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Abstract 

 

A stochastic cellular automata (CA) model of tumor growth 

in a cubic lattice was studied. The dynamics of tumor growth was 

incorporated to describe tumor cell invasion of normal tissue. Five 

input parameters controlling the scenario of what may happen 

when tumor cells invade normal tissue were used: proliferation 

rate, tumor-immune binding and association rate, cell lysis, and 

decay. Monte Carlo simulations based on a CA model were 

performed. The simulation results provided growth curves highly 

dependent on the controlled parameters. Comparisons between 

experimental results from the computer simulation and clinical 

results are discussed.  
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1      Introduction 

Combining a self-organizing complex dynamic system and computational 

model has been a great challenge in interdisciplinary research, especially in 

medical, mathematics, and biophysics research. The development of tumor growth 

modeling using theoretical models, a mathematical approach, and computer 

simulations has been done for more than two decades; see details in [1]. Here, an 

automaton–based method was established to explain the self-organizing dynamics 

of cells in discrete nature; i.e., where a cellular automaton (CA) or individual-

based model is the main focus (see various CA models in [2]). The CA models 

carried out the simulation results by using computer implementation as per the 

evolutionary experiments in-machina, which were introduced in 1987 by Agur [3]. 

The Agur model describes the immune system with deterministic rules for cells, 

molecules, and their interaction by performing computer simulation experiments 

on a two dimensional cellular automata. 

 Some of the CA models of tumor growth were carried out by Duchting 

and Vogelsaenger [4], who describe the cell-cycle of tumor cell dynamics on a 

cubic lattice. Qi and coworker [5] established a CA model which describes tumor 

growth under the influence of immune response and mechanical pressure to tumor 

on a two-dimensional cellular automata model on a square lattice. Their model 

simulates the growth curves as a Gompertz-like curve and compares them with the 

experimental data. In general, the Gompertz curve is commonly used and is an 

important feature noticed during in vivo tumor growth. In 2006, Boondirek et al. 

[6] added the detachment of immune binding, without damaging cancer cells, to 

the microscopic model of [5], yielding a trend of growth curve that was shown to 

qualitatively agree well with experimental animal tumor growth. Boondirek and 

Triampo (BT)[7] have recently used the kinetic model with five parameters, as in 

[6], on a three dimensional cubic lattice that reproduced Gompertz curves. In 

addition, the simulation results showed that the qualitative growth curve and the 

experimental growth curves in vivo for rat tumor W12a7 were in agreement, see 

details in [7].  

 The microscopic model takes into account the proliferation of tumor cells 

and their interaction with the immune response, resulting in either lysis of the 

proliferating tumor cells or the detachment of immune binding without damaging 

the tumor cells or removing the dead tumor cells from the tissue. According to the 

above description, we may revise the notation of the proliferating tumor cells, the 

dead tumor cells, the tumor infiltrating cytotoxic lymphocyte(TICLs) and the 

TICLs-tumor cell complexes as: P, D, TICLs, and C, respectively. Where the five 

parameters .prolifr , bindingr  , detach.r  , lysisr , and decayr  are the non-negative kinetic 

constants, we define the function .prolifr , or the in vivo avascular tumor growth rate, 

as  
K
P

.prolif.prolif 1r)t(r  , and )(tP as the number of proliferating tumor cells, 

where K is the carrying capacity, see details in [6].  
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 The aim of this research was to use the model of [7] to create a three 

dimensional lattice to predict tumor growth by investigating the effects of the 

immune system, as done previously. This model is believed to be relatively more 

realistic than those of the two dimensional model. To investigate the immune 

influences on tumor growth, we varied the escape and binding parameters in the 

microscopic model and studied the growth of the tumor from the simulated 

growth curves. Additionally, comparisons between the simulation results and 

some biological effects from clinical studies have been discussed.  

 

2      Method 

 

 

 
 

 

 
 

 

 
 

 

 

Fig. 1  The fundamental features of development of cancer with immune response, 

where P, TICLs, C and D denote proliferating cell, effectors, cancer-TICLs cells 

complex, and dead cancer cell. 

 

The BT model being used to formulate the nutrient-limited growth of an 

avascular tumor growth took into account the competition between the immune 

system and tumor cells [7] as shown in Fig. 1, and was applied to a three 

dimensional model. The Monte Carlo computer simulations were performed to 

investigate the effects of parameters at the microscopic scale.  .prolifr  is the rate of 

tumor proliferation. The binding parameters, bindingr  is the rate at which the TILCs 

form lymphocyte tumor cell complexes; see more details in [9]. The higher 

binding rate indicates the ability of immune cells to bind with the cancer cells and 

become cell complexes. detach.r  is the rate of detachment of TICLs from cancer 

cells without damaging the cells; lysisr  is the rate of detachment of TICLs from 

dead tumor cells, due to the irreversible programming of the tumor cells for lysis. 

Zheng and coworker [10] produced experimental data that led them to draw the 

conclusion that induction of the apoptosis of tumor cells can enhance antitumor 

efficacy. decayr  describes the dissolution of the dead cancer cells. Some key results 

are presented here and discussed.  
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3      Simulation Results 

 We set the five input parameters and ran simulations. To obtain a primary 

understanding of the dynamic changes, a spatial visualization of the tumor 

spreading on the cubic lattice is presented in Fig. 2. Fig.2a) shows the cross-

central section of the tumor at time step 10 and 50. The boundary shows a roughly 

circular shape in which the proliferating tumor cells (see color details) are most 

likely to locate at the rim of the tumor. The spatial distribution of proliferated 

cells in the simulated tumor can be measured by [6], with a comparison to the in 

vivo experiment by Bru et al. [12]. Additionally, the fractal structure as seen in the 

snapshot cross-section tumor can be characterized by fractal dimension, as shown 

in [6].  

 Since the parameter space is very big and requires very rigorous analysis 

to identify the parameter ranges, we consequently used parameter values that were 

more or less the same as those studied in ref [7]. To gain more insight into the 

tumor dynamics quantitatively, the growth curve of the tumor was numerically 

obtained. It appears that the Gompertz-like curve appears a good fit for our data, 

as shown in Fig.2(b).  

 

 
 

Fig.2(a) Snapshots of a cross-central section of simulated tumor on 101x101x101 

cubic lattices with time progression at time steps 10, 30 and 50. The parameter 

settings are .prolifr  = 0.8, bindingr =0.05, detach.r = 0.05, lysisr  = 0.05, decayr  = 0.05, and 

K  = 510 . The color code is : proliferating tumor cell, : TICLs-tumor cell 

complexes,  : dead tumor cell, and : normal cell. 

 

 To connect our computer model with the real world system, we compared 

our results with the clinical data by Matzavinos and Chaplain [8]. It appears that 

they are at least in qualitative good agreement. This could relate to the possibility 

that cytokines in the immune system are the reason for increased binding and lysis 

rate in the microscopic model. To understand more about this issue, we therefore 

changed the values of the binding, escape, and lysis parameters and investigated 

the trend of the growth curves by comparative study. Some of the results are 

presented in Fig. 3 and 4. 
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Fig. 2(b) Time evolutions of the total number of tumor cells (solid line), the 

number of proliferating cells (long dash), the number of TICLs-tumor cells (dot), 

and the number of dead tumor cells (dash dot), using the same parameters as in 

Fig. 2(a) with the same computer run-time. 

 
Fig. 3 The influences of bindingr  on the aggressive growth of the tumor. This figure 

shows the plots of the time evolution of the proliferating number of tumor cells by 
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varying the value of bindingr  from 0.0 to 0.2 in steps of 0.1 while fixing the other 

values at .prolifr  = 0.8, detach.r = 0.35, lysisr  = 0.35, decayr  = 0.2, and K  = 510 . 

   

 We varied bindingr  from 0.0 to 0.1 to 0.2 and fixed the other parameters to 

see how this changed the proliferating growth curves. It was found that the higher 

binding rate decreases the aggressiveness of the tumor. Fig. 3, clearly shows that 

the higher binding rate results in a lower saturated size of proliferating tumor. 

Alternatively, we varied lysisr  from 0.0 to 0.1 to 0.2  and fixed the other parameters 

to see the change of the proliferating growth curve and found that the higher lysis 

rate also results in a lower saturated size of the proliferating tumor as shown in 

Fig. 4. This seems to indicate that the comparison between simulation results of 

our model and some clinical trials agrees well. 

 

 
Fig. 4 The influences of lysisr  on the aggressive growth of the tumor. This figure 

shows the plots of the time evolution of the proliferating number of tumor cells by 

varying the value of lysisr  from 0.0 to 0.4 in steps of 0.2, while fixing the other 

values at .prolifr  = 0.8, bindingr = 0.2, detach.r = 0.35, decayr  = 0.2, and K  = 510 . 

4      Conclusion 

 This article presented an extension of earlier work by [7] to show the time 

evolution visual configurations of a cross-section of simulated tumors for tumor-

immune response dynamics on a 101x101x101 cubic lattice. To gain insight into 
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how controlled parameters may affect the evolution of proliferating tumor growth, 

Monte Carlo simulations were performed which focused on the change of the 

proliferation, binding, and lysis parameters which influence the proliferating 

growth rate of a tumor. This was to see how the immune system responds to the 

growth of tumor. Specifically we investigated the proliferating growth curves 

after varying the bindingr , and it was found that our simulation results agree well 

with those obtained from clinical studies of tumor-immune response. Since the 

microscopic model of tumor growth may exhibit other complex behaviors relating 

to cell motility [11] or when mechanical pressure is applied [5], further 

exploration needs to be done.  

5      Open Problem 

 The microscopic model of tumor growth may exhibit other complex 

behaviors such as the mechanical pressure as in [5], also the movement of 

proliferating cell or cell motility, see Gerlee and Anderson[11]. 

 The spatial distribution of proliferated cell in simulated tumor can be 

measured by [6] with comparison to in vivo experiment by Bru et al. [12].   

 Additionally, the fractal structure as seen in the snapshot cross-section 

tumor can be characterized by fractal dimension senses as shown in [6].  
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