, \(F \) is normal at \(\xi = 0 \). This completes the proof of Theorem 1.4.

4 Open Problem

There are two interesting open problems related to our paper, one open problem is related to the meromorphic differential polynomial which omit a function set:

Problem 4.1 Let \(F \) be a family of functions meromorphic on a domain \(D \) in \(\mathbb{C} \), all of whose zeros have multiplicity at least \(k \), and \(S = \{ h_i(z) \mid z \in D, i = 1, \cdots l \} \) be a holomorphic functions set on \(D \) such that \(h_i(z) \neq 0 \) for arbitrary \(1 \leq i \leq l \), the zeros of \(h_i(z) \) have multiplicity \(m_i \) which satisfies \(k \nmid m_i \) for arbitrary \(1 \leq i \leq l \). Suppose that for each \(f \in F \),
\[
\max_{1 \leq j \leq k} \left| f^{(j)}(z) \right| < \min_{1 \leq i \leq l} \left| h_i(z) \right|
\]
ever \(f(z) = 0 \) and the differential polynomial \(\sum_{j=1}^{k} p_j(z)f^{(j)}(z) \) omits the function set \(S \), is \(F \) is a normal family on \(D \)?

Another open problem is related to the meromorphic functions family which shares a function set, firstly we present the definition of meromorphic functions sharing a function set as follows:

Definition 4.2 (Meromorphic Functions Sharing a Function Set) Let \(D \) be a domain in \(\mathbb{C} \), \(f \) and \(g \) meromorphic on \(D \) and \(S \) is a set including finite meromorphic functions on \(D \):
\[
\mathcal{S} = \{ h_i(z) \mid z \in D, i = 1, \cdots l \}.
\]
If \(f \) and \(g \) satisfies
\[
E_f(S) = \{ z \in D | f(z) = h_i(z), \exists 1 \leq i \leq l \}
= \{ z \in D | g(z) = h_j(z), \exists 1 \leq j \leq l \}
= E_g(S),
\]
then the two meromorphic functions \(f \) and \(g \) on \(D \) are said to share the function set \(S \).

The open problem is as follows:

Problem 4.3 Let \(\mathcal{F} \) be a family of functions meromorphic on a domain \(D \) in \(\mathbb{C} \), all of whose zeros have multiplicity at least \(k \). If there exists a holomorphic function set on \(D \)
\[S = \{ h_i(z) \mid z \in D, i = 1, \ldots, l \}, \]
where \(h_i(z) \neq 0 \) for arbitrary \(z \in D \) and \(1 \leq i \leq l \), such that for each \(f \in \mathcal{F}, E_f(S) = E_{f^{(k)}}(S) \) and \(0 < |f^{(k)}(z)| \leq \sup_{1 \leq i \leq l} |h_i(z)| \) whenever \(z \in E_f(0) \), is \(\mathcal{F} \) is a normal family on \(D \)?

ACKNOWLEDGEMENTS. I would especially like to express my appreciation to my advisor professor Yu Zheng for longtime encouragement and meaningful discussions. I would also especially like to thank the referee for meaningful suggestions that led to improvement of the article.

References

