Int. J. Open Problems Compt. Math., Vol. 4, No. 3, September 2011 ISSN 1998-6262; Copyright ©ICSRS Publication, 2011 www.i-csrs.org

*-Semilattice

P. Sundarayya and S. Kalesha Vali

Department of Engineering Mathematics, GITAM University, Visakhapatnam - 530045, India. e-mail:psundarayya@yahoo.co.in and vali312@gitam.edu

Abstract

In this paper we define a *-Semi lattice A and prove that for each $a \in C(A)$, $\theta_a = \{(x,y) \mid a \land x = a \land y\}$ a congruence on A and also prove that θ is a factor congruence if and only if $\theta = \theta_a$ for some $a \in C(A)$. Also we prove that for each $a \in C(A), A_a = \{a \land x \mid x \in A\}$ is itself a *-Semi lattice and $A \cong A_a \times A_{a^*}$.

Keywords: *-Semi lattice, Congruence, Lattice. 2000 Mathematics Subject Classification: 06A12, 06B10.

1 Introduction

It is known that a semi lattice (A, \wedge) with zero is non empty set A together with a binary operation \wedge which is associative, idempotent, commutative and $0 \in A$ satisfy $0 \wedge x = x \wedge 0 = 0$. It is well known that if (A, \wedge) is a semi lattice and define $x \leq y \Leftrightarrow x = x \wedge y$ is a partial order on A. We say two congruences θ, ϕ are pair of factor congruences if $\theta \cap \phi = \Delta$ and $\theta \circ \phi = \phi \circ \theta = A \times A$. Recall that if A is a Boolean algebra then $\theta_a = \{a \wedge x \mid x \in A\}$ is a factor congruence for every $a \in A$ [2, 4]. Also we have $A \cong A/\theta_a \times A/\theta_{a^*}$ and also $A \cong (a] \times [a]$. In this paper we defined a *-Semi lattice A and its central elements C(A) and proved that for each $a \in C(A), \theta_a = \{(x, y) \mid a \wedge x = a \wedge y\}$ a congruence on A and also proved that θ is a factor congruence if and only if $\theta = \theta_a$ for some $a \in C(A)$. Also it is proved that $A/\theta_a \cong A_a$ where $A_a = \{a \wedge x \mid x \in A\}$, which is itself a *-Semi lattice and $A \cong A_a \times A_{a^*}$.

2 *-Semi lattice

In this section First we define *-Semi lattice and we shall prove various properties. First let us start with the definition of *-Semi lattice. *-Semilattice

Definition 2.1. Let $(A, \wedge, 0)$ be a semi lattice with '0'. If * is a unary operation on A such that, for any $x, y, a \in A$, (1) $a \wedge a^* = 0$ (2) $0^* \wedge x = x$ (3) $a \wedge ((a \wedge x)^* \wedge (a^* \wedge y)^*)^* = a \wedge x$, $a^* \wedge ((a \wedge x)^* \wedge (a^* \wedge y)^*)^* = a^* \wedge y$ (4) $x = ((a \wedge x)^* \wedge (a^* \wedge x)^*)^*$. Then A is a *-semi lattice.

Now we prove the following

Lemma 2.2. $y^{**} = y$, for all $y \in A$.

Proof. By Definition 2.1(3), let a = 0. Then $0^* \wedge [(0 \wedge x)^* \wedge (0^* \wedge y)^*]^* = 0^* \wedge y \Rightarrow [0^* \wedge y^*]^* = y \Rightarrow y^{**} = y.$

Now we define a relation $\theta_a = \{(p,q) \mid a \land p = a \land q\}$ on a *-Semi lattice A and the set of all central elements C(A) of A.

Definition 2.3. Let A be a *-semi lattice. An element $a \in A$ is called central element if a satisfies the following (i) $a \wedge x = a \wedge y \Rightarrow a \wedge x^* = a \wedge y^*$ (ii) $a^* \wedge x = a^* \wedge y \Rightarrow a^* \wedge x^* = a^* \wedge y^*$, for any $x, y \in A$.

The set of all central elements is denoted by C(A). Observe that if $a \in C(A)$ then $a^* \in C(A)$. In the following we prove θ_a is a congruence if $a \in C(A)$ and it is also proved that θ_a, θ_{a^*} are pair of factor congruences on A.

Lemma 2.4. Let A be a *-Semi lattice and $a \in C(A)$. Then $\theta_a = \{(p,q) | a \land p = a \land q\}$ is a congruence on A.

Proof. Clearly θ_a is an equivalence relation on A. Let $(x, y), (z, t) \in \theta_a$. Then $a \wedge x = a \wedge y$ and $a \wedge z = a \wedge t$. Now $a \wedge x \wedge z = a \wedge x \wedge a \wedge z = a \wedge y \wedge a \wedge t = a \wedge y \wedge t$. Therefore $(x \wedge z, y \wedge t) \in \theta_a$. Now, $(x, y) \in \theta_a$ then $a \wedge x = a \wedge y \Rightarrow a \wedge x^* = a \wedge y^*$. Thus $(x^*, y^*) \in \theta_a$. Therefore θ_a is a congruence relation on A.

Recall that in a Semi lattice (A, \wedge) , if we define " \leq " by $x \leq y$ if and only if $x \wedge y = x$ then " \leq " is a partial order on A.

We prove the following.

Theorem 2.5. Let A be a *-Semi lattice and $a \in C(A)$. Then θ_a is a factor congruence on A.

Proof. Let $(x, y) \in \theta_a \cap \theta_{a^*}$. Then $a \wedge x = a \wedge y$ and $a^* \wedge x = a^* \wedge y$. Now $x = ((a \wedge x)^* \wedge (a^* \wedge x)^*)^* \wedge x$ $= ((a \wedge y)^* \wedge (a^* \wedge y)^*)^* \wedge x$ $= y \wedge x$

Therefore $x \leq y$. Similarly we can prove $y \leq x$ and hence x = y. Therefore $\theta_a \cap \theta_{a^*} = \Delta$.

Let $x \neq y$ and $z = ((a \land x)^* \land (a^* \land y)^*)^*$. Now, $a \land z = a \land ((a \land x)^* \land (a^* \land y)^*)^* = a \land x$ and $a^* \land z = a^* \land ((a \land x)^* \land (a^* \land y)^*)^* = a^* \land y$. Therefore, $(x, z) \in \theta_a, (z, y) \in \theta_{a^*}$. Thus, $(x, y) \in \theta_{a^*} \circ \theta_a$. Therefore $\nabla \subseteq \theta_a \circ \theta_{a^*}$. Since $\theta_a \circ \theta_b \subseteq \nabla$ for any two congruences in particular, $\theta_a \circ \theta_{a^*} \subseteq \nabla, \theta_a \circ \theta_{a^*} = \nabla$. Therefore θ_a is a factor congruence on A.

Now we prove that θ is a factor congruence if and only if $\theta = \theta_a$ for some $a \in C(A)$.

Theorem 2.6. Let A be a *-Semi lattice and θ is a congruence on A. Then θ is a factor congruence if and only if $\theta = \theta_a$ for some $a \in C(A)$.

Proof. Let θ be a factor congruence on A. Then there exists a ϕ such that $\theta \circ \phi = \Delta$ and $\theta \cap \phi = \nabla$. Now, $(0, 0^*) \in \theta \circ \phi$ then there exists $x \in A$ such that $(0, x) \in \phi, (x, 0^*) \in \theta$. To prove $\theta = \theta_x$, let $(p, q) \in \theta_x$ that is $x \wedge p = x \wedge q$. We have, $(x, 0^*) \in \theta$ then $(x \wedge p, 0^* \wedge p), (x \wedge q, 0^* \wedge q) \in \theta$. Thus $(p, q) \in \theta$. Therefore $\theta_x \subseteq \theta$.

On the other hand, $(p,q) \in \theta$, that is $(x \wedge p, x \wedge q) \in \theta$. Since $(0,x) \in \phi$, $(0 \wedge p, x \wedge p)$ and $(0 \wedge q, x \wedge q)$ are in ϕ , $(x \wedge q, x \wedge p) \in \phi$. Thus $(x \wedge p, x \wedge q) \in \theta \cap \phi = \Delta$. $(x \wedge p, x \wedge q) \in \Delta \Rightarrow x \wedge p = x \wedge q \Rightarrow (p,q) \in \theta_x$. Therefore $\theta \subseteq \theta_x$. Thus $\theta = \theta_x$. Now we show that $\phi = \theta_{x^*}$. Let $(p,q) \in \theta_{x^*}$.

Now
$$(0, x) \in \phi \implies (0^*, x^*) \in \phi$$

 $\Rightarrow (0^* \land p, x^* \land p), (0^* \land q, x^* \land q) \in \phi$
 $\Rightarrow (p, x^* \land p), (q, x^* \land q) \in \phi$
 $\Rightarrow (p, q) \in \phi (\text{ since } x^* \land p = x^* \land q)$
Therefore $\theta_{x^*} \subseteq \phi$. On the other hand $(p, q) \in \phi$.
 $(x, 0^*) \in \theta \implies (x^*, 0) \in \theta$
 $\Rightarrow (x^* \land p, 0 \land p), (x^* \land q, 0 \land q) \in \theta$
 $\Rightarrow (x^* \land p, 0), (x^* \land q, 0) \in \theta$
 $\Rightarrow (x^* \land p, x^* \land q) \in \theta$
Therefore $(x^* \land p, x^* \land q) \in \phi \cap \theta = \Delta$.

 $x^* \wedge p = x^* \wedge q \Rightarrow (p,q) \in \theta_{x^*}$. Therefore $\phi \subseteq \theta_{x^*}$. Thus $\phi = \theta_{x^*}$. Now our claim is to show that $x \in C(A)$. Let $x \wedge t = x \wedge w$. Thus $(t,w) \in \theta_x = \theta \Rightarrow (t^*,w^*) \in \theta$ (since θ is a congruence) $\Rightarrow (t^*,w^*) \in \theta_x \Rightarrow x \wedge t^* = x \wedge w^*$.

Suppose $x^* \wedge t = x^* \wedge w \Rightarrow (t, w) \in \theta_{x^*} = \phi \Rightarrow (t^*, w^*) \in \phi = \theta_{x^*}$ (since ϕ is a congruence) $\Rightarrow x^* \wedge t^* = x^* \wedge w^*$. Therefore $x \in C(A)$. The converse is trivial by lemma 2.4.

58

*-Semilattice

Theorem 2.7. Let $(A, \wedge, 0)$ be a *-semi lattice then for every $a \in C(A)$ define $A_a = \{a \wedge x \mid x \in A\}$ is itself a *-semi lattice where \wedge is induced operation and ' is defined by $(a \wedge x)' = a \wedge x^*$ for all $x \in A$.

Proof. Since $a \in C(A)$, $a \wedge x = a \wedge y \Rightarrow a \wedge x^* = a \wedge y^* \Rightarrow (a \wedge x)' = (a \wedge y)'$. Hence the unary operation ' is well defined. Let $a \wedge x, a \wedge y \in A_a$. Then $(a \wedge x) \wedge (a \wedge y) = a \wedge x \wedge y$. Therefore \wedge is closed on A_a . Also $0 \in A_a$ since $a \wedge 0 = 0$. Thus (A_a, \wedge) is a semi lattice with 0. Now, $(a \wedge x) \wedge (a \wedge x)' =$ $a \wedge x \wedge a \wedge x^* = a \wedge x \wedge x^* = a \wedge 0 = 0$. Further $0' = (a \wedge 0)' = a \wedge 0^* = a$. Thus $0' \wedge (a \wedge x) = a \wedge (a \wedge x) = a \wedge x$. Let $a \wedge x, a \wedge y, a \wedge z \in A_a$. Now $(a \wedge x) \wedge [[(a \wedge x) \wedge (a \wedge y)]' \wedge [(a \wedge x)' \wedge (a \wedge z)]']'$ $= a \wedge x \wedge [[a \wedge (x \wedge y)^*] \wedge [a \wedge x^* \wedge a \wedge z]']'$ $= a \wedge x \wedge [a \wedge (x \wedge y)^* \wedge [a \wedge (x^* \wedge z)^*]]'$ $= a \wedge x \wedge a \wedge [(x \wedge y)^* \wedge (x^* \wedge z)^*]^*$ $= a \wedge x \wedge [(x \wedge y)^* \wedge (x^* \wedge z)^*]^*$ by definition 2.1(4) $= a \wedge x \wedge y$ $= (a \wedge x) \wedge (a \wedge y)$ Now $(a \wedge x)' \wedge [[(a \wedge x) \wedge (a \wedge y)]' \wedge [(a \wedge x)' \wedge (a \wedge z)]']'$ $= a \wedge x^* \wedge [a \wedge (x \wedge y)^* \wedge [a \wedge x^* \wedge a \wedge z]']'$ $= a \wedge x^* \wedge [a \wedge (x \wedge y)^* \wedge [a \wedge (x^* \wedge z)^*]]'$ $= a \wedge x^* \wedge a \wedge [(x \wedge y)^* \wedge (x^* \wedge z)^*]^*$ $= a \wedge x^* \wedge [(x \wedge y)^* \wedge [x^* \wedge z]^*]^*$ $= a \wedge x^* \wedge z$ by definition 2.1(3) $= a \wedge x^* \wedge a \wedge z$ $= (a \wedge x)' \wedge (a \wedge z)$ $[[(a \land x) \land (a \land y)]' \land [(a \land x)' \land (a \land y)]']' = [a \land (x \land y)^* \land (a \land x^* \land y)']'$ $= [a \wedge (x \wedge y)^* \wedge a \wedge (x^* \wedge y)^*]'$ $= [a \wedge (x \wedge y)^* \wedge (x^* \wedge y)^*]'$ $= a \wedge [(x \wedge y)^* \wedge (x^* \wedge y)^*]^*$ $= a \wedge y$ by definition 2.1(4)

Therefore A_a is *-Semi lattice.

Theorem 2.8. Let A be a *-Semi lattice. Then for any $a \in C(A)$, $f_a : A \to A_a$ defined by $f(x) = a \wedge x$ is a homomorphism and $A/\theta_a \cong A_a$.

Proof. Let $f_a(x \wedge y) = a \wedge x \wedge y = (a \wedge x) \wedge (a \wedge y) = f_a(x) \wedge f_a(y)$ and $f_a(x^*) = a \wedge x^* = (a \wedge x)' = [f_a(x)]'$. Therefore f_a is a homomorphism, clearly f is onto.

Now $kerf_a = \{(x, y) \mid f_a(x) = f_a(y)\} = \{(x, y) \mid a \land x = a \land y\} = \theta_a$. By fundamental theorem of homomorphism $A/Kerf_a \cong A_a$ which imply $A/\theta_a \cong A_a$.

Theorem 2.9. Let A be a *-Semi lattice. Then for any $a \in C(A), A \cong A_a \times A_{a^*}$.

Proof. Since for each $a \in A$, θ_a is a factor congruence, we have $A \cong A/\theta_a \times A/\theta_{a^*}$. Therefore by above Theorem $A \cong A_a \times A_{a^*}$.

Theorem 2.10. Let A be *-Semilattice and $(x^* \wedge y^*)^* \wedge y = y$ for all $x, y \in A$. If we define $x \vee y = (x^* \wedge y^*)^*$. Then $\langle A, \wedge, \vee, 0, 0^* \rangle$ is bounded ortholattice.

Proof. Let A be *-Semilattice and $(x^* \land y^*)^* \land y = y$. Define $x \lor y = (x^* \land y^*)^*$ then clearly \lor is commutative and $x \lor x = (x^* \land x^*)^* = (x^*)^* = x$. Now, $(x \lor y)^* = [(x^* \land y^*)^*]^* = x^* \land y^*$ and $(x \land y)^* = [(x^{**} \land y^{**})^*]^* = x^* \lor y^*$ $x \lor (y \lor z) = x \lor (y^* \land z^*)^*$ $= (x^* \land (y^* \land z^*)^*)^*$ $= (x^* \land (y^* \land z^*))^*$ $= ((x^* \land y^*) \land z^*)^*$ $= (x^* \land y^*)^* \land z^*)^*$ $= (x^* \land y^*)^* \lor z$ $= (x \lor y) \lor z$

Thus \lor is associative.

Also, $(x \wedge y) \vee y = [(x \wedge y)^* \wedge y^*]^* = [x^{**} \wedge y^{**})^* \wedge y^*]^* = y^{**} = y$ Thus $\langle A, \wedge, \vee, \rangle$ is lattice. Since $0 \wedge x = 0, 0^* \wedge x = x, x \wedge x^* = 0$ and $x \vee x^* = [x^* \wedge x^{**}]^* = [x \wedge x^*]^* = 0^*$, we have $0 \leq x \leq 0^*$. Therefore * is ortho complementation. Hence $\langle A, \wedge, \vee, 0, 0^* \rangle$ is an ortholattice.

3 Open Problems

- 1. Example of a *-Semi lattice which is not an ortholattice.
- 2. Is the set of all congruences on a *-Semi lattice a Boolean lattice?

References

- [1] Birkhoff,G.: *Lattice theory*, Amer.Math.Soc.Colloquium publications, Vol.24 (1967).
- [2] Stanley Burris and Sankappanavar.H.P.: A Course in Universal Algebra, The Millennium edition.
- [3] Ivan Chajda.: Semi lattices with an involution, Kyungpook Mathematical Journal, 42(2002); 21-23.

*-Semilattice

[4] S. Kalesha Vali, P. Sundarayya and U.M.Swamy.: Ideal Congruences on a C-algebra, International Journal of Open Problems in Computer Science and Mathematics, No.3, Vol. 3(2010):295-303.