Int. J. Open Problems Compt. Math., Vol. 4, No. 3, September 2011 ISSN 1998-6262; Copyright ©ICSRS Publication, 2011 www.i-csrs.org

Normal Families of Meromorphic Functions which Omit a Function Set

Xiang Gao

Department of Mathematics, Ocean University of China e-mail:gaoxiangshuli@126.com

Abstract

In this paper, a particular family of meromorphic functions, which omits a function set is considered. By using the famous Zalcman-Pang lemma, we derive a sufficient condition for the normality of this particular meromorphic functions family.

Keywords: meromorphic functions family, normality, Zalcman-Pang lemma.

1 Introduction and Main Results

In complex analysis, the analytic or meromorphic functions family with particular analytic or meromorphic structure is interesting and significant (see [1], [2], [3] and [4] for examples).

In this paper we deal with the normality of the meromorphic functions family omitting some functions. In [5], Yang proved that for a family of meromorphic functions \mathcal{F} on a domain D in \mathbb{C} , and let h be a function holomorphic on D and h(z) 0. Suppose that for each $f \in \mathcal{F}$, $f(z) \neq 0$ and $f^{(k)}(z) \neq$ h(z) for $z \in D$, then \mathcal{F} is a normal family on D.

More recently, Pang and Zalcman [6] and [7] observed the following results:

Theorem 1.1 Let \mathcal{F} be a family of functions meromorphic on a domain D in \mathbb{C} , all of whose zeros have multiplicity at least 4, and h be a function holomorphic on D such that h(z)0. Suppose that for each $f \in \mathcal{F}$, $f(z) \neq 0$ and $f'(z) \neq h(z)$ for $z \in D$, then \mathcal{F} is a normal family on D.

Theorem 1.2 Let \mathcal{F} be a family of functions meromorphic on a domain D in \mathbb{C} , all of whose zeros have multiplicity at least k+3, and h be a function holomorphic on D such that h(z)0. Suppose that for each $f \in \mathcal{F}$, $f(z) \neq 0$ and $f^{(k)}(z) \neq h(z)$ for $z \in D$, then \mathcal{F} is a normal family on D.

In this paper, we deal with a generalization of the meromorphic functions family omitting a function, and study a particular family of meromorphic functions which omit a function set. We prove that this particular family of meromorphic functions has a well normality by using the famous Zalcman-Pang lemma. Firstly we present the definition of meromorphic functions omitting a function set.

Definition 1.3 (Meromorphic Functions Omitting a Function Set) Let D be a domain in \mathbb{C} , f be a function meromorphic on D and S is a set including finite meromorphic functions on D:

$$S = \{h_i(z) | z \in D, i = 1, \dots l\}$$

If for arbitrary $1 \leq i \leq l$ and $z \in D$ we have $f(z) \neq h_i(z)$, then the meromorphic function f is said to omit the function set S.

Remark 1. It obvious that the meromorphic functions family which omits a function set is a natural generalization of the one omitting a function.

In this paper we will generalize the results in [5], [6] and [7] for the meromorphic functions family which omits a function to the one omitting a function set, and the main result of our paper is as follows:

Theorem 1.4 Let \mathcal{F} be a family of functions meromorphic on a domain Din \mathbb{C} , all of whose zeros have multiplicity at least k, and $\mathcal{S} = \{h_i(z) | z \in D, i = 1, \dots l\}$ be a holomorphic functions set on D such that $h_i(z) 0$ for arbitrary $1 \leq i \leq l$, the zeros of $h_i(z)$ have multiplicity m_i which satisfies $k \nmid m_i$ for arbitrary $1 \leq i \leq l$. Suppose that for each $f \in \mathcal{F}$, $|f^{(k)}(z)| < \min_{1 \leq i \leq l} |h_i(z)|$ whenever f(z) = 0 and $f^{(k)}(z)$ omits the function set \mathcal{S} , then \mathcal{F} is a normal family on D.

The paper is organized as follows. In section 2, we present some preliminary lemmas. In section 3, we prove Theorem 1.4 by using Zalcman-Pang's approach. In section 4, we give two interesting open problems.

2 Preliminary Results

In order to prove our main theorem, we need the following preliminary results.

Lemma 2.1 (Zalcman-Pang) Let \mathcal{F} be a family of functions meromorphic on the unit disc Δ , all of whose zeros have multiplicity at least k, and suppose that there exists $M \geq 1$, such that $|f^{(k)}(z)| \leq M$ whenever f(z) = 0. Then if \mathcal{F} is not normal at z_0 , for each $-1 \leq \alpha \leq k$, there exist a) points $z_n \in \Delta, z_n \to z_0$;

b) functions $f_n \in \mathcal{F}$; c) positive numbers $\rho_n \to 0^+$, such that

$$\frac{f_n\left(z_n + \rho_n\xi\right)}{\rho_n^{\alpha}} = g_n\left(\xi\right) \to g\left(\xi\right) \tag{1}$$

uniformly with respect to the spherical metric

$$\|f(z) - g(z)\| = \frac{|f(z) - g(z)|}{\sqrt{1 + |f(z)|^2}\sqrt{1 + |g(z)|^2}}$$
(2)

on compact subsets of \mathbb{C} , where g is a nonconstant meromorphic function on \mathbb{C} , all of whose zeros have multiplicity at least k, such that $g^{\#}(\xi) \leq g^{\#}(0) = kM + 1$. In particular, g has order at most 2 and $g^{\#}$ denotes

$$g^{\#}(z_0) = \lim_{z \to z_0} \frac{\|g(z) - g(z_0)\|}{|z - z_0|} = \frac{|g'(z_0)|}{1 + |g(z_0)|^2}$$

Lemma 2.2 (Hurwitz) Let $\{f_n(z)\}$ be a family of functions meromorphic on a domain D in \mathbb{C} and converge to f(z) uniformly on compact subsets of D. If f(z) = a has a solution on D, then when n is large enough, $f_n(z) = a$ also has solutions on D.

3 Proof of the Main Theorem

With the help of above lemmas, we then prove our main theorem.

Proof of Theorem 1.4. First we show that \mathcal{F} is normal on the subset D' of D, where $h_i(z) \neq 0$ for arbitrary $1 \leq i \leq l$. Suppose then that \mathcal{F} is not normal at $z_0 \in D'$, we may assume that $D = \Delta$ and let $M = \min_{1 \leq i \leq l} |h_i(z)| + 1 \geq 1$. By Lemma 2.1, there exist $f_n \in \mathcal{F}, z_n \in \Delta, z_n \to z_0$ and $\rho_n \to 0^+$ such that

$$\frac{f_n\left(z_n + \rho_n\xi\right)}{\rho_n^k} = g_n\left(\xi\right) \to g\left(\xi\right)$$

spherically uniformly on compact subsets of \mathbb{C} , where g is a nonconstant meromorphic function on \mathbb{C} , all of whose zeros have order at least k and satisfies

$$g^{\#}(\xi) \le g^{\#}(0) = kM + 1 = k\left(\min_{1 \le i \le l} |h_i(z)| + 1\right) + 1.$$
(3)

We then claim that:

Claim 3.1 If
$$g(\xi) = 0$$
, then $|g^{(k)}(\xi)| \le \min_{1 \le i \le l} |h_i(z_0)|$

Proof of Claim 3.1. Indeed, suppose that if $g(\xi_0) = 0$ and $g(\xi) 0$, by Hurwitz's Theorem there exists $\xi_n \to \xi_0$ such that (for n sufficiently large)

$$\frac{f_n\left(z_n+\rho_n\xi_n\right)}{\rho_n^k} = g_n\left(\xi_n\right) = 0,$$

thus $f_n(z_n + \rho_n \xi_n) = 0$. It follows from the hypotheses on \mathcal{F} that $\left| f_n^{(k)}(z_n + \rho_n \xi_n) \right| < \min_{1 \le i \le l} |h_i(z_n + \rho_n \xi_n)|$, hence

$$\left|g_{n}^{(k)}(\xi_{n})\right| = \left|f_{n}^{(k)}(z_{n}+\rho_{n}\xi_{n})\right| < \min_{1\leq i\leq l}\left|h_{i}(z_{n}+\rho_{n}\xi_{n})\right|$$

Let $n \to \infty$, then we complete the proof of Claim 3.1.

Since

$$g_n^{(k)}(\xi) - h_i(z_n + \rho_n \xi) = f_n^{(k)}(z_n + \rho_n \xi) - h_i(z_n + \rho_n \xi) \neq 0$$

for arbitrary $1 \leq i \leq l$, by Hurwitz's Theorem we have either (i) there exists $1 \leq i_0 \leq l$ such that $g^{(k)}(\xi) \equiv h_{i_0}(z_0)$, or (ii) for each $1 \leq i \leq l$ we always have $g^{(k)}(\xi) \neq h_i(z_0)$.

If (i) satisfies, since the zeros of g have order at least k, we have $g(\xi) = \frac{h_{i_0}(z_0)}{k!} (\xi - \xi_0)^k$,

by Claim 3.1 it follows that

$$|h_{i_0}(z_0)| = \left|g^{(k)}(\xi_0)\right| \le \min_{1 \le i \le l} |h_i(z_0)|.$$
(4)

Moreover from the expression of g, one gets

$$g^{\#}(0) \leq \begin{cases} \frac{k}{2}, & |\xi_0| \ge 1\\ |h_{i_0}(z_0)|, & |\xi_0| < 1, \end{cases}$$
(5)

then (4) and (5) lead a contradiction to (3).

If (ii) satisfies, it follows that $g^{(k)}(\xi) = h_{i_0}(z_0) + e^{a\xi+b}$ for some $1 \le i_0 \le l$. We divided this case into two parts:

(a) If a = 0, then $g^{(k)}(\xi) = h_{i_0}(z_0) + c$, since the zeros of g have order at least k, we have $g(\xi) = \frac{h_{i_0}(z_0) + c}{k!} (\xi - \xi_1)^k$, then it follows from Claim 3.1 that

$$|h_{i_0}(z_0) + c| = |g^{(k)}(\xi_1)| \le \min_{1 \le i \le l} |h_i(z_0)|.$$
(6)

Moreover

$$g^{\#}(0) \leq \begin{cases} \frac{k}{2}, & |\xi_1| \ge 1\\ |h_{i_0}(z_0) + c|, & |\xi_1| < 1, \end{cases}$$
(7)

thus (6) and (7) also lead a contradiction to (3).

(b) If $a \neq 0$, we have $g(\xi) = \frac{h_{i_0}(z_0)}{k!} \xi^k + a_1 \xi^{k-1} + \dots + a_k + \frac{e^{a\xi+b}}{a^k}$. It follows that there exist infinite $\xi_n \to \infty$ such that $g(\xi_n) = 0$, that is to say

$$a^{k}\left(\frac{h_{i_{0}}(z_{0})}{k!}\xi_{n}^{k}+a_{1}\xi_{n}^{k-1}+\cdots+a_{k}-\frac{h_{i_{0}}(z_{0})}{a^{k}}\right)=-h_{i_{0}}(z_{0})-e^{a\xi_{n}+b}.$$

By Claim 3.1 we have

$$\left|a^{k}\right|\left|\frac{h_{i_{0}}\left(z_{0}\right)}{k!}\xi_{n}^{k}+a_{1}\xi_{n}^{k-1}+\cdots+a_{k}-\frac{h_{i_{0}}\left(z_{0}\right)}{a^{k}}\right|=\left|h_{i_{0}}\left(z_{0}\right)+e^{a\xi_{n}+b}\right|=\left|g^{\left(k\right)}\left(\xi_{n}\right)\right|\leq\min_{1\leq i\leq l}\left|h_{i}\left(z_{0}\right)\right|,$$

which has a contradiction to $\xi_n \to \infty$.

By all of above, we prove that \mathcal{F} is normal on the subset D' of D, where $h_i(z) \neq 0$ for arbitrary $1 \leq i \leq l$.

We now turn to prove \mathcal{F} is normal at points for which exists $1 \leq i_0 \leq l$ such that $h_{i_0}(z) = 0$. Making standard normalizations, we may assume that $h_{i_0}(z) = z^m b(z)$

for $z \in D$, $m \ge 1$, b(0) = 1 and $h_{i_0}(z) \ne 0$ for 0 < |z| < 1. Let

$$\mathcal{G} = \left\{ \mathcal{G}\left(z\right) = \frac{f\left(z\right)}{z^{m}} \left| f \in \mathcal{F} \right\},\right.$$

since $|f^{(k)}(0)| \neq \min_{1 \leq i \leq l} |h_i(0)| = 0$, $f(0) \neq 0$, we have $F(0) = \infty$. We then prove \mathcal{G} is normal at 0. Suppose not, then by Lemma 2.1, there exist $G_n \in \mathcal{G}, z_n \to 0$ and $\rho_n \to 0^+$ such that

$$g_n\left(\xi\right) = \frac{G_n\left(z_n + \rho_n\xi\right)}{\rho_n^k} = \frac{f_n\left(z_n + \rho_n\xi\right)}{\rho_n^k\left(z_n + \rho_n\xi\right)^m} \to g\left(\xi\right)$$

spherically uniformly on compact subsets of \mathbb{C} , where g is a nonconstant meromorphic function on \mathbb{C} , all of whose zeros have order at least k and satisfies

$$g^{\#}(\xi) \le g^{\#}(0) = kM + 1.$$
(8)

We then consider the following two cases:

(i) Suppose $z_n/\rho_n \to \infty$, we have

$$f_n^{(k)}(z) = z^m G_n^{(k)}(z) + \sum_{j=1}^k c_j z^{m-j} G_n^{(k-j)}(z),$$

where

$$c_{j} = \begin{cases} m(m-1)(m-j+1), & j \le m \\ 0, & j > m. \end{cases}$$

Since $\rho_n^j g_n^{(k-j)}(\xi) = G_n^{(k-j)}(z_n + \rho_n \xi)$ for arbitrary $0 \le j \le m$, we obtain

$$\frac{f_n^{(k)}\left(z_n + \rho_n\xi\right)}{h_{i_0}\left(z_n + \rho_n\xi\right)} = \left(g_n^{(k)}\left(\xi\right) + \sum_{j=1}^k c_j \frac{g_n^{(k-j)}\left(z_n + \rho_n\xi\right)}{\left(z_n/\rho_n + \xi\right)^j}\right) \frac{1}{b\left(z_n + \rho_n\xi\right)}.$$
(9)

Now

$$\lim_{n \to \infty} \frac{c_j}{\left(z_n/\rho_n + \xi\right)^j} = 0 \tag{10}$$

for arbitrary $1 \leq j \leq m$ and

$$\lim_{n \to \infty} \frac{1}{b\left(z_n + \rho_n \xi\right)} = 1. \tag{11}$$

It follows from (9), (10) and (11) that

$$\frac{f_n^{(k)}(z_n + \rho_n \xi)}{h_{i_0}(z_n + \rho_n \xi)} \to g^{(k)}(\xi)$$
(12)

uniformly on compact subsets of $\mathbb C$ disjoint from the poles of g.

By $\rho_n^j g_n^{(k-j)}(\xi) = G_n^{(k-j)}(z_n + \rho_n \xi)$ and (9) we obtain that the *M* in (8) is equal to 1, thus by using (12) we can prove the following claim as the proof of Claim 3.1.

Claim 3.2 If $g(\xi) = 0$, then $|g^{(k)}(\xi)| \le 1$.

Moreover since it follows from (12) that

$$g_{n}^{(k)}(\xi) + o(1) = \frac{f_{n}^{(k)}(z_{n} + \rho_{n}\xi)}{h_{i_{0}}(z_{n} + \rho_{n}\xi)} \neq 1,$$

Hurwitz's Theorem implies that either

(i) $g^{(k)}(\xi) \equiv 1$, or (ii) $g^{(k)}(\xi) \neq 1$ for arbitrary ξ .

If (i) satisfies, since the zeros of g have order at least k, one get $g(\xi) = \frac{1}{k!} (\xi - \xi_0)^k$, thus

$$g^{\#}(0) \leq \begin{cases} \frac{k}{2}, & |\xi_0| \ge 1\\ 1, & |\xi_0| < 1, \end{cases}$$

which contradicts $g^{\#}(0) = k + 1$.

256

If (ii) satisfies, it follows that $g^{(k)}(\xi) = 1 + e^{a\xi+b}$. We divided this case into two parts:

(a) If a = 0, then $g^{(k)}(\xi) = 1 + c$, since the zeros of g have order at least k, it follows that $g(\xi) = \frac{1+c}{k!} (\xi - \xi_1)^k$. By Claim 3.2 we have

$$|1+c| = \left| g^{(k)}(\xi_1) \right| \le 1.$$
(13)

Moreover from the expression of g, one gets

$$g^{\#}(0) \leq \begin{cases} \frac{k}{2}, & |\xi_1| \ge 1\\ |1+c|, & |\xi_1| < 1, \end{cases}$$
(14)

thus (13) and (14) also lead a contradiction to $g^{\#}(0) = k + 1$.

(b) If $a \neq 0$, we have $g(\xi) = \frac{1}{k!}\xi^k + a_1\xi^{k-1} + \dots + a_k + \frac{e^{a\xi+b}}{a^k}$. It follows that there exist infinite $\xi_n \to \infty$ such that $g(\xi_n) = 0$, that is to say

$$a^{k}\left(\frac{1}{k!}\xi_{n}^{k}+a_{1}\xi_{n}^{k-1}+\cdots+a_{k}-\frac{1}{a^{k}}\right)=-1-e^{a\xi_{n}+b}.$$

By Claim 3.2, we have

$$\left|a^{k}\right|\left|\frac{1}{k!}\xi_{n}^{k}+a_{1}\xi_{n}^{k-1}+\cdots+a_{k}-\frac{1}{a^{k}}\right|=\left|1+e^{a\xi_{n}+b}\right|=\left|g^{(k)}\left(\xi_{n}\right)\right|\leq1,$$

which has a contradiction to $\xi_n \to \infty$.

(ii) So that we may assume that $z_n/\rho_n \to \alpha$, which is a finite complex number. Then we have

$$\frac{G_n\left(\rho_n\xi\right)}{\rho_n^k} = \frac{G_n\left(z_n + \rho_n\left(\xi - z_n/\rho_n\right)\right)}{\rho_n^k} \to g\left(\xi - \alpha\right) = \tilde{g}\left(\xi\right),$$

the convergence being spherically uniform on compact sets of \mathbb{C} , hence uniform on compact disjoint from the poles of \tilde{g} . Clearly, all zeros of \tilde{g} have order at least k, and the pole of \tilde{g} at $\xi = 0$ has order at least m. Now

$$K_n\left(\xi\right) = \frac{f_n\left(\rho_n\xi\right)}{\rho_n^{k+m}} = \frac{G_n\left(\rho_n\xi\right)}{\rho_n^k} \frac{\left(\rho_n\xi\right)^m}{\rho_n^m} \to \xi^m \tilde{g}\left(\xi\right) = K\left(\xi\right)$$
(15)

uniformly on compact subsets of \mathbb{C} disjoint from the poles of \tilde{g} , and $\lim_{n \to \infty} \frac{h_{i_0}(\rho_n \xi)}{\rho_n^m} = \xi^m$ uniformly on compact subsets of \mathbb{C} . Note that since \tilde{g} has a pole of order at least k at $\xi = 0$, $K(0) \neq 0$ and all zeros of K have order at least k. Furthermore since

$$K_{n}^{(k)}(\xi) - \frac{h_{i_{0}}(\rho_{n}\xi)}{\rho_{n}^{m}} = \frac{f_{n}^{(k)}(\rho_{n}\xi) - h_{i_{0}}(\rho_{n}\xi)}{\rho_{n}^{m}} \neq 0,$$

it follows from $\lim_{n\to\infty} \frac{h_{i_0}(\rho_n\xi)}{\rho_n^m} = \xi^m$ and Hurwitz's Theorem that either (i) $K^{(k)}(\xi) \equiv \xi^m$, or (ii) $K^{(k)}(\xi) \neq \xi^m$ for arbitrary ξ .

If (i) satisfies, it follows that K is a polynomial of multiplicity m+k. If all zeros of K has order k, we have m+k = pk, which has a contradiction to the zeros of $h_i(z)$ having multiplicity m_i such that $k \nmid m_i$ for arbitrary $1 \le i \le l$. If there exists a zero of K with order at least k+1, then $K^{(k)}(\xi)$ must vanish at any points where $K(\xi)$ vanishe. On the other hand, $K^{(k)}(\xi) \ne 0$ for $\xi \ne 0$, thus we have K(0) = 0, a contradiction.

If (ii) satisfies, we have $g^{(k)}(\xi) = 1 + e^{a\xi+b}$, firstly we claim that:

Claim 3.3 If $K(\xi) = 0$, then $|K^{(k)}(\xi)| \le |\xi|^m$.

Proof of Claim 3.3. Indeed, suppose that if $K(\xi_0) = 0$ and $K(\xi) 0$, by Hurwitz's Theorem there exists $\xi_n \to \xi_0$ such that (for *n* sufficiently large)

$$\frac{f_n\left(\rho_n\xi_n\right)}{\rho_n^{k+m}} = K_n\left(\xi_n\right) = 0,$$

thus $f_n(\rho_n\xi_n) = 0$. It follows from the hypotheses on \mathcal{F} that $\left| f_n^{(k)}(\rho_n\xi_n) \right| < \min_{1 \le i \le l} |h_i(\rho_n\xi_n)|,$ hence

$$\left|K_{n}^{(k)}\left(\xi_{n}\right)\right| = \left|\frac{f_{n}^{(k)}\left(\rho_{n}\xi_{n}\right)}{\rho_{n}^{m}}\right| < \left|\frac{h_{i_{0}}\left(\rho_{n}\xi_{n}\right)}{\rho_{n}^{m}}\right| = \left|\frac{\left(\rho_{n}\xi_{n}\right)^{m}b\left(\rho_{n}\xi_{n}\right)}{\rho_{n}^{m}}\right| = \left|\xi_{n}\right|^{m}\left|b\left(\rho_{n}\xi_{n}\right)\right|.$$

Let $n \to \infty$, we complete the proof of Claim 3.3.

We then divided this case into two parts:

(a) If a = 0, as the proof of case (i) we obtain a contradiction.

(b) If $a \neq 0$, we have

$$K(\xi) = \frac{1}{(k+m)\cdots(m+1)}\xi^{k+m} + a_1\xi^{k-1} + \dots + a_k + \frac{e^{a\xi+b}}{a^k}.$$

It follows that there exist infinite $\xi_n \to \infty$ such that $K(\xi_n) = 0$, that is to say

$$a^{k}\left(\frac{1}{(k+m)\cdots(m+1)}\xi_{n}^{k+m}+a_{1}\xi_{n}^{k-1}+\cdots+a_{k}-\frac{\xi_{n}^{m}}{a^{k}}\right)=-\xi_{n}^{m}-e^{a\xi_{n}+b}.$$

By using Claim 3.3, we have

$$\left|a^{k}\right|\left|\frac{1}{(k+m)\cdots(m+1)}\xi_{n}^{k+m}+a_{1}\xi_{n}^{k-1}+\cdots+a_{k}-\frac{\xi_{n}^{m}}{a^{k}}\right|=\left|\xi_{n}^{m}+e^{a\xi_{n}+b}\right|=\left|K^{(k)}\left(\xi_{n}\right)\right|\leq\left|\xi_{n}\right|^{m},$$

which also has a contradiction to $\xi_n \to \infty$.

The contradiction establishes \mathcal{G} is normal at 0. It remains to prove that \mathcal{F} is normal at 0. Since \mathcal{G} is normal at 0 and $G(0) = \infty$ for each $G(z) \in \mathcal{G}$, there exists $\delta > 0$ such that if $G(z) \in \mathcal{G}$, then $|G(z)| \ge 1$ for all $z \in \Delta_{\delta} =$ $\{z \in ||z| < \delta\}$. Thus $f(z) \neq 0$ for $z \in \Delta_{\delta}$ and for all $f \in \mathcal{F}$, which is equivalent to 1/f is analytic in Δ_{δ} for all $f \in \mathcal{F}$. Therefore, for all $f \in \mathcal{F}$, we have

$$\left|\frac{1}{f(z)}\right| = \left|\frac{1}{G(z)}\frac{1}{|z|^k}\right| \le \frac{2^k}{\delta^k}, |z| = \frac{\delta}{2}.$$
(16)

By the Maximum Principle and Montel's Theorem, \mathcal{F} is normal at $\xi = 0$. This completes the proof of Theorem 1.4.

4 Open Problem

There are two interesting open problems related to our paper, one open problem is related to the meromorphic differential polynomial which omit a function set:

Problem 4.1 Let \mathcal{F} be a family of functions meromorphic on a domain Din \mathbb{C} , all of whose zeros have multiplicity at least k, and $\mathcal{S} = \{h_i(z) | z \in D, i = 1, \dots l\}$ be a holomorphic functions set on D such that $h_i(z) 0$ for arbitrary $1 \leq i \leq l$, the zeros of $h_i(z)$ have multiplicity m_i which satisfies $k \nmid m_i$ for arbitrary $1 \leq i \leq l$. The $i \leq l$. Suppose that for each $f \in \mathcal{F}$, $\max_{1 \leq j \leq k} |f^{(j)}(z)| < \min_{1 \leq i \leq l} |h_i(z)|$ whenever f(z) = 0 and the differential polynomial $\sum_{j=1}^{k} p_j(z) f^{(j)}(z)$ omits the function set \mathcal{S} , is \mathcal{F} is a normal family on D?

Another open problem is related to the meromorphic functions family which shares a function set, firstly we present the definition of meromorphic functions sharing a function set as follows:

Definition 4.2 (Meromorphic Functions Sharing a Function Set) Let D be a domain in \mathbb{C} , f and g meromorphic on D and S is a set including finite meromorphic functions on D:

$$\mathcal{S} = \left\{ h_i(z) | z \in D, i = 1, \cdots l \right\}.$$

If f and g satisfies

$$E_{f}(S) = \{ z \in D | f(z) = h_{i}(z), \exists 1 \le i \le l \} \\ = \{ z \in D | g(z) = h_{j}(z), \exists 1 \le j \le l \} \\ = E_{g}(S),$$

then the two meromorphic functions f and g on D are said to share the function set S.

The open problem is as follows:

Problem 4.3 Let \mathcal{F} be a family of functions meromorphic on a domain D in \mathbb{C} , all of whose zeros have multiplicity at least k. If there exists a holomorphic function set on D

$$S = \{h_i(z) | z \in D, i = 1, \cdots, l\},\$$

where $h_i(z) \neq 0$ for arbitrary $z \in D$ and $1 \leq i \leq l$, such that for each $f \in \mathcal{F}$, $E_f(\mathcal{S}) = E_{f^{(k)}}(\mathcal{S})$ and $0 < |f^{(k)}(z)| \leq \sup_{1 \leq i \leq l} |h_i(z)|$ whenever $z \in E_f(0)$, is \mathcal{F} is a normal family on D?

ACKNOWLEDGEMENTS. I would especially like to express my appreciation to my advisor professor Yu Zheng for longtime encouragement and meaningful discussions. I would also especially like to thank the referee for meaningful suggestions that led to improvement of the article.

References

- K. Hamai, T. Hayami, K. Kuroki and S. Owa, *Extremal Function and Co*efficient Inequalities for Certain Analytic Functions, Int. J. Open Problems Complex Analysis, Vol. 2, No. 3, (2010), pp. 174-180.
- [2] Alina Alb Lupas, A Note on a Subclass of Analytic Functions Defined by Multiplier Transformations, Int. J. Open Problems Complex Analysis, Vol. 2, No. 2, (2010), pp. 154-159.
- [3] N. Magesh, G. Murugusundaramoorthy, T. Rosy and K. Muthunagai, Subordination and Superordination Results for Analytic Functions Associated with Convolution Structure, Int. J. Open Problems Complex Analysis, Vol. 2, No. 2, (2010), pp. 67-81.
- [4] Alina Alb Lupas, A Note on a Subclass of Analytic Functions Defined by Ruscheweyh Derivativeand Multiplier Transformations, Int. J. Open Problems Complex Analysis, Vol. 2, No. 2, (2010), pp. 60-66.

260

- [5] L. Yang, Normality for Families of Meromorphic Functions, Sci. Sinica Ser. A, 29, (1986), pp. 1263-1274.
- [6] X. C. Pang, L. Zalcman, Normal Families of Meromorphic Functions with Multiple Zeros and Poles, Israel J., 136, (2003), pp.1-9.
- [7] X. C. Pang, D. G. Yang and L. Zalcman, Normal Families of Meromorphic Functions whose Derivatives Omit a Function, Comput. Methods Funct., 2, (2002), pp.257-265.