Int. J. Open Problems Compt. Math., Vol. 4, No. 3, September 2011 ISSN 1998-6262; Copyright ©ICSRS Publication, 2011 www.i-csrs.org

On Generalized Vector Variational-Like Inequality Problem

Suhel Ahmad Khan and Farhat Suhel

Department of Mathematics BITS, Pilani-Dubai, P.O. Box 345055, Dubai, U.A.E. e-mail:khan.math@gmail.com Department of Mathematics Aligarh Muslim University, Aligarh-202002, India e-mail:farhatsuhel@gmail.com

Abstract

In this paper, we introduce the concepts of relaxed M- η - α - P_- -pseudomonotonicity and relaxed M- η - α - P_- -pseudomonoton icity-type mappings. Using the KKM techniques, we obtain the existence of solutions for generalized vector variational-like inequalities with relaxed M- η - α - P_- -pseudomonotone-type mappings in reflexive Banach spaces. The results presented in this paper generalize, unify and improve a number of previously known results.

Keywords: KKM mapping, Minty's-type lemma, M- η -hemicontinuous mapping, relaxed M- η - α - P_{-} -pseudomonotone-type mapping.

Mathematics Subject Classification (2000): 47H07, 49J40, 90C29.

1 Introduction

Vector variational inequalities were initially introduced and considered by Giannessi [5] in a finite-dimensional Euclidean space in 1980, which is generalization of a scalar variational inequality to the vector case by virtue of multi-criterion consideration. Later on vector variational inequalities and their generalizations have been investigated and applied in various directions; see for example [1,2,7,9,10,12,13] and references therein. In recent years, many authors proposed several important generalizations of monotonicity such as pseudomonotonicity, relaxed monotonicity, relaxed η - α -monotonicity, quasimonotonicity and semimonotonicity and applied to establishing existence results for vector variational inequality problems; see for example [2,4,6,8,17].

Recently in 1997, Verma [17] studied a class of variational inequalities with relaxed monotone operators. Very recently in 2003, Fang *et al.* [4] introduced a new concept of relaxed η - α -monotone mappings and obtained the existence of solutions for variational-like inequalities with relaxed η - α -monotone mappings in reflexive Banach spaces.

Inspired and motivated by Verma [17] and Fang *et al.* [4], in this paper we introduce the concept of relaxed $M-\eta-\alpha-P_-$ -pseudomonotone and relaxed $M-\eta-\alpha-P_-$ -pseudomonotone-type set-valued mappings. Further, we consider generalized vector variational-like inequality problem involving relaxed $M-\eta-\alpha-P_-$ -pseudomonotone-type set-valued mappings. Furthermore, by using the KKM techniques, we established some existence results for this generalized vector variational-like inequalities involving relaxed $M-\eta-\alpha-P_-$ -pseudomonotonetype mappings in reflexive Banach spaces. Our results are the generalization of many existing works of [4,11,16-17].

2 Problem Formulations

Throughout the paper unless otherwise specified, let X and Y are two Banach spaces and let K be a nonempty subset of X and N a nonempty subset of L(X, Y), where L(X, Y) denotes the space of all linear continuous mappings from X into Y. Let $P: K \to 2^Y$ be a set-valued mapping such that for each $x \in K, P(x)$ is closed, pointed and convex cone with int $P(x) \neq \emptyset$. An ordered Banach space (Y, P) is a real Banach space Y with an ordering defined by a cone $P \subseteq Y$ with an apex at the origin in the form of

$$x \le y \iff y - x \in P$$

Let $M : K \times N \to L(X, Y)$, $\eta : K \times K \to X$ and $f : K \times K \to Y$ are bi-mappings and $T : K \to 2^N$ be a set-valued mapping. In this paper we consider following *generalized vector variational-like inequality problem* (in short, GVVLIP): Find $x \in K$ such that for all $y \in K$ there exists an $u \in T(x)$ satisfying that

$$\langle M(x,u),\eta(y,x)\rangle + f(y,x) \notin -\mathrm{int} P(x).$$

Some special cases of (GVVLIP)

(I) If f is zero mapping, then (GVVLIP) reduces to the problem of finding $x \in K$ such that for all $y \in K$, $\exists u \in T(x)$ such that

$$\langle M(x,u), \eta(y,x) \rangle \notin -\text{int } P(x).$$

which was introduced and studied by Ansari *et al.* [1], that generalizes some kinds of vector variational inequalities considered by many authors; see for details [1, 9-11, 13].

(II) If K=N and M(x,u) = Au, where $A : K \to L(X,Y)$ then (GVVLIP) reduces to the problem of finding $x \in K$, such that for all $y \in K$, $\exists u \in T(x)$ such that

$$\langle Au, \eta(y, x) \rangle + f(y, x) \notin -\operatorname{int} P(x),$$

which has been studied by Usman et al. [16].

(III) If f is zero mapping, K = N, M(x, u) = u, and $\eta(y, x) = y - x$, $\forall x, y \in K$, then (GVVLIP) reduces to the problem of finding $x \in K$ such that for all $y \in K$, $\exists u \in T(x)$ such that

$$\langle u, y - x \rangle \notin -int P(x),$$

which has been studied by Lee *et al.* [12].

(IV) If f is zero mapping, let $K = \mathbf{R}^n$, $N = \mathbf{R}^m$, $Y = \mathbf{R}^l$ and let $L : K \times K \to \mathbf{R}^l$ be such that M(x, u) = L'(x, u), $\forall (x, u) \in K \times K$, where L' denotes the Frechet derivative of L at x and let $T : K \to 2^N$ is defined by $T(x) := \{y \in N : L(x, z) - L(x, y) \notin -\text{int } \mathbf{R}_+^l, \forall z \in N\}$ then above (GVVLIP) reduces to problem of finding $x \in K$ such that for all $y \in K$, $\exists u \in T(x)$ such that

$$\langle L(x,u),\eta(y,x)\rangle \not\in -\mathrm{int}\,\mathbf{R}_{+}^{l},$$

which has been studied by Kazmi [7] in finding out the weak saddle point of non convex mapping L.

Throughout the paper, unless otherwise specified, let $P_{-} = \bigcap_{x \in K} P(x)$ is a closed, convex, solid and pointed cone. Now we recall the following concepts and results which are needed in the sequel.

Definition 2.1 A mapping $f : K \times K \to Y$ is said to be

(a) P_{-} -convex in first argument, if for all $\alpha \in [0,1]$ and $x_1, x_2 \in K$, $f(\alpha x_1 + (1-\alpha)x_2, y) \leq_{P_{-}} \alpha f(x_1, y) + (1-\alpha)f(x_2, y);$

(b) P_{-} -concave, if -f is P_{-} -convex.

Definition 2.2 [3] Let K be a subset of a topological vector space X. A mapping $T : K \to 2^X$ is called Knaster-Kuratowski-Mazurkiewieg mapping (KKM mapping), if for each nonempty finite subset $\{x_1, x_2, \dots, x_n\} \subset K$, we have $Co\{x_1, \dots, x_n\} \subset \bigcup_{i=1}^n T(x_i)$.

Lemma 2.3 [2] Let (Y, P) be an ordered Banach space with a closed, pointed and convex cone P with int $P \neq \emptyset$. Then $\forall x, y, z \in Y$, we have

- (i) $y z \in int P$ and $y \notin int P \Rightarrow z \notin int P$;
- (ii) $y z \in -P$ and $y \notin -int P \Rightarrow z \notin -int P$.

Theorem 2.4 (KKM-Fan Theorem) [3] Let K be a subset of a topological vector space X and let $F : K \to 2^X$ be a KKM mapping. If for each $x \in K$, F(x) is closed and for atleast one $x \in K$, F(x) is compact, then

$$\bigcap_{x \in K} F(x) \neq \emptyset.$$

We have following fixed point theorem which play an important role in establishing existing theorem for (GVVLIP).

Theorem 2.5 [15] Let K be a nonempty convex subset of a Hausdorff topological vector space X and let $S: K \to 2^K$ be a set-valued mapping such that

- (i) for each $x \in K$, S(x) is a nonempty convex subset of K;
- (ii) for each $y \in K$, $S^{-1}(y) := \{x \in K : y \in S(x)\}$ contains an open subset O_y of K, where O_y may be empty;
- $(iii) \bigcup_{y \in K} O_y = K;$
- (iv) K contains a nonempty subset K_0 contained in a compact subset K_1 of K such that the set $D = \bigcap_{y \in K_0} O_y^c$ is compact, where D may be empty and O_y^c denotes complement of O_y in K_0 .

Then $\exists x_0 \in K$ such that $x_0 \in S(x_0)$.

3 Existence results for (GVVLIP)

First, we define the following concepts.

Definition 3.1 Let $M : K \times N \to L(X,Y)$, $f : K \times K \to Y$ and $\eta : K \times K \to X$ be mappings, let $T : K \to 2^N$ are the set-valued mapping and let $\alpha : X \to Y$ be a mapping such that $\alpha(tz) = t^p \alpha(z)$, $\forall z \in X$ for all t > 0 and a constant p > 1. Then T is said to be

(a) relaxed M- η - α - P_- -pseudomonotone, if for every pair of points $x, y \in K$ and for all $u \in T(x), v \in T(y)$, we have

$$\langle M(x,u),\eta(y,x)\rangle + f(y,x) \not\in -int P(x)$$
 implies
 $\langle M(y,v),\eta(y,x)\rangle + f(y,x) - \alpha(y-x) \not\in -int P(x);$

(b) relaxed $M \cdot \eta \cdot \alpha \cdot P_-$ -pseudomonotone-type, if for every pair of points $x, y \in K$ and for all $u \in T(x)$, we have

 $\langle M(x,u),\eta(y,x)\rangle + f(y,x) \not\in -int P(x)$ implies

 $\langle M(y,v), \eta(y,x) \rangle + f(y,x) - \alpha(y-x) \notin -int P(x), \text{ for some } v \in T(y)$

Remark 3.2 (I) (a) implies (b)) but not conversely.

- (II) If $\alpha \equiv 0$, f(y,x) = f(y) f(x), M(x,u) = u and $\eta(y,x) = y x$, $\forall x, y \in K$, then we obtain Definition 2.1 (iii) and (vi) in [9], respectively.
- (III) If $\alpha \equiv 0$, f(y, x) = f(y) f(x), $L(X, Y) = X^*$, $Y = \mathbf{R}$ and $P(x) = \mathbf{R}^+$, $\forall x \in K$, then we obtain Definition 2.1 (i) in [14].

Definition 3.3 Let $M : K \times N \to L(X,Y)$, $f : K \times K \to Y$ and $\eta : K \times K \to X$ are bi-mappings and let $T : K \to 2^N$ be a set-valued mapping. Then T is said to be M- η -hemicontinuous if, for any $x, y \in K$, $u_n \in T(x+ny)$, $\exists u_0 \in T(x)$ such that

$$\langle M(x+ny,u_n),\eta(y,x)\rangle + f(y,x) \to \langle M(x,u_0),\eta(y,x)\rangle + f(y,x) \text{ as } n \to 0^+.$$

Now, we give Minty's-type lemma for (GVVLIP).

Lemma 3.4 Let X be real reflexive Banach space and Y be a Banach space. Let $K \subset X$ be a nonempty, closed and convex subset of X and N a nonempty subset of L(X,Y). Let $P: K \to 2^Y$ be such that for each $x \in K$, P(x) is a proper, closed, convex cone with int $P \neq \emptyset$. Let $M: K \times N \to L(X,Y)$ be a mapping and $f: K \times K \to Y$ is P_{-} -convex in first argument with f(x,x) = $0, \forall x \in K$. Suppose following conditions hold

- (i) $\eta: K \times K \to X$ is a mapping such that $\eta(x, x) = 0, \forall x \in K$;
- (ii) for any fixed $x \in K$, $u \in T(x)$ the mapping $y \to \langle M(x,u), \eta(y,x) \rangle$ is P_{-} -convex;
- (iii) $T: K \to 2^N$ be M- η -hemicontinuous and relaxed M- η - α -P_-pseudomonotone-type mapping.

Then following two problems are equivalent:

(A) Find $x \in K$ such that for all $y \in K$, there exists an $u \in T(x)$ satisfying that

$$\langle M(x,u),\eta(y,x)\rangle + f(y,x) \notin -int P(x).$$
 (3.1)

(B) Find $x \in K$ such that for all $y \in K$, there exists an $v \in T(y)$ satisfying that

$$\langle M(y,v),\eta(y,x)\rangle + f(y,x) - \alpha(y-x) \notin -int P(x).$$
(3.2)

Proof. Let $x \in K$ be a solution of problem (3.1), therefore there exists $u \in T(x)$ such that

$$\langle M(x,u), \eta(y,x) \rangle + f(y,x) \notin -\text{int } P(x).$$

Since T is relaxed M- η - α -P-pseudomonotone-type, which implies that there exists $v \in T(y)$ such that

$$\langle M(y,v), \eta(y,x) \rangle + f(y,x) - \alpha(y-x) \notin -int P(x).$$

Conversely, suppose that there exists $x \in K$ such that

$$\langle M(y,v), \eta(y,x) \rangle + f(y,x) - \alpha(y-x) \notin -int P(x) \quad \forall \ y \in K, \ v \in T(y).$$

For any given $y \in K$, we know that $y_t := (1 - t)x + ty \in K$, $\forall t \in (0, 1)$, as K is convex.

Since $x \in K$ is a solution of problem (3.2), so for each $v_t \in T(y_t)$ it follows that

$$\langle M(y_t, v_t), \eta(y_t, x) \rangle + f(y_t, x) - \alpha(y_t - x) \notin -\text{int} P(x).$$
(3.3)

 $\langle M(y_t, v_t), \eta((1-t)x + ty, x) \rangle + f((1-t)x + ty, x) - \alpha(t(y-x)) \notin -int P(x).$ As f is P_-convex in first argument, we have

$$f((1-t)x + ty, x) \leq_{P(x)} (1-t)f(x, x) + tf(y, x) = tf(y, x).$$
(3.4)

By using the conditions (i) and (ii) on η , it follows

$$\langle M(y_t, v_t), \eta(y_t, x) \rangle = \langle M(y_t, v_t), \eta((1-t)x + ty, x) \rangle$$

$$\leq_{P(x)} (1-t) \langle M(y_t, v_t), \eta(x, x) \rangle + t \langle M(y_t, v_t), \eta(y, x) \rangle$$

$$\leq_{P(x)} t \langle M(y_t, v_t), \eta(y, x) \rangle \tag{3.5}$$

It follows from inclusions (3.3)-(3.5) and Lemma 2.3, that for t > 0 and p > 1

$$t\langle M(y_t, v_t), \eta(y, x) \rangle + tf(y, x) - t^p \alpha(y - x) \notin -\operatorname{int} P(x).$$

$$\langle M(y_t, v_t), \eta(y, x) \rangle + f(y, x) - t^{p-1} \alpha(y - x) \notin -\operatorname{int} P(x).$$

$$(M(g_t, v_t), \eta(g, x)) + f(g, x) = i \quad \alpha(g = x) \notin -\inf T(x).$$

Since T is M- η -hemicontinuous and p > 1, there exists $u \in T(x)$ such that

$$\langle M(x,u), \eta(y,x) \rangle + f(y,x) \notin -\text{int } P(x).$$

as $t \to 0^+$. This completes the proof.

Now, we have following existence theorem for (GVVLIP).

Theorem 3.5 Let X be real reflexive Banach space and Y be a Banach space. Let $K \subset X$ be a nonempty, bounded, closed and convex subset of X and N a nonempty subset of L(X,Y). Let $P : K \to 2^Y$ be such that for each $x \in K$, P(x) is a proper, closed, convex cone with int $P \neq \emptyset$. Let M : $K \times N \to L(X,Y)$ be a mapping, $\alpha : X \to Y$ is weakly lower semicontinuous and P_{-} -convex mapping. Suppose following conditions hold:

- (i) The set-valued mapping $W: K \to 2^Y$ defined as $W(x) = Y \setminus \{-int \ P(x)\}$ such that graph of W is weakly closed in $X \times Y$;
- (ii) $\eta: K \times K \to X$ is continuous in second argument such that $\eta(x, x) = 0$, $\forall x \in K$;
- (iii) $f: K \times K \to Y$ is lower semicontinuous and P_{-} -convex in second and first arguments, respectively, with $f(x, x) = 0, \forall x \in K;$
- (iv) for any fixed $x \in K$ and $u \in T(x)$, the mapping $y \to \langle M(x,u), \eta(y,x) \rangle$ is $P_{-convex}$;
- (v) $T: K \to 2^N$ be M- η -hemicontinuous and relaxed M- η - α -P_-pseudomonotone-type mapping with compact-values.

Then (GVVLIP) is solvable.

Proof. Let $F_1, F_2 : K \to 2^X$ be two set-valued mappings such that for any $y \in K$,

 $F_1(y) = \{ x \in K : \exists u \in T(x) \text{ such that } \langle M(x,u), \eta(y,x) \rangle + f(y,x) \notin -\text{int } P(x) \}.$

 $F_2(y) = \{ x \in K : \exists v \in T(y) \text{ such that } \langle M(y,v), \eta(y,x) \rangle + f(y,x) - \alpha(y-x) \notin -\text{int } P(x) \}.$

We claim that F_1 is KKM mapping. Indeed, let $\alpha_i \ge 0, 1 \le i \le n$, with $\sum_{i=1}^{n} \alpha_i = 1$. Suppose that $x = \sum_{i=1}^{n} \alpha_i x_i \notin \bigcup_{i=1}^{n} F_1(x_i)$. Then, for any $u \in T(x)$,

$$\langle M(x,u),\eta(x_i,x)\rangle + f(x_i,x) \in -\text{int } P(x), \quad i = 1, 2, ..., n$$

We have

$$0 = \langle M(x, u), \eta(x, x) \rangle + f(x, x)$$

= $\langle M(x, u), \eta(\sum_{i=1}^{n} \alpha_i x_i, x) \rangle + f(\sum_{i=1}^{n} \alpha_i x_i, x)$
 $\leq_{P_-} \sum_{i=1}^{n} \alpha_i [\langle M(x, u), \eta(x_i, x) \rangle + f(x_i, x)]$

i.e., $0 \in -int P(x)$, which is not possible for a pointed cone and thus our claim is verified.

Next, we prove that $F_1(y) \subset F_2(y)$ for each $y \in K$. For any given $y \in K$, let $x \in F_1(y)$ then there exists $u \in T(x)$ such that

$$\langle M(x,u), \eta(y,x) \rangle + f(y,x) \notin -\text{int } P(x).$$

Since T is relaxed $M-\eta-\alpha-P$ -pseudomonotone-type, we have

$$\langle M(y,v), \eta(y,x) \rangle + f(y,x) - \alpha(y-x) \notin -int P(x).$$

i.e., $x \in F_2(y)$. It follows that $F_1(y) \subset F_2(y)$ for each $y \in K$. Hence F_2 is also a KKM mapping.

Now, we claim that $F_2(y)$ is weakly closed in K for each $y \in K$. Indeed, let $\{x_n\} \subset F_2(y)$ such that $x_n \to x_0 \in K$. Since $x_n \in F_2(y)$, there exists $v_n \in T(y)$ such that

$$\langle M(y, v_n), \eta(y, x_n) \rangle + f(y, x_n) - \alpha(y - x_n) \notin -\text{int } P(x_n),$$

i.e.,
$$\langle M(y,v_n), \eta(y,x_n) \rangle + f(y,x_n) - \alpha(y-x_n) \in Y \setminus \{-int P(x_n)\} \in W(x_n).$$

Since T(y) is compact, $\{v_n\}$ has a convergent subsequence in T(y) without loss of generality, we can assume that there exists $v_0 \in T(y)$ such that $v_n \rightarrow v_0$. Since graph of W is weakly closed, T is continuous, f and α are lower semicontinuous, it follows that

$$\langle M(y,v_n), \eta(y,x_n) \rangle + f(y,x_n) - \alpha(y-x_n) \rightarrow \langle M(y,v_0), \eta(y,x_0) \rangle + f(y,x_0) - \alpha(y-x_0) \in W(x_0)$$

i.e, $x_0 \in F_2(y)$ and hence $F_2(y)$ is closed. Since K is closed, bounded and convex subset of a reflexive Banach space X, then K is weakly compact. $F_2(y)$

is also weakly compact because $F_2(y) \in K$. Hence by KKM-Fan Theorem 2.4, we have

$$\bigcap_{y \in K} F_2(y) \neq \emptyset.$$

By Lemma 3.4, we have

$$\bigcap_{y \in K} F_1(y) \neq \emptyset.$$

Consequently, there exists $x_0 \in K$ such that for each $y \in K$ and $u_0 \in T(x_0)$ such that

$$\langle M(x_0, u_0), \eta(y, x_0) \rangle + f(y, x_0) \notin -\text{int } P(x_0).$$

This completes the proof.

Theorem 3.6 Let X be real reflexive Banach space and Y be a Banach space. Let $K \subset X$ be a nonempty, bounded, closed and convex subset of X and N a nonempty subset of L(X,Y). Let $P : K \to 2^Y$ be such that for each $x \in K$, P(x) is a proper, closed, convex cone with $int P \neq \emptyset$. Let M : $K \times N \to L(X,Y)$ be a mapping, $\alpha : X \to Y$ is weakly lower semicontinuous and P_{-} -convex mapping. Let the conditions (i)-(v) of Theorem 3.5 hold and also the following conditions hold:

- (vi) For each $x \in K$, $\exists x_0 \in K$, such that $u_0 \in T(x_0)$ and $\langle M(x_0, u_0), \eta(x_0, x) \rangle + f(x_0, x) \alpha(x_0 x) \notin -int P(x);$
- (vii) There exists a nonempty set K_0 contained in a compact and convex subset K_1 of K such that

$$D := \bigcap_{x_0 \in K_0} \bigcap_{u_0 \in T(x_0)} \{ x \in K : \langle M(x_0, u_0), \eta(x_0, x) \rangle + f(x_0, x) - \alpha(x_0 - x) \in W(x) \}.$$

Then (GVVLIP) is solvable.

Proof. Suppose on contrary that (GVVLIP) admits no solution, then for each $x_0 \in K$, there exists $u_0 \in T(x_0)$ and $x \in K$ such that

$$\langle M(x_0, u_0), \eta(x, x_0) \rangle + f(x, x_0) \in -int P(x_0)$$

then the set

$$F(x_0) := \{ x \in K : \exists u_0 \in T(x_0) \text{ such that } \langle M(x_0, u_0), \eta(x, x_0) \rangle + f(x, x_0) \} \in -\text{int } P(x_0) \},\$$

is nonempty. We claim that the set $F(x_0)$ is convex. Indeed, let $x_1, x_2 \in F(x_0)$ and let $m, n \ge 0$ be such that m + n = 1 then $\exists u_0 \in T(x_0)$ such that

$$m[\langle M(x_0, u_0), \eta(x_1, x_0) \rangle + f(x_1, x_0)] \in m(-int P(x_0)) = -intP(x_0)$$

On Generalized Vector Variational-Like

 $n[\langle M(x_0, u_0), \eta(x_2, x_0) \rangle + f(x_2, x_0)] \in n(-int P(x_0)) = -intP(x_0)$

Since $\eta(., x_0)$ and f(., x) are P_{-} -convex, then from preceding two inclusions, we have $mx_1 + nx_2 \in F(x_0)$, i.e., the set $F(x_0)$ is convex for each $x_0 \in K$. Thus $F: K \to 2^K$ is a nonempty and convex set-valued mapping. Now $F^{-1}(x_0) := \{x \in K : x_0 \in F(x_0)\}$

$$= \{ x \in K : \exists u \in T(x) \text{ such that } \langle M(x,u), \eta(x_0,x) \rangle + f(x_0,x) \in -\text{int } P(x) \}$$

$$[F^{-1}(x_0)]^c = \{ x \in K : \exists u \in T(x), \ \langle M(x,u), \eta(x_0,x) \rangle + f(x_0,x) \notin -\text{int} \ P(x) \}$$

Since T is relaxed M- η - α -P--pseudomonotone-type mapping, therefore above inclusion implies that

$$\subseteq \{x \in K : \exists u_0 \in T(x_0), \langle M(x_0, u_0), \eta(x_0, x) \rangle + f(x_0, x) - \alpha(x_0 - x) \notin -\text{int } P(x) \}$$
$$= \{x \in K : \exists u_0 \in T(x_0), \langle M(x_0, u_0), \eta(x_0, x) \rangle + f(x_0, x) - \alpha(x_0 - x) \in Y \setminus (-\text{int } P(x)) \}$$
$$=: B(x_0) \subseteq K.$$

Since α , f(.,x) are P-convex and $\eta(.,x)$ is affine, we can easily show that $B(x_0)$ is convex. Also lower semicontinuity of f(.,x), continuity of $\eta(x_0,.)$ and closeness of $Y \setminus (-int P(x))$ yield the relatively closeness of $B(x_0)$.

Hence, for each $x_0 \in K$, $O_{x_0} := [B(x_0)]^c$ is a relatively open subset of K. Now, by assumption (vi), it follows that $\bigcup_{x_0 \in K} O_{x_0}$. Finally from assumption (vii)

$$D = \bigcap_{x_0 \in K_0} \bigcap_{u_0 \in T(x_0)} B(x_0) = \bigcap_{x_0 \in K_0} \bigcap_{u_0 \in T(x_0)} O^c(x_0)$$

is compact or empty. Hence from fixed point Theorem 2.5, there exists $x_0 \in K$ such that $x_0 \in F(x_0)$, i.e., $0 \in -int P(x)$, which is not possible for a pointed cone. Hence (GVVLIP) admits a solution. This completes the proof.

4 Open Problem

It is of further research effort to study and establish existence results for the strong generalized vector variational-like inequality problem, i.e., to find $x \in K$ such that for all $y \in K$ there exists an $u \in T(x)$ satisfying that

$$\langle M(x,u),\eta(y,x)\rangle + f(y,x) \notin -P(x) \setminus \{0\}.$$

References

- Q.H. Ansari, A.H. Siddiqi and J.C. Yao, Generalized vector variationallike inequalities and their scalarizations, In: *Vector Variational Inequalities and Vector Equilibria*, (Edited by F. Giannessi), Kluwer Academic, Boston (2000), pp. 17-37.
- [2] G.-Y. Chen and X.Q. Yang, The vector complementarity problems and its equivalence with the weak minimal element in ordered sets, J. Math. Anal. Appl., 153, (1990), pp. 136-158.
- [3] K. Fan, A generalization of fixed point theorem, Math. Ann., 142, (1961), pp. 305-310.
- [4] Y.P. Fang and N.J. Huang, Variational-like inequalities with generalized monotone mapping in Banach spaces, J. Optim. Theory Appl., 118, (2003), pp. 327-338.
- [5] F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, In: Variational Inequalities and Complementarity Problems, (Edited by Cottle, R.W., Giannessi, F. and Lions J.L.), John Wiley and Sons, New York(1980), pp. 151-186.
- [6] S. Karamardian and S. Schaible, Seven kinds of monotone maps, J. Optim. Theory Appl., 66, (1990), pp. 37-46.
- [7] K.R. Kazmi, Existence of solutions for vector saddle point problems In: Vector variational inequalities and vector equilibria, Mathematical Theories, (F. Giannessi Ed.), Kluwer Academic Publishers, Dordrecht, Netherlands (2000), pp. 267-275.
- [8] I.V. Konnov and S. Schaible, Duality for equilibrium problems under generalized monotonicity, J. Optim. Theory Appl., 104, (2000), pp. 395-408.
- [9] I.V. Konnov and J.C. Yao, On the generalized vector variational inequality problem, J. Math. Anal. Appl., 206, (1997), pp. 42-58.
- [10] B.S. Lee, G.M. Lee and D.S. Kim, Generalized vector variational-like inequalities on locally convex Hausdorff topological vector spaces, *Indian J. Pure Appl. Math.*, 28, (1997), pp. 33-41.
- [11] B.S. Lee, S.S. Chang, J.S. Jung and S.J. Lee, Generalized vector version of Minty's lemma and applications, *Comput. Math. Appl.*, 45, (2003), pp. 647-653.

- [12] G.M. Lee, D.S. Kim, B.S. Lee and S.J. Cho, Generalized vector variational inequality and fuzzy extensions, *Appl. Math. Lett.*, 6, (1993), pp. 47-51.
- [13] K.L. Lin, D.P. Yang and J.C. Yao, Generalized vector variational inequalities, J. Optim. Theory Appl., 92, (1997), pp. 117-125.
- [14] A.H. Siddiqi, Q.H. Ansari and M.F. Khan, Variational-like inequalities for multivalued maps, *Indian J. Pure Appl. Math.*, 30, (1999), pp. 161-166.
- [15] E. Tarafdar, A fixed point theorem equivalent to Fan-Knaster-Kuratowski-Mazurkiewicz's theorem, J. Math. Anal. Appl., 128, (1987), pp. 475-479.
- [16] F. Usman and S.A. Khan, A generalized mixed vector variational-like inequality problem, *Nonlinear Anal.*, 71, (2009), pp. 5354-5362.
- [17] R.U. Verma, On generalized variational inequalities involving relaxed Lipschitz and relaxed monotone operators, J. Math. Anal. Appl., 213, (1997), pp. 387-392.