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Abstract 

 

     In this article we resolve Bertrand’s probability paradox and show 

why it has perplexed researchers for 120 years.  This paradox appears to 

have three equally plausible, yet incompatible, solutions.   We begin by 

showing two facts,  the random chords referred to in Bertrand’s paradox 

are homogeneously distributed and there is no disagreement among 

people on this point.  Based on these facts, we rigorously prove that two 

of the three alleged answers are not sound because of their false 

assumptions and that only one solution is correct.  The paradox is 

therefore no longer paradoxical.  We also reveal two significant 

stumbling blocks that have persistently caused puzzles with regard to this 

paradox: 1) misunderstanding of the nature of homogeneously 

distributed chords, and 2) a disparity between the problem as originally 

conceived in the mind and its subsequent representation.  We conclude 

by presenting our reflections on the subtleties of the paradox and on 

some prevalent misconceptions that have historically plagued attempts to 

resolve it.   
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1    Introduction   
      

     In 1889, the French mathematician Joseph Louis Bertrand put forward a 

“paradox” in his book Calcul des probabilités [2]:  

 Drawing a chord at random in a circle, what is the probability that the 

chord is longer than a side of the inscribed equilateral triangle of the circle?   

For this problem that looked to have just one solution, Bertrand provided 

three different but equally plausible solutions.  For convenience, we will use term 

‘Bertrand’s paradox’ to refer to this paradox, ‘Bertrand-chords’ to represent the 

chords referred to in Bertrand’s paradox, ‘equil-tri-side’ to represent ‘a side of the 

inscribed equilateral triangle of a circle’, and ‘Bertrand-probability’ to represent 

the ‘probability a Bertrand-chord is longer than equil-tri-side.’  The three 

solutions and their supporting arguments are as follows: 

Solution-1.  A Bertrand-chord is longer than an equil-tri-side if its midpoint lies 

within the concentric circle with half the original radius.  Since the area of this 

inner circle is a quarter of that of the original circle, Bertrand-probability is 1/4.  

Solution-2.  A Bertrand-chord is longer than an equil-tri-side if the chord-angle is 

between 0~30, where chord-angle refers to the angle between a chord and the 

radius passing through one endpoint of the chord (to be strictly defined in 4.2).  

Since the range of a possible chord-angle is 0~90, Bertrand-probability is 1/3. 

Solution-3.  A Bertrand-chord is longer than equil-tri-side if its midpoint lies on 

the inner half of the radius bisecting the chord.  Hence, Bertrand-probability is 1/2. 

It has been 120 years since Bertrand put forward his paradox.  It still 

remains in the list of unsolved paradoxes in classic books on paradoxes [18] [21] 

and in current philosophy dictionaries [15].  It is certainly not just an amusing 

puzzle.   Scholars have argued that it demonstrates that there is a flaw in the 

principle of indifference [1] [19] [11] [7] [8] [2], and that it is a threat to the 

principle of maximum entropy [5] [6].  Since the three solutions were derived 

from no more than basic rules of logic, geometry, and probability, the paradox 

poses a blatant threat to the fundamentals of our system of knowledge.  Tolerating 

this paradox and leaving it unsolved would amount to admitting that something is 

wrong in plane geometry, probability theory, or logic.  It was this extraordinary 

challenge that initially motivated us to investigate the mysteries contained in it. 

While there have been many attempts to solve Bertrand’s paradox, the 

most recent and substantive attempts have been by Jaynes [9], Marinoff [11], 

Shackel [19], and Wang [24].  Jaynes went a long way toward proving 1/2 was the 

correct solution.  He also suggested a pragmatic, albeit somewhat naïve, method 

of generating Bertrand-chords: - tossing broom straws from a standing position 
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onto a 5-in diameter circle drawn on the floor.  His proofs are strict and tenable.  

His method of generating Bertrand-chords is conceptually correct.  Unfortunately, 

he did not show that the other two solutions were incorrect, and he failed to 

indicate what caused the absurdity.  Moreover, his argument that the problem is 

well posed was incorrect.  Marinoff on the other hand, asserted that the paradox 

was an ill-posed problem.  He argued that the idea of a random chord was vague, 

and that a number of different solutions could be derived self-consistently from 

different ways of generating random chords.   Shackel agreed with Marinoff that 

the problem was not well posed, calling it “a determinate probability problem 

which lacks a unique solution.”  However, he disagreed with both Jaynes’ and 

Marinoff’s respective approaches, concluding that “Bertrand’s paradox continues 

to stand in refutation of the principle of indifference.”   Both Marinoff and 

Shackel assumed that that Bertrand’s paradox was ill posed, but their 

interpretation of what it means to be ill-posed in this case was mistaken and 

thereby resulted in irrelevant arguments and multiple solutions.  Shackel was also 

wrong (along with J. Bertrand and many others) in tying Bertrand’s paradox to the 

principle of indifference.  Wang indicated that the misunderstanding of the 

distribution of straight lines caused the paradox, but he did not elaborate this point, 

nor did he actually prove it.  Although he located a central stumbling block to this 

puzzle, his idea remained only as an intriguing hypothesis without proofs.  In his 

2010 article, “On Bertrand’s paradox”, Bangu worked on a different but related 

Bertrand’s paradox in one dimensional space [1].  The author argues that two 

intervals A and B, where B is a mapping of A with some transformation, are 

probabilistically different, which actually verifies the thesis in probability theory 

that the distribution of (X) is in general different from the distribution of X, 

where X is random variable and (X) is a function of X [17]. 

We can see that although scholars have provided valuable insights into 

aspects of the problem, there are critical flaws and lacunae in their arguments, and 

no one has compellingly explained what exactly went wrong with this paradox.  

Hence, the perplexity remains in people’s minds. The absurdity in this paradox 

arises from the fact that we cannot rid ourselves of the feeling that there can be 

only one solution, even though the arguments of three solutions all seem plausible 

and straightforward.  To resolve this paradox completely and compellingly, one 

must thoroughly release the perplexities in people’s minds.  One must show 

whether Bertrand’s problem has one or many solutions, because almost all the 

debates regarding Bertrand’s paradox stemmed from this issue.  If there is one 

solution, just deriving the solution is not enough.  One must also prove why the 

other purported “solutions” are wrong.   After showing what is correct and why 
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the others are wrong, one must further show what made people take the wrong 

pass as opposed to the correct one, i.e., what on earth went wrong with this 

paradox for 120 years.  That is, one must accomplish the following ‘must-do’ 

tasks in order to fully resolve Bertrand’s paradox and to fully resolve the 

perplexities in people’s mind:  

Task One: Show whether the problem has one or multiple solutions. 

Task Two: If the problem has one solution, then derive the solution and show why 

the other purported solutions are incorrect; if the problem has multiple 

solutions, then show all the correct solutions. 

Task Three: Point out the stumbling blocks that generated the various perplexities 

and absurdities of the paradox.  That is, explain what went wrong. 

To fail at any of these three must-do tasks would constitute an incomplete, 

and therefore inadequate, response to the paradox.   No one so far has 

accomplished all three tasks.  In the previous efforts, Task One was either dealt 

with incorrectly or not addressed at all.  Marinoff [11] and Shackel [19] both 

contended, incorrectly, that the problem had multiple solutions since it was ill 

posed (the falsity will be shown in Section 2 and discussed in Section 8).   Their 

subsequent work based on these faulty assumptions strayed away from the 

original Bertrand-problem.  Jaynes [9] pragmatically showed, with his “broom-

straw-tossing method” that the problem had one solution and calculated the 

correct solution, 1/2.  He thus accomplished part of Task One and part of Task 

Three.  But he failed to show why the other two purported solutions were not 

correct, nor did he explain the nature of the stumbling blocks that created the 

absurdity.  Wang [24] claimed to have identified the stumbling block in his 

analysis of random chords.  But he did not show why the problem must have one 

solution, nor did he demonstrate why two of the three purported solutions were 

not correct, leaving Tasks One and Two unaccomplished.  As the result of these 

works that are either incomplete or erroneous, Bertrand’s paradox persists as an 

unsolved paradox in current literatures.   

In this article we complete all three must-do tasks, and therefore claim to 

have successfully resolved the paradox.  We show that there must be only one 

solution to the Bertrand problem in Section 2.  We then derive the only solution 

and disprove the other two purported “solutions” in Sections 3 through 5.  In 

Section 6 we explicate the key stumbling blocks that have turned what was merely 

a problem into a paradox, and in Section 8 we present our reflections on the 

subtleties of Bertrand’s paradox and comment, candidly and respectfully, on the 

prevalent misconceptions in literatures related to this paradox.  In order to 
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accomplish this task we may have to reiterate some key arguments as we respond 

to questions and critiques we received from colleagues.  

We need to distinguish between Bertrand’s paradox on one hand and 

Bertrand’s problem on the other.  Bertrand’s problem refers to the problem 

“drawing a chord at random in a circle, what is the probability that the chord is 

longer than a side of the inscribed equilateral triangle of the circle?”  Bertrand’s 

paradox is Bertrand’s problem plus the three purported solutions.   We will show 

that Bertrand’s problem entails a tacit and unambiguous graphical understanding 

in people’s minds, and it has only one solution.  When this problem was written 

down, however, it in effect transformed into another problem that has three 

purported solutions.  The three purported solutions to the new written problem 

have been taken as the solutions to the original problem, which thereby sets up the 

contradiction represented in Bertrand’s paradox. 

In Bertrand’s original essay the three alleged solutions were derived by 

using no more than geometry and simple probability concepts which can be 

grasped by anyone with a middle school education.  We believe that confusions 

are best clarified at the place where they occur.  Hence, we will avoid employing 

more advanced mathematics than geometry and basic probability concepts in our 

arguments.   

 

2  Bertrand-chords Are Uniformly Distributed and so 

Bertrand’s Problem Has One Solution 
Bertrand-chords constitute a central issue in understanding Bertrand’s 

problem.  Almost all the disagreements regarding Bertrand’s paradox stemmed 

from it.  In this section, we investigate and clarify the fundamental issues: What 

are Bertrand-chords like?  Do people agree with each other on what those chords 

are like?   Does Bertrand’s problem have one or many solutions? 

We believe that a simple fact has been missed all along by everyone who 

has contended with this paradox, namely: everyone agrees on what Bertrand-

chords are like – they are homogeneously or uniformly distributed over the circle.   

To see this fact, let us start with asking the reader to examine the two sets 

of chords shown in Fig. 1 and Fig. 2, and give answer to the question, “In which 

figure are chords more likely Bertrand-chords?”   
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We believe that readers would unanimously select Fig. 1 as the answer.  

Fig. 2 would not be selected since there are significantly fewer lines in the central 

area than in the area closer to the peripheral and hence the chords in this figure are 

not distributed homogeneously.   One would think that if chords had been drawn 

purely at random, or the chords were truly random, then they would not have 

systematically missed the central area.  Such a consensus illustrates that there is 

no disagreement among people on what Bertrand-chords are like in their minds: - 

They are homogeneously and uniformly spread over the circle.  Suppose that we 

substituted ‘Bertrand-chords’ in the above question with ‘random chords’, people 

would still pick Fig. 1 as the answer.  So, we in fact all agree that both “Bertrand-

chords” and “random chords” mean the chords that are homogenously or 

uniformly distributed over the circle.   

Another way of showing the existence of the fact that people are 

consentient on what Bertrand-chords are like is by considering what actually 

causes the tension in the paradox.  The perplexity comes from the absurdity of 

three plausible solutions to a problem that ought to have just one solution.  Yet, 

why do people think that this problem ought to have just one solution?   The 

reason can only be: Bertrand-chords are homogeneously distributed in people’s 

minds.  To see this, consider this question, “what is the percentage of points on 

average which are greater than 0.5 among the points randomly drawn from [0, 

1]?”  We would all agree that this question has only one answer, which is 50%, 

since we assume the points randomly drawn from [0, 1] are truly random therefore 

homogeneously distributed over [0, 1].   Similarly, we believe that Bertrand’s 

problem has only one answer because we assume, implicitly, Bertrand-chords are 

truly random therefore homogeneously distributed over the circle.   If, on the 

Fig. 1. Fig. 2 
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other hand, we did not assume homogeneity of Bertrand-chords, we would not 

insist on a unique solution.  This is because while homogeneity has only one 

distribution pattern, non-homogeneity may have countless patterns.  With a non-

homogeneous distribution, for example, chord densities may vary in many ways.  

The area with higher density may be located at the central area, at the peripheral 

area, or at any place in the circle; and the density in one area can be 2 time, 3 

times, 8.5 times, or 1.67 times as much as that in some other areas.  So, if 

Bertrand-chords were not homogeneously distributed, there would be many 

solutions to the problem, each of which is associated with a pattern.  As a result, 

we would not think in the first place there ought to be only one solution to the 

problem, and would not take the problem for a paradox. Therefore, Bertrand-

chords must be homogeneously distributed in every one’s mind.    

This fact can also be seen in the unstated assumption of the three solutions.  

J. Bertrand used the phrase “drawing chords at random” to describe his Bertrand-

chords.  Then, he derived the three solutions, 1/4, 1/3, and 1/2.  By reviewing his 

arguments of the three solutions carefully, we can see that each solution was 

based on an unstated assumption of homogeneity.  For instance, the chords’ 

midpoints must be assumed to be homogeneously distributed in the circle in order 

to derive 1/4 as Solution-1; and the chord-angles must be assumed to be 

homogeneously distributed between 0° and 90° so as to derive 1/3 as Solution-2; 

and the chords’ midpoints must be assumed to be homogeneously distributed on a 

radius of the circle in order to derive 1/2 as Solution-3.  Behind those unstated 

assumptions of homogeneity in the arguments for the three purported solutions is 

another unstated but obvious assumption: - Bertrand-chords are homogeneously 

or uniformly distributed. 

Why didn’t Bertrand, and the scholars thereafter, explicitly state these 

assumptions?  Probably because they did not think it was necessary since “chords 

drawn at random” would, needless to say, be homogeneously distributed just like 

“points drawn at random” are surely homogeneously distributed, and there was 

just one pattern of homogeneous distribution.  If Bertrand had assumed any 

distribution but homogeneity for his chords, he would have specified the pattern 

of the distribution in order to avoid conceptual ambiguity.  But he did not specify 

it, no one has since bothered to specify it, and no scholar has ever claimed that 

Bertrand-chords are not homogeneously distributed.  That is because we in fact 

have never disagreed with each other on what Bertrand-chords are like. 

Therefore, it is manifest that Bertrand-chords are homogeneously 

distributed, which is tacitly accepted by all of us.  With this fact revealed and 

clarified, we can see that Bertrand’s problem must have one and only one solution 

since homogeneously distributed Bertrand-chords have just one distribution 

pattern: - homogeneity.   However, this tacitly taken fact has not been explicitly 
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recognized.  This lapse has led to innumerable difficulties.  To make matters 

worse, “multiple ways of generating Bertrand-chords” was erroneously viewed as 

the cause of the puzzle even in recent major articles as [19].  

We now need to determine what is the only solution of Bertrand’s problem 

and to disprove the other purported “solutions”.  To do that, we need to formally 

define Bertrand-chords, as we are going to do in the next section.  

 

3    Defining Bertrand-chords or Homogeneously 

Distributed Chords 
Random lines have been defined mathematically in the literature in terms 

of Poisson process or Poisson distribution [12] [6] [20] [10].  The essence of 

Poisson process is “pure randomness”.  Pure randomness leads to homogeneity.  

The essence of random lines, therefore, is homogeneity [12].  But, to our surprise, 

those exact descriptions of random lines have not even been cited in the recent 

articles on Bertrand paradox such as [11] [19], much less been utilized to solve 

the paradox.      

As we have showed in the last section, Bertrand-chords are 

homogeneously distributed random chords over a circle, as those in Fig. 1.  

Bertrand-chords are purely random lines contained in a circle.  In this section, we 

define Bertrand-chords in plain, but exact, words, trying to avoid excessively 

technical terms such as ‘Poisson process’ with the purpose of making our 

arguments understandable by anyone who is intrigued by Bertrand paradox.    

Suppose an X-Y coordinate system is placed in the space on which chords 

lie.  The chord-direction of a chord h is the angle that h has to turn clockwise in 

order to be parallel to the X-axis of the coordinate system.  So, the range of a 

chord-direction is [0°, 180°).  Since it is a continuous range composed of 

infinitely many numbers, for a given number β in [0°, 180°), probability for a 

random chord to have chord-direction β is zero.  Considering that, when we say a 

set of parallel chords with chord-direction β, we mean those chords with chord-

directions within the range [β °°, β °+°], where  is a very small amount.  

Let (O, r) denote a circle with radius r and the center at O.  Let C 

represent a set of chords that are drawn at random on (O, r).   Let C represent a 

subset of C which contains the chords with chord-direction within the range 

[°°, °+°] where  is a number between 0° and 180°, and  is an 

arbitrarily small but fixed amount.  C represents a set of parallel chords with 

chord-direction .  Let D-normal be the diameter of (O, r) normal to the parallel 
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chords in C, i.e. the chord-direction of D-normal is +90° if 90° or 90° if 

>90°.  

Uniformly distributed points are well defined in probability theory.  We 

now use the concept of points to define homogeneous distributed Bertrand-chords. 

Definition-A. 

 Chords in C are Bertrand-chords or homogeneously distributed chords if 

and only if their chord-directions are uniformly distributed over range [0, 180), 

and for any  between 0 and 180, the intersecting points of the chords in C with 

diameter D-normal are uniformly distributed along D-normal.    

      

 This definition is similar to those in [12] [6].  The difference is that we 

avoid using the terminology “Poisson process”.  Points associated with a Poisson 

process are purely random points, which are hence uniformly distributed.  

Definition-A says that the chords in C are Bertrand-chords if any subset of 

parallel chords uniformly intersects the diameter perpendicular to them.  Since the 

chords defined in Definition-A are homogeneously spread over the circle, points 

in the circle must have same chance to be on a chord in C.  So we have an 

alternative definition based on the homogeneity of the chords directly, as below. 

Definition-B. 

 Let r denote an arbitrarily small but fixed amount.  Chords in C are 

Bertrand-chords or homogeneously distributed if and only if their chord-

directions are uniformly distributed over range [0, 180), and for any two points 

P and Q in circle (O, r), probability that circle (P, r) is on a chord in C is 

same as probability that circle (Q, r) is on a chord in C.    

         

“(P, r) is on a chord” in Definition-B means “a chord passing through 

circle (P, r)”.  For convenience, in the text hereafter, we use a shorter phrase 

“chance for a point P to be on a chord” to represent the longer phrase “probability 

for circle (P, r) to be on a chord where r is an arbitrarily small but fixed 

amount”.  The above definition is thus shortened as:  

Definition-C. 

A set of chords, C, are Bertrand-chords or homogeneously distributed if 

and only if their chord-directions are uniformly distributed over range [0, 180) 

and any point in the circle has same chance to be on a chord in C.    

     



 
 

 

81                                                      Resolving Bertrand's Probability Paradox 

By Definition-C, if some points in the circle do not have same chance to 

be on a chord in C then the chords are not Bertrand-chords nor uniformly 

distributed chords.   

The three definitions are equivalent.  Each can be used independently to 

determine whether a set of chords are Bertrand-chords.  In Fig. 2, for example, a 

point in the central area of the circle has less chance to be on a chord than a point 

in the area close to the peripheral.  So, according to Definition-C, the chords in 

Fig. 2 are neither Bertrand-chords nor homogeneously distributed chords. 

 

4    Proving the Correct Solution and Disproving the 

Incorrect Solutions 
 In Section 2 we showed that we all have the same image of what Bertrand-

chords are like, - they are homogeneously distributed over the circle, and hence, 

Bertrand’s problem has only one solution.  In Section 3 we defined 

homogeneously distributed chords or Bertrand-chords.  We now derive what the 

unique solution is and show why the other purported “solutions” are not correct. 

 The way to address our solution has been inspired by what we take to be a 

“Bertrandian” approach.  Bertrand himself did not rely on complicated, high level 

mathematics to set up the problem. With the “Bertrandian approach”, the 

absurdity in Bertrand’s paradox can be seen by people who possess little beyond a 

basic grasp of middle school mathematics.  We believe that Bertrand’s paradox is 

best resolved with the “Bertrandian approach”.  We follow that way by managing 

to set up our arguments and proofs on just plane geometry and basic rules of logic 

and to make our arguments understandable by anyone who sees the puzzle.  

 We provide the basic logical structure of our proofs in this section, leaving 

some details of the proofs to the subsequent one.  Our hope is that this will help 

understand our proofs by allowing readers to examine the general structure of our 

arguments without being interrupted by the technical details, even though those 

meticulous expositions are necessary parts of the proofs.  

 

4.1 The 1/4 solution is unsound 

 Bertrand’s Solution-1 is 1/4.  The argument is as follows:   

A chord is longer than an equil-tri-side if its midpoint lies within a 

concentric circle with half the original radius.  Since the area of this inner circle 

is a quarter that of the original circle, the Bertrand-probability would be 1/4 (as 

in Fig. 3)         (4.1-A) 
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The argument (4.1-A) is acceptable only if the midpoints of those 

Bertrand-chords are uniformly distributed in the circle, so as to derive the 

probability 1/4 from the ratio between the area of the inner circle and the area of 

the original circle.   The unstated assumption can be put as follows: 

If a set of chords are Bertrand-chords, then their midpoints are 

homogeneously distributed in the circle.     (4.1-B) 

Since Bertrand-chords are meant to be homogeneously distributed chords, 

(4.1-B) can be equivalently put as: 

If a set of chords are homogeneously distributed over the circle, then their 

midpoints are homogeneously distributed in the circle.   (4.1-C) 

(4.1-B) and (4.1-C) are equivalent.  They are necessary for deriving the 

solution 1/4.  If these assumptions are false, then the solution 1/4 is not sound. 

The assumption addressed in (4.1-B) and (4.1-C) is indeed false.  To show 

it, consider a method of drawing chords at random as follows: 

Chord-Drawing-Method-1. 

 Select a point M at random in the circle and draw the chord whose middle 

point is M.            

        

The middle points of the chords drawn in this way are homogeneously 

distributed in the circle, because those points are selected purely at random.  But 

the chords drawn in this way are not homogeneously distributed.  This fact is 

stated in the following statement: 

If the middle points of a set of chords drawn at random are 

homogeneously distributed in the circle, then that set of chords are not 

homogeneously distributed over the circle.     (4.1-D) 

 

 

Fig. 3. For Solution-1 
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We have proved that statement (4.1-D) is true.  The proof is put in Section 

5.1. 

Since (4.1-D) is true, it leads automatically to the truth of its 

contraposition as below: 

If a set of chords drawn at random are homogeneously distributed over the 

circle, then their middle points are not homogeneously distributed in the circle. 

          (4.1-E) 

Statements (4.1-E) and (4.1-C) have identical antecedents but opposite 

consequents.  Since (4.1-E) has been proved to be true, (4.1-C) must be false, so 

must be its equivalence (4.1-B).  Therefore, the assumption of solution 1/4 is false 

and the solution is unsound. 

 

4.2  The 1/3 solution is unsound   

 Bertrand’s Solution-2 is 1/3.  The argument is as follows:  

 A chord with its end point at any place of the circumference is longer than 

an equil-tri-side if its chord-angle is between 0~30 which is one third of the 

possible range 0~90. (as in Fig. 4)      (4.2-A)  

        
 The term chord-angle of a chord, as used in (4.2-A), refers to the angle 

between a chord and the radius passing through one endpoint of the chord.  Let us 

define it with mathematic rigor.  Let A and B be the two endpoints of chord AB 

on the circumference of circle (O, r), as in Fig. 5.  The clockwise-angle of chord 

AB at A, Ac, is defined as the angle that chord AB needs to turn clockwise about 

point A to overlap with the radius OA.  The clockwise-angle of chord AB at B, 

Bc, is defined in the same way.  Apparently, Ac +Bc =180°.  The chord-

angle of chord AB is defined as the minimum of Ac and Bc.  Clearly, the 

 

 

Fig. 4.  For Solution-2 
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chord-angle of a chord is between 0 and 90.  In Fig.5, angle  is the chord-angle 

of chord AB.  Each chord has one and only one chord-angle.  Furthermore, given 

an angle 0°°90° and a point Y on circumference, there is one and only one 

chord with Y as one of its end point and with ° as its chord-angle.  

        
Note that chord-angle here is different from chord-direction defined in 

Section 3.  A chord-angle is relative to the radius passing through one endpoint of 

the chord.  The radius changes its direction with the chord.  A chord-direction is 

relative to the X-axis of the coordinate system which remains fixed for all chords.  

The argument for the solution in (4.2-A) is acceptable only if the chord-

angles of those Bertrand-chords are uniformly distributed between 0 and 90, so 

as to derive the probability 1/3 from the ratio between 30 and 90.  The unstated 

assumption can be put as follows: 

 If a set of chords are Bertrand-chords, then their chord-angles are 

uniformly distributed between 0 and 90 .       (4.2-B) 

Since Bertrand-chords are meant to be homogeneously distributed chords, 

(4.2-B) can be equivalently put as: 

If a set of chords drawn at random are homogeneously distributed over the 

circle, then their chord-angles are uniformly distributed between 0 and 90 . 

          (4.2-C) 

(4.2-B) and (4.2-C) are equivalent.  They are necessary for deriving the 

solution 1/3.  If the assumptions are false, then the solution 1/3 would is not sound. 

The assumptions addressed in (4.2-B) and (4.2-C) are indeed false.  To 

show it, consider a method of drawing chords at random as follows: 

Chord-Drawing-Method-2. 

 Randomly select a number  between 0 and 90.  Randomly select a point A 

on the circumference.  Draw the chord through A whose chord-angle is °.  

        



 
 

 

85                                                      Resolving Bertrand's Probability Paradox 

The chord-angles of the chords drawn in this way are uniformly 

distributed between 0 and 90, because the chord angles are selected purely at 

random in that range.  But the chords drawn in this way are not homogeneously 

distributed.  This fact is stated in the following statement: 

If the chord-angles of a set of chords drawn at random are uniformly 

distributed between 0 and 90, then these chords are not homogeneously 

distributed over the circle.       (4.2-D)  

We have proved that statement (4.2-D) is true.  The proof is put in Section 

5.2. 

Since (4.2-D) is true, it leads automatically to the truth of its 

contraposition as below: 

 If a set of chords drawn at random are homogeneously distributed over the 

circle, then their chord-angles are not uniformly distributed between 0 and 90.   

          (4.2-E) 

Statements (4.2-E) and (4.2-C) have identical antecedents but opposite 

consequents.  Since (4.2-E) has been proved to be true, (4.2-C) must be false, so 

must be its equivalence (4.2-B).  Therefore, the assumption of solution 1/3 is false 

and the solution is unsound. 

 

4.3. The 1/2 solution is correct. 

 Bertrand’s Solution-3 is 1/2.  The argument is as follows:  

 A chord is longer than equil-tri-side if its midpoint lies on the inner half of 

the radius bisecting the chord. (as in Fig. 6)     (4.3-A)  

      
The argument (4.3-A) is true only if the midpoints of those Bertrand-

chords perpendicular to a given radius R are uniformly distributed along R, so as 

 

Fig. 6. For Solution-3 
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to derive the probability 1/2  from the ratio between the half length of R and the 

full length of R.   The unstated assumption can be put as follows: 

If a set of chords, C, are Bertrand-chords, then for any given radius R the 

intersection points of R with those chords perpendicular to R are uniformly 

distributed on R.        (4.3-B) 

(4.3-B) is obviously true according to Definition-A of Bertrand-chords 

given in Section 3.  Take a given radius R as a part of diameter D-normal for some 

, and tale the chords perpendicular to R as the parallel chords normal to D-normal.  

Since the chords in C are homogeneously distributed Bertrand-chords, the 

intersection points of those parallel chords on R, a part of D-normal, must be 

uniformly distributed along R according to Definition-A. 

So, the assumption of (4.3-A) is true.  Since the other arguments in (4.3-A) 

are obviously valid, Solution-3 is sound and Bertrand-probability is equal to 1/2. 

 

5    Proofs of (4.1-D) and (4.2-D) 
 This section contains the details of proofs for statements (4.1-D) and (4.2-

D) cited in Section 4. 

5.1. Proving statement (4.1-D) to be true. 

If the middle points of a set of chords drawn at random are 

homogeneously distributed in the circle, then that set of chords are not 

homogeneously distributed over the circle.     (4.1-D) 

Let C1 denote a set of chords that are generated by Chord-Drawing-

Method-1 in Section 4.1.  Obviously, the middle points of the chords in C1 are 

homogeneously distributed in the circle, which satisfies the antecedent of 

statement (4.1-D).  We now prove that the chords in C1 cannot be homogeneously 

distributed, therefore (4.1-D) is true.  To do that, we need to establish a lemma. 

 Lemma 1. 

  Let X be an internal point of circle (O, r), H the middle point of line 

segment OX, and t the half of the length of line segment OX, i.e. t=0.5|OX|, as 

shown in Fig. 7.  A chord runs through X if and only if its middle point is on 

circle (H, t).    

Proof: 

 Firstly we prove that if the middle point of a chord is on circle (H, t), then 

the chord runs through X.  Suppose a chord AB’s middle point M is on circle (H, 

t), where A and B are on the circle, as shown in Fig. 7.  Connect X with M, and 

connect M with O.  XMO=90° since M is on circle (H, t) and XO is the 

diameter of (H, t).  And AMO =BMO =90° since M is the middle point of 
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chord AB.  Since XMO=AMO, X must be on chord AB or its extended line.  

But X cannot be on the extended line of chord AB since X is an internal point of 

(H, t).  So, chord AB runs through X. 

 We next prove that if a chord runs through X, then the chord’s middle 

point must be on circle (H, t).  Suppose chord AB runs through X whose chord 

middle point is M.  XMO is a right triangle with XMO=90° and H the middle 

point of the hypotenuse, because M is the middle point of chord AB which runs 

through X.  So, |MH|=|XH|, which follows a theorem in geometry saying “the 

length of the central line of the hypotenuse of a right triangle is equal to half of 

the hypotenuse.”  But |XH|=t that is the radius of circle (H, t), which means the 

distance between M and H is t.  Therefore M is on circle (H, t) with center at H. 

         

     
 Lemma 1 shows that the middle points of those chords passing through a 

given internal point X form a circle that takes line segment OX as the diameter, 

and that a chord runs through X if and only if the chord middle point is on that 

circle. 

 Lemma 2 below shows that points in the circle do not have equal chance to 

be on a chord in C1.  Instead, a point close to the center of the circle has a smaller 

chance than a point close to the circumference.  In other words, if a set of chords 

are generated by Chord-Drawing-Method-1, so that their middle points are 

homogeneously distributed, then the density of chords in the area close to the 

circumference is higher than the density in the central area, as those chords in Fig. 

2.  So, those chords must be not homogeneously distributed, and (4.1-D) is true. 

Lemma 2.  

The chords in C1, which are generated by Chord-Drawing-Method-1, 

cannot be homogenously distributed, therefore statement (4.1-D) is true. 
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Proof: 

 Consider two internal points X and Y in (O, r), and assume OX<OY, as 

in Fig.8.  Let Hx and Hy denote middle points of segments OX and OY 

respectively.  Let tx=0.5|OX| and ty=0.5|OY|.   According to Lemma 1, X is on a 

chord if and only if a point on circle (Hx, tx) happens to be selected as the chord 

middle point.  Similarly, Y is on a chord if and only if a point on circle (Hy, ty) 

happens to be selected as the chord middle point.  Since the chord middle point is 

randomly selected in Chord-Generation-Method-1, a point on circle (Hx, tx) has a 

smaller chance to be selected than a point on (Hy, ty)  because the perimeter of 

(Hx, tx), |OX|, is shorter than the perimeter of (Hy, ty), |OY|.   Therefore, point 

X has a smaller chance to be on a chord in C1 than point Y does (recall that 

‘chance a point P to be on a chord’ means ‘probability for (P, r) to be on a 

chord where r is an arbitrarily small but fixed amount’ as specified in Section 3) .  

According to Definition-C, the chords in C1 cannot be homogeneously distributed.   

 Statement (4.1-D) is thereby true since chords in C1 satisfy the antecedent 

of (4.1-D), whereas they cannot be homogeneously distributed as we have just 

proved.             

         

5.2. Proving statement (4.2-D) to be true 

If the chord-angles of a set of chords drawn at random are uniformly 

distributed between 0 and 90, then these chords are not homogeneously 

distributed over the circle.       (4.2-D)  
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Let C2 denote a set of chords that are generated by Chord-Generation-

Method-2 in Section 4.2.  Obviously, the chord-angles of the chords in C2 are 

uniformly distributed between 0° and 90°, which satisfies the antecedent of 

statement (4.2-D).  We now prove that the chords in C2 cannot be homogeneously 

distributed, therefore (4.2-D) is true.  To do that, we need to establish a few 

lemmas. 

Lemma 3. 

Let X denote an internal point in circle (O, r).   Given a point P on the 

circumference of (O, r), there is one and only one chord PX running through X.  

Let x,P denote the chord-angle of chord PX.  Let x=x,A denote the particular 

chord-angle of X such that A is on the circumference and AXOX (Fig. 9).  Then,  

  x = Px
ncecircumfereonsPallamong

MAX ,
'

 . 

Proof: 

 As shown in Fig. 9, the chord-angle of X at P, x,P = XPO.  In triangle 

OXP, .
sinsin OXP

OP

XPO

OX





   By cross-multiplying, and noting that OP=r, we 

have OXP
r

OX
XPO  sinsin .  Since OX and r are constants, the maximum 

value of sinXPO occurs when sinOXP=1, i.e. PXOX.  Therefore, XPO 

takes its maximum value x when P is at the point A such that AXOX.   

        

     
Lemma 3 characterizes a special chord passing through a point X.  The 

special chord is perpendicular to the radius OX and its chord-angle is the largest 

compared to the chord-angles of the other chords passing through X.  That is, for 

each point X inside the circle, there is a number x associated with X so that any 
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chord passing through X must have its chord-angle less than or equal to x.  In 

other words, given a internal point X, it is impossible to have a chord passing 

through X with the chord-angle greater than x.  Only those chords with the 

chord-angles less than or equal to x can pass through the given internal point X.  

x is called the maximum-chord-angle of chords passing through X, or simply 

maximum-chord-angle of X.  

Lemma 4.  

If X and Y are two internal points of circle (O, r) and OX<OY, then x < 

y, where x is the maximum-chord-angle of X and y is the maximum-chord-

angle of Y . 

Proof: 

 Let Ax and Ay be the two points on the circumference so that the 

maximum-chord-angle of X, x, occurs at Ax and maximum-chord-angle of Y, y, 

occurs at Ay.  By Lemma 3, sinx = OX/r and siny = OY/r.  Since OX<OY, we 

have sinx<siny and x<y.         

         

 Lemma 4 states that the maximum-chord-angle of a point close to the 

circle center is smaller than the maximum-chord-angle of a point close to the 

circumference.  Lemma 5 below shows that two points have an equal chance to be 

on the chord of chord-angle  if  is less than the maximum-chord-angle of 

anyone of the two points.  

Lemma 5.  

Take two internal points X and Y of (O, r) such that OX<OY.  Take a 

number  such that < x and < y where x and y are maximum-chord-angle of 

X and Y respectively.  Let A be a randomly selected point on the circumference of 

(O, r).  The chance that X is on a chord through A with chord-angle  is the 

same as the chance that Y is on a chord through A with chord-angle . 

Proof: 

 According to Lemma 3, it is possible to have a chord with chord-angle  

passing through X since < x, and it is also possible to have a chord with chord-

angle  passing through Y since < y. 

 For the given chord-angle  and internal point X, there are two points Ax1 

and Ax2 on the circumference of (O, r) such that chords XAx1 and XAx2 pass 

through X with the chord-angle  (Fig. 10).   So, given chord-angle , the chance 

that X is on a chord is equal to the chance that the circumference point Ax1 or Ax2 

is selected as an end point of the chord.  By the same token, for the given  and 

internal point Y, there are two points Ay1 and Ay2 on the circumference of (O, r) 
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such that chords YAy1 and YAy2 pass through Y with chord-angle .   So, given 

chord-angle , the chance that Y is on a chord is equal to the chance that the 

circumference point Ay1 or Ay2 is selected as an end point of the chord.       

 Since A is a point randomly selected on the circumference, the four 

circumference points Ax1, Ax2, Ay1, and Ay2 have same chance to be selected as A.   

Therefore, the chance that X is on a chord running through A with chord-angle  

is the same as the chance that Y is on a chord running through A with chord-angle 

.            

       
 Lemma 6 below shows that points in the circle do not have an equal 

chance to be on a chord that is generated by Chord-Drawn-Method-2.  That is, the 

chords in C2 cannot be homogeneously distributed.  The chord density in the area 

close to the circumference is higher than that in the area close to the center, as 

those chords in Fig. 2.  Therefore, chords in C2 must not be homogeneously 

distributed, and statement (4.2-D) is true. 

Lemma 6.  

Chords in C2, which are generated by Chord-Drawn-Method-2, cannot be 

homogeneously distributed, therefore statement (4.2-D) is true. 

Proof:  

 When generating a chord in C2 by using Chord-Drawn-Method 2, we pick 

a number  between 0 and 90 as the chord-angle of the chord, and then pick a 

point A on circumference as an end point of the chord.   Consider two internal 

points X and Y such that OX<OY.   By Lemma 4, x<y.   

If >y, then >x.  So, neither Y nor X can be on the newly generated 

chord according to Lemma 3, no matter whatever point A on the circumference is 

selected as the end point of the chord.   
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If y>x, then there exist two points, Ay1 and Ay2, according to the proof of 

Lemma 5, on the circumference so that if anyone of the two is selected as an end 

point A then the chord will run through Y.  That is, there is some chance for Y to 

be on the newly generated chord.  But, by Lemma 3, there is no chance at all for 

X to be on the newly generated chord since >x.   

If x, then y since x<y.  According to Lemma 5, both X and Y can be on 

the newly generated chord with an equal chance.   

In summary, whenever X has a chance to be on a chord, Y has the same 

chance; while at the time X does not have a chance to be on a chord, Y still has; 

and at the time Y does not have a chance to be on a chord, X does not have either.  

Therefore, Y has larger chance to be on a chord generated by this method, and the 

chords in C2 must be non-homogeneously distributed over the circle according 

Definition-C.   

 Statement (4.2-D) is thereby true since chords in C2 satisfy the antecedent 

of (4.2-D), whereas they cannot be homogeneously distributed as we have just 

proved.         

 

6    Stumbling Blocks to Resolving Bertrand’s Paradox 
 We have proved that two of the purported solutions, 1/3 and 1/4, are 

unsound and that only 1/2 is the solution to Bertrand’s problem.  We will now 

step out from the technical details of the proofs and give our thoughts on the 

stumbling blocks that have caused the accompanying perplexities and prevented 

people from fully resolving the paradox for 120 years. 

 The first stumbling block is about what Bertrand-chords are like.  Almost 

all the disagreements regarding Bertrand’s paradox stemmed from it.  Some 

scholars asserted that the chords referred to in Bertrand’s problem were, in some 

way, vague; and the other scholars disagreed but failed to show that Bertrand-

chord is an unambiguous conception.  The debate on what Bertrand-chords are 

like led to the debate on how many solutions Bertrand’s problem had.  In their 

articles [11] [19] Marinoff and Shackel contended that Bertrand-chords were an 

ill-posed conception and, hence, Bertrand’s problem did not have a unique 

solution.  But people were not convinced by the arguments of Marinoff and 

Shackel, because their instincts told them that Bertrand’s problem ought to have 

only one solution.  We have cleared away this stumbling block by showing in 

Section 2 that people’s instincts are correct, and Marinoff and Shackel are wrong.  

Bertrand-chords have a clear and consistent picture in people’s minds, rather than 

being vague or understood differently by people.  They are homogeneously 

distributed.  Therefore, Bertrand’s problem has only one solution.  Having cleared 
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away this stumbling block, we can further build up our arguments to compellingly 

resolve the paradox.  Without clearing away this stumbling block, on the other 

hand, any “solution” would not be tenable because it would not be convincing as 

to what Bertrand-chords are like in the first place, as those “solutions” reported 

previously by the scholars such as Marinoff and Shackel.  

 The second stumbling block is the lack of knowledge about 

homogeneously distributed chords. Two different concepts, homogeneously 

distributed Bertrand-chords and randomly drawn chords, have been mistakenly 

conflated by scholars who worked on this paradox.  We have cleared away this 

stumbling block by showing, in Section 4 and Section 5, that the chords drawn at 

random by using Chord-Drawn-Method-1 or Chord-Drawn-Method-2 are not 

Bertrand-chords, and purported solutions 1/3 and 1/4 derived from them are 

therefore not the solution to Bertrand’s problem.  Hence, randomly drawn chords 

are not necessarily Bertrand-chords.  

 To see why randomly drawn chords are not necessarily homogeneously 

distributed, let us compare the concepts of randomly drawn chords with randomly 

drawn points.  In probability theory, points drawn at random from the range [0,1] 

are uniformly or homogeneously distributed over [0,1].   But this feature of 

random points cannot be simply extrapolated to random chords.  The distribution 

of a set of randomly drawn chords would be dependent on the method of 

“drawing”.  By probability theory, the distribution of a function of random 

variable X is in general not the same as the distribution of X.  Particularly, if X is 

uniformly distributed, X
2
 is not.  Generally, if we do some transformations or 

conversions on X, the resulting distribution would typically deviate from the 

original distribution of X.  This fact was re-visited in Bangu’s recent article [1].  

When drawing chords from randomly picked points, “transformations” are always 

needed in order to form the chords from the “randomly selected” points.  Even 

though the points are purely random, the distribution of the chords obtained from 

some “transformation” on top of the randomness would not necessarily be purely 

random.  Therefore, chords drawn at random may not be homogeneously 

distributed, 

This important fact, chords drawn at random are not necessarily 

homogeneously distributed, has been ignored by all who worked on Bertrand’s 

paradox.  Take a look at the phrases for Bertrand-chords used in the literature.  

Bertrand [2], Jaynes [9], Shackel [19], Marinoff [11], Sorensen [21], and the 

Oxford Philosophy Dictionary [15] spoke of a Bertrand-chord as “drawing a 

chord at random” or “a randomly drawn chord”.   On the other hand, Sainsbury 

[18], Vujicic [23] and Virtual Laboratories [22] worded it as: “a random chord”.   
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These phrases were simply accepted as synonyms by all authors.  No one has ever 

cast serious doubt on this or even thought to explore the issue. 

 We can now see that the phrase “chords drawn at random” is an incorrect 

term for Bertrand-chords since randomly drawn chords are not necessarily 

homogeneously distributed and therefore not necessarily Bertrand-chords.  No 

scholar who has written on Bertrand’s paradox, including J. Bertrand himself, has 

ever pointed out the misrepresentation; and no one has ever tried to distinguish “a 

chord drawn at random” from “a random chord”.  Actually, the term “random 

chords” is an acceptable wording for Bertrand-chords if it means “truly random 

chords”, because “truly random chords” would be homogeneously distributed, as 

“truly random points” would be uniformly distributed.  But those who happened 

to use this acceptable wording, such as Sainsbury [18] and Vujicic [23], did not 

realize their “random chords” must be truly random without any subsequent 

transformations on top of the randomness.  

 The above two stumbling blocks set obstacles to fully resolving the 

paradox.  Because of their existence plus the lack of recognition of their very 

existence, the claimed “solutions” to Bertrand’s paradox so far in the literature are 

invariably unconvincing.  As the result, Bertrand’s paradox has obstinately stayed 

in the list of unsolved paradoxes.   

 

7   Bertrand’s Paradox Is Dissolved 
 In general, a paradox, according to Sainsbury, is an absurd situation in 

which “an unacceptable conclusion is derived by apparently acceptable reasoning 

from apparently acceptable premise” [18].  Thus, a paradox is resolved, or more 

exactly, dissolved, if the conflict between the acceptableness of reasoning process 

and un-acceptableness of its conclusion is eliminated, either by showing that the 

conclusion is acceptable or the reasoning process is unacceptable.  We have 

showed that the reasoning processes for deriving two of the three purported 

solutions are unacceptable.  Hence, the conflict existing in Bertrand’s paradox is 

cleared away, and the paradox is therefore dissolved. 

 In particular, for this paradox, recall the three “must-do tasks” to resolve it 

as discussed in Section 1.  For Task One, we showed in Section 2 that Bertrand’s 

problem has one and only one solution.  For Task Two, we derived the correct 

solution, and showed why the other two solutions were not correct, in Sections 4 

and 5.  For Task Three, we identified in Section 6 the stumbling blocks that 

generated the perplexity.  We have accomplished all three must-do tasks for 

resolving Bertrand’s paradox.  Therefore, we claim that this paradox is resolved. 

 



 
 

 

95                                                      Resolving Bertrand's Probability Paradox 

8   Reflections and Clarifications 
 This article would end here if it were solving an ordinary problem.  

However, Bertrand’s paradox has been a particularly intransigent puzzle, due in 

large part to the many entangled recessive elements arising from sloppy 

assumptions, misunderstandings, careless conclusions, and misconceptions.  In 

this last section we will lay out our reflections and clarifications on the subtleties 

of the puzzle, on the soundness and completeness of our method, and on the 

prevalent misunderstanding and false assumptions, so as to help fully cleanse the 

perplexities of the paradox which have haunted people for a long time.  At some 

places, we have to point out candidly, but with respect, errors and misconceptions 

that have existed in the literature on Bertrand’s paradox in order to get the 

perplexities cleared away.  In our experience in working on this project and 

sharing the findings with our colleagues, we have found a number of criticisms 

and questions are in many cases the same question in different guises.  As a result, 

we have to sometime reiterate the arguments we have made earlier, although we 

hope our efforts constitute an enrichment of these arguments not simply mere 

repetition.  

 

8.1. “Bertrand’s paradox is not a well-recognized paradox, since the random 

chords can be generated in different ways which cause different solutions.”  

 This comment was from a colleague after he read the draft of this article.  

It is incorrect in both its conclusion and its argument.   

 Bertrand’s paradox has been recognized by mathematicians and 

philosophers for 120 years.  It was cited in books of philosophy and probability 

theory [21] [18] [2].  It is listed in important current dictionary of philosophy [15]. 

It has been viewed as an evidence against the principle of indifference and its 

extension, the principle of maximum entropy [1] [7]. It has been debated in major 

journals such as Philosophy of Science [19] [14], Foundation of Physics [11] [9], 

The Mathematical Intelligencer [7] [5], and Analysis [1].  The conclusion of the 

above statement, “Bertrand’s paradox is not a well-recognized paradox”, is 

therefore groundless.  The debate on the paradox is clearly not over at all.  To 

make the matters worse, some recent articles, as [19], not only failed to resolve 

the paradox but also strayed farther from the progress Jaynes had made in 1973 

[9].  So, Bertrand paradox has been, and is, a well-recognized paradox in 

philosophy and probability theory and has not yet been resolved, at least up until 

now.  

 The argument of the above, “since the random chords can be generated in 

different ways which cause different solutions”, is also flawed.  Random chords 
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mean truly random chords just as random points mean truly random points.  Truly 

random chords are homogeneously distributed.  Homogeneous distribution has 

only one distribution pattern that is homogeneity.  Such a pattern would result in 

just one solution for Bertrand’s problem, even though its definition can be worded 

differently.  That is, homogeneity has just one meaning and interpretation, though 

it can be worded differently.  Since Bertrand-chords are homogeneous, there is 

just one solution for Bertrand’s problem, no matter how many versions of 

definitions of homogeneity.  This type of argument reflects a quick and simple 

attempt to get rid of the perplexity caused by Bertrand’s paradox.  Unfortunately, 

it is superficial and fallacious.   It reveals a basic misconception about the nature 

of random chords, which is a prime reason why Bertrand’s problem has been seen 

as a paradox for 120 years.  It is precisely misconceptions such as this one that we 

have been at pains to bring to light in this article. 

  

8.2  “Where did it all go wrong and why has it not been resolved until now?”  

We have proved that Bertrand’s problem ought to have only one solution 

and that it does have one solution.  So, it is no longer a paradox.  In what follows 

we share our reflections with our readers on how such a seemingly uncomplicated 

problem turned into a paradox that has puzzled scholars for so long.  To do this 

we “decompose” the occurrence of the paradox in stages, thereby to reveal what 

we believe to be the thought process that generated the perplexity.  Although we 

readily admit that we do not have any special insight of what happened to Mr. 

Bertrand 120 years ago and the scholars thereafter, we believe that the following 

represents a plausible picture of the thought process that occurs with many 

scholars when confronting the puzzle, which leads to viewing Bertrand’s problem 

as a paradox. 

The thought process leading people to viewing Bertrand’s problem as a 

paradox may be composed of three stages.   

Stage 1. One is confronted with a problem, the original Bertrand’s problem as it 

were, in his mind. At this stage, the understanding he has of the problem 

is primarily a graphical one.  He is imagining the random chords as those 

in Figure 1, back in Section 2.  To the extent that he is articulating the 

problem in his head it would be something like, “What percent of these 

lines are longer than the side of an inscribed equilateral triangle?” As 

such, he thinks the problem obviously has one and only one solution. 

Stage 2. The problem is put down into words. “Drawing a chord at random in a 

circle, what is the probability that the chord is longer than a side of the 
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inscribed equilateral triangle?” This is thought to exactly reflect the 

original problem in our minds at Stage 1.  

Stage 3. He tries to solve the original problem at stage 1 based on the problem 

described at Stage 2.  He ends up with three solutions, 1/4, 1/3, and 1/2, 

each of which is obviously on a solid ground.  He double-checks every 

piece of the arguments and finds nothing wrong.  It turns out that a 

problem that ought to have only one solution ends up with three solutions. 

– A paradox! 

 Of the three stages, which stage(s) is(are) wrong?  The arguments in this 

paper have already showed: 

(i) There is nothing wrong at Stage 1.  The graphic image of the chords in 

people’s minds (and in Mr. Bertrand’s mind, and in everyone else’ mind) are 

homogeneously distributed, as those in Fig. 1.  It is correct that the problem 

ought to have one solution only. 

(ii) The incorrectness starts at Stage 2 because the wording about the “chords” at 

this stage does not reflect the “chords” at Stage 1.  That is, the problem 

addressed at Stage 2 is not the problem at Stage 1, because chords drawn at 

random are not necessarily uniformly distributed therefore not necessarily the 

chords in our minds at Stage 1. 

(iii) The three solutions derived at Stage 3 are all correct solutions to the problem 

at Stage 2.  But they are not all correct solutions to the problem at Stage 1, only 

1/2 is. 

As addressed in Section 6, there are two significant stumbling blocks with 

Bertrand’s paradox.  The first is the mistaken assumption that the perplexity is 

incurred by different pictures of Bertrand-chords in people’s minds.  The falsity of 

the assumption was shown in Section 2.  Uniform distribution is the unstated but 

common understanding of Bertrand-chords, which has been either explicitly 

acknowledged [9] or tacitly accepted [2] [11] [19].  There is no difference among 

people on what Bertrand-chords are like, as no one would take the non-uniformly 

distributed chords in Fig. 2 for Bertrand-chords.   Assuming otherwise would be 

digressing and result in irrelevant arguments.   

The second stumbling block is the false assumption that chords drawn at 

random are homogeneously distributed.  The falsity of this assumption was 

proved in Sections 4 and 5 and further discussed in Section 6.  This mistaken 

assumption resulted in three consequences: (i) An incorrect wording was laid out 

at Stage 2 to represent the problem at Stage 1; (ii) People incorrectly took for 

granted that the problem of Stage 2 had only one solution; (iii) People incorrectly 
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took the solutions to the problem at Stage 2 as the solutions to the original 

problem at Stage 1.   

Given the way these confusions multiply upon each other, it is not 

surprising that Bertrand’s paradox has been so recalcitrant. 

 

8.3  “It seems that your arguments are self-fulfilling: - You gave a definition 

of Bertrand-chords according to your understanding, then proved your 

conclusion based on your definition.  Is that right?” 

 No, it is not right, our arguments are not self-fulfilling.   Our solution is 

based on people’s common understanding of Bertrand-chords, as addressed in 

Sections 2 and 8.2, rather than an idiosyncratic vision tailored to our arguments.  

The definition of Bertrand-chords given in Section 3 is consistent with definitions 

of random lines in literatures [12] [6] but in non-technical terms.   

Having identified the fact that everyone agrees that Bertrand-chords are 

homogeneously distributed, we developed the definition of homogeneously 

distributed chords with plain wording.  Based on this, we then proved that 1/2 was 

the correct solution, while 1/3 and 1/4 are not; therefore resolving the paradox.  

There is no self-fulfillment loop existing in this solution process. 

 

8.4  “Is Bertrand’s paradox well posed or ill posed?” 

The issue of well-posedness or ill-posedness has divided scholars for years 

in their pursuit of the solution to Bertrand’s paradox [9] [11] [19] [7].  Whether a 

problem is well posed or ill posed refers to the way the problem is presented.  If a 

problem is presented verbally or written down, then we examine the “wording” of 

the problem.  A problem is well posed if its wording correctly represents the 

problem and has only one interpretation.  A problem is ill posed, on the other 

hand, if its wording either incorrectly or vaguely represents the problem.  In 

Bertrand’s problem, Bertrand-chords were verbally posed as “chords drawn at 

random”.  As we know now, chords drawn at random are not necessarily 

Bertrand-chords.  So, Bertrand’s problem is not well posed.  It is ill posed, 

because its wording does not correctly reflect the original problem as we 

addressed in 8.1.   

But those scholars who thought that Bertrand’s problem was ill posed have 

based their arguments on the wrong reason: - they insisted that it was ill posed 

because the wording “chords drawn at random” did not tell the method of drawing, 

and that therefore it was vague.  This is a misconception due to the entanglement 

of their misunderstanding of Bertrand-chords and homogeneously distributed lines.  

They mistakenly conflated Bertrand-chords and chords drawn at random, and took 
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Bertrand-chords as whatever chords drawn at random.  They concluded that 

Bertrand’s problem was ill posed because the vagueness of the method of drawing 

chords.  They failed to recognize that (i) chords drawn at random are not 

necessarily Bertrand-chards, (ii) there is only one distribution pattern of Bertrand-

chords, homogeneity, and (iii) the wording “chords drawn at random” does not 

correctly represent Bertrand-chords at all.  Let us take an example to illustrate the 

misconception.   

Suppose we intend to find out how many horses a farmer has, and we ask 

him, “how many animals with four legs do you have?”  Obviously, this is an ill-

posed question, because animals with four legs are not necessarily horses, hence it 

does not correctly reflect what we had intended to find out.  But imagine that, due 

to our ignorance about the nature of horses, we made an additional error in that we 

conflated the concepts “horse” and “animals with four legs.”  Then, we would 

have the misconception that any animal with four legs, including a dog, a cat, a 

mouse, was a “horse.”  In such a scenario we would not only be unable to grasp 

the mistake of using “animal with four legs” to represent “horse”, but also make 

an additional mistake by thinking that the difficulty we encounter when we argue 

with each other about the number of “horses” is because of the vagueness of the 

question.  Under the circumstances, we would think that the question was ill 

posed because it did not tell what ‘kind’ of horse (e.g., dog-horse, cat-horse, 

mouse-horse, etc.) it refers to, and, of course, there would be many answers to this 

vague question due to the many ‘kinds’ of horses; and we would fail to realize 

that the question was ill posed because we did not know what a horse was in the 

first place. 

 In some articles, “random chords” were used to represent Bertrand-chords, 

which is a correct representation.  But the scholars who happened to have used the 

correct wording “random chords” would not care substituting it with the wording 

“chords drawn at random”.  They took “random chords”, “chords drawn at 

random”, and “Bertrand-chords” as interchangeable wordings.  So, their 

inadvertently correct wording did not show they had known how to correctly pose 

Bertrand’s problem, because to them, “random chords”, which is a correct 

wording, refers to “chords drawn at random”, which is an incorrect wording.  

 In short, our answer to this question is: Bertrand’s problem was ill posed, 

because the wording incorrectly represented the original problem, rather than 

because of the vague wording.  In this sense, instead of ill posed, we would rather 

say Bertrand’s problem was incorrectly posed. 
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8.5  “What is the relationship between Bertrand’s paradox and the principle 

of indifference?” 

There is no relationship between Bertrand’s paradox and the principle of 

indifference.  

The principle of indifference (PI) says, if n possibilities are 

indistinguishable except for their names, then each possibility should be assigned 

a probability equal to 1/n.   

 From the very beginning, Bertrand’s paradox was tied to the principle of 

indifference.  J. Bertrand took this paradox to show that the principle of 

indifference might not be true when there were infinitely many possibilities [2].  

Many researchers thereafter explored the paradox with the similar assumption that 

Bertrand’s paradox posed a “devastating objection” [1] to the principle of 

indifference [8] [11] [19].   Those contentions, no matter whether favorable to PI 

or not, were based on a same assumption: Bertrand’s paradox has something to do 

with PI.  They were all wrong on this point.   

We have seen that the contradiction in this paradox is due to the incorrect 

understanding of chords drawn at random and homogeneously distributed chords.  

As we have shown, chords associated with the “solutions” 1/4 and 1/3 are not 

homogeneously distributed.  With the non-homogeneous distribution, chord 

density in the central area is lower than that in the peripheral area.  In 

circumstances, “n possibilities” would obviously not be “indistinguishable except 

for their names” since probabilities at central area are distinct from those at 

peripheral area.  Therefore, the chords associated with solutions 1/4 and 1/3 do 

not meet the antecedent of PI.  It is wrong to blame PI for the absurdity of 

Bertrand’s paradox and Bertrand’s paradox does not at all pose a devastating 

objection to PI.  PI is innocent and safe; it has nothing to do with Bertrand’s 

paradox. 

 

8.6. “Do ‘random chords’ or ‘Bertrand-chords’ have an univocal meaning, as 

you argued in this article, that their empirical distribution will fill the circle 

with equal density as in Figure 1?” 

 This question was from a colleague who read the draft of this article. 

Our answer to this question is: Yes.  Bertrand-chords have just one 

meaning and it is univocal.  They are homogeneously distributed on the circle.  

We argued in Section 2 that Bertrand-chords must be truly random, therefore they 

must be homogeneous.  The random lines have exact definition in theory of 

geometry probability [12]. So, the meaning of Bertrand-chords or random chords 

is unique, exact, and univocal. 
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 This question reflects a widespread confusion among scholars regarding 

random chords.  Many people take random chords to be equivalent to randomly 

drawn chords.   That is a key stumbling block causing the puzzle of Bertrand’s 

paradox.  We have showed in Section 4 that chords generated in the ways of 

Chord-Drawing-Method-1 and Chord-Drawing-Mathod-2 are not ‘random chords’ 

nor ‘Bertrand-chords’.  Chords generated by the two methods have lower density 

at the central area than at the peripheral area, as those in Fig. 2.    

 Random chords should be understood as truly random chords, just as 

random points are understood as purely random points.  When generating 

“random chords”, the chords must be drawn at purely random without any  

transformation on top of the randomness.  “Purely random” means “random 

without any restriction”.  “Transformation” necessarily involves ‘restrictions”.  In 

the one dimensional case, suppose among 10,000 points in [0, 1] there are 5,000 

points less than 0.25, the other 5,000 points greater than 0.25.  Do we assume that 

the 10,000 points were randomly drawn from [0, 1]?  Of course not, because they 

do not look uniformly distributed over [0, 1].  Actually, the points were indeed 

drawn at random at first.  But after a point x is randomly drawn, x is transformed 

to y = x
2
.  The 10,000 points contains just y’s, not x’s.  Although points x’s are 

truly random and uniformly distributed, y’s are not due to the transformation y=x
2
.   

Examine Chord-Drawing-Method-2 as an example for two dimensions.  It 

generates a chord in two steps: - selecting at purely random an angle first, then 

randomly select a point on the circumference.  Note that the second step is not 

“purely random” because it has restriction of “on circumference”.   The chords 

thus generated would be like those in Fig. 2, which are not be “truly random 

chords”, not homogeneously distributed, and not Bertrand-chords.  

 

8.7. “Homogeneity and randomness can be defined in various ways, which 

explains the three solutions in Bertrand’s paradox.” 

 We have refuted such arguments in 8.1 and 8.6.  There is only one pattern 

for homogeneity.  The only possible difference between two homogeneous 

distributions of lines is the density.  Homogeneity can be defined with different 

ways, but all the definitions are semantically identical.  Non-homogeneities, on 

the other hand, are semantically different from each other.    Since Bertrand-

chords are homogeneous, there are not “various ways” of definitions of 

homogeneity that lead to multiple solutions. 
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9   Conclusion 
The main result of this paper is: The 120 years-old Bertrand’s paradox is 

completely solved.  We first showed two facts, the random chords referred to in 

Bertrand’s paradox were homogeneously distributed and that there was no 

disagreement among people on this point.  Based on these facts, we rigorously 

proved that two of the three alleged answers were not sound because of their false 

assumptions and that only one solution was correct.  We also revealed two 

significant stumbling blocks that had persistently caused puzzles with regard to 

this paradox: 1) misunderstanding of the nature of homogeneously distributed 

chords, and 2) a disparity between the problem as originally conceived in the 

mind and its subsequent representation. The paradox is therefore no longer 

paradoxical.  

A paradox typically shows a limit or a flaw in some aspect of our 

knowledge.  It stimulates our curiosity, arouses deeper thoughts about the subject, 

forces us to clarify confusions and sloppy assumptions, and, in the best of all 

possible worlds, leads us to new knowledge.  Bertrand’s paradox, as we now see, 

has led us to the flaw in our understanding of uniformly distributed lines. In the 

process of pursuing the solution to the paradox, we have achieved a better 

understanding of the distribution of lines in a two-dimensional system and 

advanced our knowledge.  As such, Bertrand’s paradox has done its job, and now 

we believe it should be retired from the family of paradoxes.  

 

10   Open Problems 
 Some open problems emerge as the ramifications of the Bertrand’s 

problem, such as calculating Bertrand probability given a way of drawing chords 

at random other than those three cited in Bertrand paradox, and extending our 

discovery from random chords to random curves, that is, characterizing and 

differentiating the uniformly distributed curves and the curves drawn at random. 

   

 

References 

[1] Bangu, S., On Bertrand’s Paradox, Analysis, Vol. 70, Issue 1, 2010, p.30-35 

[2] Bertrand, J., Calcul des probabilités, Gauthier-Villars, Paris, 1889, pp.4-5 

[3] Diaconis, P. and Keller, J. B., Fair Dice, The American Mathematical Monthly, 

96(4), 1989, p.337-339  

[4] Garwood, F. and Holroyd, E. M., The distance of a “random chord” of a circle 

from the centre.  Mathematical Gazette, 50, 1966, pp.283-286 



 
 

 

103                                                      Resolving Bertrand's Probability Paradox 

[5] Guiasu, S. and Shenitzer, A., The principle of maximum entropy, The 

Mathematical Intelligencer, 7(1), 1985 

[6] Hall, Peter, On the distribution of random lines, Journal of Applied 

Probability, 18, 1981, pp.606-616 

[7] Holbrook, John and Kim, Sung Soo, Bertrand's paradox revisited, The 

Mathematical Intelligencer, 22, 2000, pp.16-19 

[8] Jaynes, E. T., Information Theory and Statistical Mechanics, Physical Review, 

Vol. 106, 4, 1957, p.620-630 

[9] Jaynes, E. T., The Well-posed Problem, Foundation of Physics, 3, 1973, p. 

477-493 

[10] Klain, D. A., and Rota, Gian-Carlo, Introduction to Geometric Probability, 

Cambridge University Press, 1997 

[11] Marinoff, L., A Resolution of Bertrand's Paradox, Philosophy of Science, 61, 

1994, pp.1-24. 

[12] Miles, R. E.,  Random polygons determined by random lines in a plane.  

Proceedings of the National Academy of Sciences of the U.S.A.  Vol. 52, 

1964, pp.901-907 

[13] Moran, P. A. P., A second note on recent research in geometrical probability.  

Advances in Applied Probability, Vol. 1, No. 1, Spring 1969, pp. 73-89 

[14] Nathan, Amos, The fallacy of Intrinsic Distributions, Philosophy of Science, 

51, 1984, pp.677-684 

[15] Oxford philosophy dictionary, Oxford University Press, Bertrand’s paradox, 

http://www.answers.com/topic/bertrand-s-paradox?cat=technology, 2010 

[16] Richards, Paul I.,  Averages for polygons formed by random lines. 

Proceedings of the National Academy of Sciences of the U.S.A.  Vol. 52, No. 

5 (Nov. 15, 1964), pp.1160-1164  

[17] Ross, S. M.,  Introduction to Probability Models, 3rd edition, Academic 

Press, Inc., 1985 

[18] Sainsbury, R. M., Paradoxes, 2
nd

 Edition, Cambridge University Press, 1995 

[19] Shackel, N., Bertrand's paradox and the principle of indifference, Philosophy 

of Science, 74, April 2007 

[20] Solomon, H., Geometric Probability, CBMS-NSF Regional Conference Series 

in Applied Mathematics, Society for Industrial Mathematics, 1987 

[21] Sorensen, R., A Brief History of the Paradox, Philosophy and the Labyrinths 

of the Mind. pp.246, Oxford University Press, 2003 

[22]  Virtual Laboratories, Geometric Models.  

http://www.ds.unifi.it/VL/VL_EN/buffon/buffon3.html, 2008 

[23] Vujicic, B., Is it a paradox or a blunder? http://www.bertrands-paradox.com, 

2008 

[24] Wang, J., Bertrand’s Paradox and Distribution of Lines, Proceeding of DSI 

Annual Conference, Nov. 2008, Baltimore, Maryland, p.3031-3036. 

http://www.answers.com/topic/bertrand-s-paradox?cat=technology
http://www.ds.unifi.it/VL/VL_EN/buffon/buffon3.html
http://www.bertrands-paradox.com/

