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Abstract

In this paper we define a ∗-Semi lattice A and prove that
for each a ∈ C(A), θa = {(x, y) | a ∧ x = a ∧ y} a congruence
on A and also prove that θ is a factor congruence if and only
if θ = θa for some a ∈ C(A). Also we prove that for each
a ∈ C(A), Aa = {a ∧ x | x ∈ A} is itself a ∗-Semi lattice and
A ∼= Aa ×Aa∗.
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1 Introduction

It is known that a semi lattice (A,∧) with zero is non empty set A together
with a binary operation ∧ which is associative, idempotent, commutative and
0 ∈ A satisfy 0∧x = x∧ 0 = 0. It is well known that if (A,∧) is a semi lattice
and define x ≤ y ⇔ x = x∧ y is a partial order on A. We say two congruences
θ, φ are pair of factor congruences if θ∩φ = ∆ and θ◦φ = φ◦θ = A×A. Recall
that if A is a Boolean algebra then θa = {a∧x | x ∈ A} is a factor congruence
for every a ∈ A [2, 4]. Also we have A ∼= A/θa×A/θa∗ and also A ∼= (a]× [a).
In this paper we defined a ∗-Semi lattice A and its central elements C(A) and
proved that for each a ∈ C(A), θa = {(x, y) | a ∧ x = a ∧ y} a congruence on
A and also proved that θ is a factor congruence if and only if θ = θa for some
a ∈ C(A). Also it is proved that A/θa

∼= Aa where Aa = {a ∧ x | x ∈ A},
which is itself a ∗-Semi lattice and A ∼= Aa × Aa∗ .

2 ∗-Semi lattice

In this section First we define ∗-Semi lattice and we shall prove various prop-
erties. First let us start with the definition of ∗-Semi lattice.



∗-Semilattice 57

Definition 2.1. Let (A,∧, 0) be a semi lattice with ’0’. If ∗ is a unary
operation on A such that, for any x,y,a ∈ A,
(1) a ∧ a∗ = 0
(2) 0∗ ∧ x = x
(3) a∧ ((a∧ x)∗ ∧ (a∗ ∧ y)∗)∗ = a∧ x, a∗ ∧ ((a∧ x)∗ ∧ (a∗ ∧ y)∗)∗ = a∗ ∧ y
(4) x = ((a ∧ x)∗ ∧ (a∗ ∧ x)∗)∗.
Then A is a ∗-semi lattice.

Now we prove the following

Lemma 2.2. y∗∗ = y, for all y ∈ A.

Proof. By Definition 2.1(3), let a = 0. Then
0∗ ∧ [(0 ∧ x)∗ ∧ (0∗ ∧ y)∗]∗ = 0∗ ∧ y ⇒ [0∗ ∧ y∗]∗ = y ⇒ y∗∗ = y.

Now we define a relation θa = {(p, q) | a∧ p = a∧ q} on a ∗-Semi lattice A
and the set of all central elements C(A) of A.

Definition 2.3. Let A be a ∗-semi lattice. An element a ∈ A is called
central element if a satisfies the following
(i) a ∧ x = a ∧ y ⇒ a ∧ x∗ = a ∧ y∗

(ii)a∗ ∧ x = a∗ ∧ y ⇒ a∗ ∧ x∗ = a∗ ∧ y∗ ,for any x,y ∈ A.

The set of all central elements is denoted by C(A). Observe that if a ∈ C(A)
then a∗ ∈ C(A). In the following we prove θa is a congruence if a ∈ C(A) and
it is also proved that θa, θa∗ are pair of factor congruences on A.

Lemma 2.4. Let A be a ∗-Semi lattice and a ∈ C(A). Then
θa = {(p, q)|a ∧ p = a ∧ q} is a congruence on A.

Proof. Clearly θa is an equivalence relation on A.
Let (x, y), (z, t) ∈ θa. Then a ∧ x = a ∧ y and a ∧ z = a ∧ t. Now a ∧ x ∧ z =
a ∧ x ∧ a ∧ z = a ∧ y ∧ a ∧ t = a ∧ y ∧ t. Therefore (x ∧ z, y ∧ t) ∈ θa. Now,
(x, y) ∈ θa then a∧ x = a∧ y ⇒ a∧ x∗ = a∧ y∗. Thus (x∗, y∗) ∈ θa. Therefore
θa is a congruence relation on A.

Recall that in a Semi lattice (A,∧), if we define ”≤” by x ≤ y if and only if
x ∧ y = x then ”≤” is a partial order on A.

We prove the following.

Theorem 2.5. Let A be a ∗-Semi lattice and a ∈ C(A). Then θa is a factor
congruence on A.
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Proof. Let (x, y) ∈ θa ∩ θa∗ . Then a ∧ x = a ∧ y and a∗ ∧ x = a∗ ∧ y.
Now x = ((a ∧ x)∗ ∧ (a∗ ∧ x)∗)∗ ∧ x

= ((a ∧ y)∗ ∧ (a∗ ∧ y)∗)∗ ∧ x
= y ∧ x

Therefore x ≤ y. Similarly we can prove y ≤ x and hence x = y. Therefore
θa ∩ θa∗ = 4.
Let x 6= y and z = ((a ∧ x)∗ ∧ (a∗ ∧ y)∗)∗. Now, a ∧ z = a ∧ ((a ∧ x)∗ ∧ (a∗ ∧
y)∗)∗ = a ∧ x and a∗ ∧ z = a∗ ∧ ((a ∧ x)∗ ∧ (a∗ ∧ y)∗)∗ = a∗ ∧ y. Therefore,
(x, z) ∈ θa, (z, y) ∈ θa∗ . Thus, (x, y) ∈ θa∗ ◦ θa. Therefore 5 ⊆ θa ◦ θa∗ . Since
θa ◦ θb ⊆ 5 for any two congruences in particular, θa ◦ θa∗ ⊆ 5, θa ◦ θa∗ = 5.
Therefore θa is a factor congruence on A.

Now we prove that θ is a factor congruence if and only if θ = θa for some
a ∈ C(A).

Theorem 2.6. Let A be a ∗-Semi lattice and θ is a congruence on A. Then
θ is a factor congruence if and only if θ = θa for some a ∈ C(A).

Proof. Let θ be a factor congruence on A. Then there exists a φ such that
θ ◦ φ = 4 and θ ∩ φ = 5. Now, (0, 0∗) ∈ θ ◦ φ then there exists x ∈ A such
that (0, x) ∈ φ, (x, 0∗) ∈ θ. To prove θ = θx, let (p, q) ∈ θx that is x∧p = x∧q.
We have, (x, 0∗) ∈ θ then (x ∧ p, 0∗ ∧ p), (x ∧ q, 0∗ ∧ q) ∈ θ. Thus (p, q) ∈ θ.
Therefore θx ⊆ θ.
On the other hand, (p, q) ∈ θ, that is (x ∧ p, x ∧ q) ∈ θ. Since (0, x) ∈ φ, (0 ∧
p, x∧p) and (0∧q, x∧q) are in φ, (x∧q, x∧p) ∈ φ. Thus (x∧p, x∧q) ∈ θ∩φ = 4.
(x ∧ p, x ∧ q) ∈ 4 ⇒ x ∧ p = x ∧ q ⇒ (p, q) ∈ θx. Therefore θ ⊆ θx. Thus
θ = θx. Now we show that φ = θx∗ . Let (p, q) ∈ θx∗ .

Now (0, x) ∈ φ ⇒ (0∗, x∗) ∈ φ
⇒ (0∗ ∧ p, x∗ ∧ p), (0∗ ∧ q, x∗ ∧ q) ∈ φ
⇒ (p, x∗ ∧ p), (q, x∗ ∧ q) ∈ φ
⇒ (p, q) ∈ φ( since x∗ ∧ p = x∗ ∧ q)

Therefore θx∗ ⊆ φ. On the other hand (p, q) ∈ φ.
(x, 0∗) ∈ θ ⇒ (x∗, 0) ∈ θ

⇒ (x∗ ∧ p, 0 ∧ p), (x∗ ∧ q, 0 ∧ q) ∈ θ
⇒ (x∗ ∧ p, 0), (x∗ ∧ q, 0) ∈ θ
⇒ (x∗ ∧ p, x∗ ∧ q) ∈ θ

Therefore (x∗ ∧ p, x∗ ∧ q) ∈ φ ∩ θ = 4.
x∗∧p = x∗∧q ⇒ (p, q) ∈ θx∗ . Therefore φ ⊆ θx∗ . Thus φ = θx∗ . Now our claim
is to show that x ∈ C(A). Let x∧t = x∧w. Thus (t, w) ∈ θx = θ ⇒ (t∗, w∗) ∈ θ
(since θ is a congruence) ⇒ (t∗, w∗) ∈ θx ⇒ x ∧ t∗ = x ∧ w∗.
Suppose x∗ ∧ t = x∗ ∧ w ⇒ (t, w) ∈ θx∗ = φ ⇒ (t∗, w∗) ∈ φ = θx∗ (since φ is a
congruence) ⇒ x∗ ∧ t∗ = x∗ ∧w∗. Therefore x ∈ C(A). The converse is trivial
by lemma 2.4.
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Theorem 2.7. Let (A,∧, 0) be a ∗-semi lattice then for every a ∈ C(A)
define Aa = {a ∧ x | x ∈ A} is itself a ∗-semi lattice where ∧ is induced
operation and ′ is defined by (a ∧ x)′ = a ∧ x∗ for all x ∈ A.

Proof. Since a ∈ C(A), a ∧ x = a ∧ y ⇒ a ∧ x∗ = a ∧ y∗ ⇒ (a ∧ x)′ = (a ∧ y)′.
Hence the unary operation ′ is well defined. Let a ∧ x, a ∧ y ∈ Aa. Then
(a ∧ x) ∧ (a ∧ y) = a ∧ x ∧ y. Therefore ∧ is closed on Aa. Also 0 ∈ Aa since
a ∧ 0 = 0. Thus (Aa,∧) is a semi lattice with 0. Now, (a ∧ x) ∧ (a ∧ x)′ =
a ∧ x ∧ a ∧ x∗ = a ∧ x ∧ x∗ = a ∧ 0 = 0. Further 0′ = (a ∧ 0)′ = a ∧ 0∗ = a.
Thus 0′ ∧ (a ∧ x) = a ∧ (a ∧ x) = a ∧ x.
Let a ∧ x, a ∧ y, a ∧ z ∈ Aa.
Now (a ∧ x) ∧ [[(a ∧ x) ∧ (a ∧ y)]′ ∧ [(a ∧ x)′ ∧ (a ∧ z)]′]′

= a ∧ x ∧ [[a ∧ (x ∧ y)∗] ∧ [a ∧ x∗ ∧ a ∧ z]′]′

= a ∧ x ∧ [a ∧ (x ∧ y)∗ ∧ [a ∧ (x∗ ∧ z)∗]]′

= a ∧ x ∧ a ∧ [(x ∧ y)∗ ∧ (x∗ ∧ z)∗]∗

= a ∧ x ∧ [(x ∧ y)∗ ∧ (x∗ ∧ z)∗]∗

= a ∧ x ∧ y by definition 2.1(4)
= (a ∧ x) ∧ (a ∧ y)

Now (a ∧ x)′ ∧ [[(a ∧ x) ∧ (a ∧ y)]′ ∧ [(a ∧ x)′ ∧ (a ∧ z)]′]′

= a ∧ x∗ ∧ [a ∧ (x ∧ y)∗ ∧ [a ∧ x∗ ∧ a ∧ z]′]′

= a ∧ x∗ ∧ [a ∧ (x ∧ y)∗ ∧ [a ∧ (x∗ ∧ z)∗]]′

= a ∧ x∗ ∧ a ∧ [(x ∧ y)∗ ∧ (x∗ ∧ z)∗]∗

= a ∧ x∗ ∧ [(x ∧ y)∗ ∧ [x∗ ∧ z]∗]∗

= a ∧ x∗ ∧ z by definition 2.1(3)
= a ∧ x∗ ∧ a ∧ z
= (a ∧ x)′ ∧ (a ∧ z)

[[(a ∧ x) ∧ (a ∧ y)]′ ∧ [(a ∧ x)′ ∧ (a ∧ y)]′]′ = [a ∧ (x ∧ y)∗ ∧ (a ∧ x∗ ∧ y)′]′

= [a ∧ (x ∧ y)∗ ∧ a ∧ (x∗ ∧ y)∗]′

= [a ∧ (x ∧ y)∗ ∧ (x∗ ∧ y)∗]′

= a ∧ [(x ∧ y)∗ ∧ (x∗ ∧ y)∗]∗

= a ∧ y by definition 2.1(4)
Therefore Aa is ∗-Semi lattice.

Theorem 2.8. Let A be a ∗-Semi lattice. Then for any a ∈ C(A), fa : A →
Aa defined by f(x) = a ∧ x is a homomorphism and A/θa

∼= Aa.

Proof. Let fa(x ∧ y) = a ∧ x ∧ y = (a ∧ x) ∧ (a ∧ y) = fa(x) ∧ fa(y) and
fa(x

∗) = a∧ x∗ = (a∧ x)′ = [fa(x)]′. Therefore fa is a homomorphism, clearly
f is onto.
Now kerfa = {(x, y) | fa(x) = fa(y)} = {(x, y) | a ∧ x = a ∧ y} = θa. By
fundamental theorem of homomorphism A/Kerfa

∼= Aa which imply A/θa
∼=

Aa.
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Theorem 2.9. Let A be a ∗-Semi lattice. Then for any a ∈ C(A), A ∼=
Aa × Aa∗.

Proof. Since for each a ∈ A, θa is a factor congruence, we have A ∼= A/θa ×
A/θa∗ . Therefore by above Theorem A ∼= Aa × Aa∗ .

Theorem 2.10. Let A be ∗-Semilattice and (x∗∧y∗)∗∧y = y for all x, y ∈ A.
If we define x∨ y = (x∗∧ y∗)∗. Then < A,∧,∨, 0, 0∗ > is bounded ortholattice.

Proof. Let A be *-Semilattice and (x∗ ∧ y∗)∗ ∧ y = y.
Define x∨y = (x∗∧y∗)∗ then clearly ∨ is commutative and x∨x = (x∗∧x∗)∗ =
(x∗)∗ = x.
Now, (x ∨ y)∗ = [(x∗ ∧ y∗)∗]∗ = x∗ ∧ y∗ and (x ∧ y)∗ = [(x∗∗ ∧ y∗∗)∗]∗ = x∗ ∨ y∗

x ∨ (y ∨ z) = x ∨ (y∗ ∧ z∗)∗

= (x∗ ∧ (y∗ ∧ z∗)∗∗)∗

= (x∗ ∧ (y∗ ∧ z∗))∗

= ((x∗ ∧ y∗) ∧ z∗))∗

= ((x∗ ∧ y∗)∗∗ ∧ z∗)∗

= (x∗ ∧ y∗)∗ ∨ z
= (x ∨ y) ∨ z

Thus ∨ is associative.
Also, (x ∧ y) ∨ y = [(x ∧ y)∗ ∧ y∗]∗ = [x∗∗ ∧ y∗∗)∗ ∧ y∗]∗ = y∗∗ = y

Thus < A,∧,∨, > is lattice. Since 0 ∧ x = 0, 0∗ ∧ x = x, x ∧ x∗ = 0 and
x∨ x∗ = [x∗ ∧ x∗∗]∗ = [x∧ x∗]∗ = 0∗, we have 0 ≤ x ≤ 0∗. Therefore ∗ is ortho
complementation. Hence < A,∧,∨, 0, 0∗ > is an ortholattice.

3 Open Problems

1. Example of a ∗-Semi lattice which is not an ortholattice.

2. Is the set of all congruences on a ∗-Semi lattice a Boolean lattice?
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