
Int. J. Open Problems Compt. Math., Vol. 4, No. 3, September 2011
ISSN 1998-6262; Copyright c©ICSRS Publication, 2011
www.i-csrs.org

On Generalized Vector Variational-Like

Inequality Problem

Suhel Ahmad Khan and Farhat Suhel

Department of Mathematics
BITS, Pilani-Dubai, P.O. Box 345055, Dubai, U.A.E.

e-mail:khan.math@gmail.com
Department of Mathematics

Aligarh Muslim University, Aligarh-202002, India
e-mail:farhatsuhel@gmail.com

Abstract

In this paper, we introduce the concepts of relaxed M-η-α-
P -pseudomonotonicity and relaxed M-η-α-P -pseudomonoton
icity-type mappings. Using the KKM techniques, we obtain
the existence of solutions for generalized vector variational-
like inequalities with relaxed M-η-α-P -pseudomonotone-type
mappings in reflexive Banach spaces. The results presented
in this paper generalize, unify and improve a number of pre-
viously known results.
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1 Introduction

Vector variational inequalities were initially introduced and considered by Gi-
annessi [5] in a finite-dimensional Euclidean space in 1980, which is gener-
alization of a scalar variational inequality to the vector case by virtue of
multi-criterion consideration. Later on vector variational inequalities and their
generalizations have been investigated and applied in various directions; see
for example [1,2,7,9,10,12,13] and references therein. In recent years, many
authors proposed several important generalizations of monotonicity such as
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pseudomonotonicity, relaxed monotonicity, relaxed η-α-monotonicity, quasi-
monotonicity and semimonotonicity and applied to establishing existence re-
sults for vector variational inequality problems; see for example [2,4,6,8,17].

Recently in 1997, Verma [17] studied a class of variational inequalities with
relaxed monotone operators. Very recently in 2003, Fang et al. [4] introduced a
new concept of relaxed η-α-monotone mappings and obtained the existence of
solutions for variational-like inequalities with relaxed η-α-monotone mappings
in reflexive Banach spaces.

Inspired and motivated by Verma [17] and Fang et al. [4], in this paper
we introduce the concept of relaxed M -η-α-P -pseudomonotone and relaxed
M -η-α-P -pseudomonotone-type set-valued mappings. Further, we consider
generalized vector variational-like inequality problem involving relaxed M -η-
α-P -pseudomonotone-type set-valued mappings. Furthermore, by using the
KKM techniques, we established some existence results for this generalized vec-
tor variational-like inequalities involving relaxed M -η-α-P -pseudomonotone-
type mappings in reflexive Banach spaces. Our results are the generalization
of many existing works of [4,11,16-17].

2 Problem Formulations

Throughout the paper unless otherwise specified, let X and Y are two Banach
spaces and let K be a nonempty subset of X and N a nonempty subset of
L(X, Y ), where L(X,Y ) denotes the space of all linear continuous mappings
from X into Y . Let P : K → 2Y be a set-valued mapping such that for each
x ∈ K, P (x) is closed, pointed and convex cone with int P (x) 6= ∅. An ordered
Banach space (Y, P ) is a real Banach space Y with an ordering defined by a
cone P ⊆ Y with an apex at the origin in the form of

x ≤ y ⇔ y − x ∈ P

Let M : K × N → L(X, Y ), η : K × K → X and f : K × K → Y
are bi-mappings and T : K → 2N be a set-valued mapping. In this paper
we consider following generalized vector variational-like inequality problem (in
short, GVVLIP): Find x ∈ K such that for all y ∈ K there exists an u ∈ T (x)
satisfying that

〈M(x, u), η(y, x)〉 + f(y, x) 6∈ −int P (x).
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Some special cases of (GVVLIP)

(I) If f is zero mapping, then (GVVLIP) reduces to the problem of finding
x ∈ K such that for all y ∈ K, ∃ u ∈ T (x) such that

〈M(x, u), η(y, x)〉 6∈ −int P (x).

which was introduced and studied by Ansari et al. [1], that generalizes
some kinds of vector variational inequalities considered by many authors;
see for details [1, 9-11,13].

(II) If K=N and M(x, u) =Au, where A : K → L(X,Y ) then (GVVLIP)
reduces to the problem of finding x ∈ K, such that for all y ∈ K,
∃ u ∈ T (x) such that

〈Au, η(y, x)〉 + f(y, x) 6∈ −int P (x),

which has been studied by Usman et al. [16].

(III) If f is zero mapping, K =N , M(x, u)=u, and η(y, x) = y−x, ∀x, y ∈ K,
then (GVVLIP) reduces to the problem of finding x ∈ K such that for
all y ∈ K, ∃ u ∈ T (x) such that

〈u, y − x〉 6∈ −int P (x),

which has been studied by Lee et al. [12].

(IV) If f is zero mapping, let K = Rn, N = Rm, Y = Rl and let L : K×K →
Rl be such that M(x, u) = L′(x, u), ∀(x, u) ∈ K ×K, where L′ denotes
the Frechet derivative of L at x and let T : K → 2N is defined by
T (x) := {y ∈ N : L(x, z) − L(x, y) 6∈ −intR+

l, ∀z ∈ N} then above
(GVVLIP) reduces to problem of finding x ∈ K such that for all y ∈ K,
∃ u ∈ T (x) such that

〈L(x, u), η(y, x)〉 6∈ −intR+
l,

which has been studied by Kazmi [7] in finding out the weak saddle point
of non convex mapping L.

Throughout the paper, unless otherwise specified, let P− =
⋂

x∈K
P (x) is a

closed, convex, solid and pointed cone. Now we recall the following concepts
and results which are needed in the sequel.

Definition 2.1 A mapping f : K ×K → Y is said to be
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(a) P−-convex in first argument, if for all α ∈ [0, 1] and x1, x2 ∈ K,

f(αx1+(1−α)x2, y) ≤P− αf(x1, y)+(1−α)f(x2, y);

(b) P−-concave, if −f is P−-convex.

Definition 2.2 [3] Let K be a subset of a topological vector space X. A
mapping T : K → 2X is called Knaster-Kuratowski-Mazurkiewieg mapping
(KKM mapping), if for each nonempty finite subset {x1, x2, · · · , xn} ⊂ K, we

have Co{x1, · · · , xn} ⊂
n⋃

i=1
T (xi).

Lemma 2.3 [2] Let (Y, P ) be an ordered Banach space with a closed, pointed
and convex cone P with intP 6= ∅. Then ∀x, y, z ∈ Y , we have

(i) y − z ∈ intP and y 6∈ intP ⇒ z 6∈ intP ;

(ii) y − z ∈ −P and y 6∈ −intP ⇒ z 6∈ −intP.

Theorem 2.4 (KKM-Fan Theorem) [3] Let K be a subset of a topo-
logical vector space X and let F : K → 2X be a KKM mapping. If for each
x ∈ K, F (x) is closed and for atleast one x ∈ K, F (x) is compact, then⋂

x∈K

F (x) 6= ∅.

We have following fixed point theorem which play an important role in
establishing existing theorem for (GVVLIP).

Theorem 2.5 [15] Let K be a nonempty convex subset of a Hausdorff topo-
logical vector space X and let S : K → 2K be a set-valued mapping such that

(i) for each x ∈ K, S(x) is a nonempty convex subset of K;

(ii) for each y ∈ K, S−1(y) := {x ∈ K : y ∈ S(x)} contains an open subset
Oy of K, where Oy may be empty;

(iii)
⋃

y∈K
Oy = K;

(iv) K contains a nonempty subset K0 contained in a compact subset K1 of
K such that the set D =

⋂
y∈K0

Oc
y is compact, where D may be empty and

Oc
y denotes complement of Oy in K0.

Then ∃x0 ∈ K such that x0 ∈ S(x0).
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3 Existence results for (GVVLIP)

First, we define the following concepts.

Definition 3.1 Let M : K × N → L(X, Y ), f : K × K → Y and η :
K ×K → X be mappings, let T : K → 2N are the set-valued mapping and let
α : X → Y be a mapping such that α(tz) = tpα(z), ∀z ∈ X for all t > 0 and
a constant p > 1. Then T is said to be

(a) relaxed M-η-α-P -pseudomonotone, if for every pair of points x, y ∈ K
and for all u ∈ T (x), v ∈ T (y), we have

〈M(x, u), η(y, x)〉+ f(y, x) 6∈ −intP (x) implies

〈M(y, v), η(y, x)〉+ f(y, x)− α(y − x) 6∈ −intP (x);

(b) relaxed M-η-α-P -pseudomonotone-type, if for every pair of points x, y ∈
K and for all u ∈ T (x), we have

〈M(x, u), η(y, x)〉+ f(y, x) 6∈ −intP (x) implies

〈M(y, v), η(y, x)〉+ f(y, x)− α(y − x) 6∈ −intP (x), for some v ∈ T (y)

Remark 3.2 (I) (a) implies (b)) but not conversely.

(II) If α ≡ 0, f(y, x) = f(y) − f(x), M(x, u) = u and η(y, x) = y − x,
∀x, y ∈ K, then we obtain Definition 2.1 (iii) and (vi) in [9], respectively.

(III) If α ≡ 0, f(y, x) = f(y)− f(x), L(X,Y ) = X∗, Y = R and P (x) = R+,
∀x ∈ K, then we obtain Definition 2.1 (i) in [14].

Definition 3.3 Let M : K × N → L(X,Y ), f : K × K → Y and η :
K × K → X are bi-mappings and let T : K → 2N be a set-valued mapping.
Then T is said to be M-η-hemicontinuous if, for any x, y ∈ K, un ∈ T (x+ny),
∃u0 ∈ T (x) such that

〈M(x + ny, un), η(y, x)〉+ f(y, x) → 〈M(x, u0), η(y, x)〉+ f(y, x) as n → 0+.

Now, we give Minty’s-type lemma for (GVVLIP).

Lemma 3.4 Let X be real reflexive Banach space and Y be a Banach space.
Let K ⊂ X be a nonempty, closed and convex subset of X and N a nonempty
subset of L(X, Y ). Let P : K → 2Y be such that for each x ∈ K, P (x) is a
proper, closed, convex cone with intP 6= ∅. Let M : K × N → L(X,Y ) be a
mapping and f : K × K → Y is P -convex in first argument with f(x, x) =
0,∀x ∈ K. Suppose following conditions hold
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(i) η : K ×K → X is a mapping such that η(x, x) = 0, ∀x ∈ K;

(ii) for any fixed x ∈ K, u ∈ T (x) the mapping y → 〈M(x, u), η(y, x)〉 is
P -convex;

(iii) T : K → 2N be M-η-hemicontinuous and relaxed M-η-α-P -pseudomonotone-
type mapping.

Then following two problems are equivalent:

(A) Find x ∈ K such that for all y ∈ K, there exists an u ∈ T (x) satisfying
that

〈M(x, u), η(y, x)〉+ f(y, x) 6∈ −intP (x). (3.1)

(B) Find x ∈ K such that for all y ∈ K, there exists an v ∈ T (y) satisfying
that

〈M(y, v), η(y, x)〉+ f(y, x)− α(y − x) 6∈ −intP (x). (3.2)

Proof. Let x ∈ K be a solution of problem (3.1), therefore there exists
u ∈ T (x) such that

〈M(x, u), η(y, x)〉+ f(y, x) 6∈ −int P (x).

Since T is relaxed M -η-α-P -pseudomonotone-type, which implies that there
exists v ∈ T (y) such that

〈M(y, v), η(y, x)〉+ f(y, x)− α(y − x) 6∈ −int P (x).

Conversely, suppose that there exists x ∈ K such that

〈M(y, v), η(y, x)〉+ f(y, x)− α(y − x) 6∈ −int P (x) ∀ y ∈ K, v ∈ T (y).

For any given y ∈ K, we know that yt := (1− t)x + ty ∈ K, ∀t ∈ (0, 1), as K
is convex.
Since x ∈ K is a solution of problem (3.2), so for each vt ∈ T (yt) it follows
that

〈M(yt, vt), η(yt, x)〉+ f(yt, x)− α(yt − x) 6∈ −int P (x). (3.3)

〈M(yt, vt), η((1− t)x + ty, x)〉+ f((1− t)x + ty, x)− α(t(y − x)) 6∈ −int P (x).

As f is P -convex in first argument, we have

f((1− t)x + ty, x) ≤P (x) (1− t)f(x, x) + tf(y, x) = tf(y, x). (3.4)

By using the conditions (i) and (ii) on η, it follows

〈M(yt, vt), η(yt, x)〉 = 〈M(yt, vt), η((1− t)x + ty, x)〉
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≤P (x) (1−t)〈M(yt, vt), η(x, x)〉+t〈M(yt, vt), η(y, x)〉

≤P (x) t〈M(yt, vt), η(y, x)〉 (3.5)

It follows from inclusions (3.3)-(3.5) and Lemma 2.3, that for t > 0 and p > 1

t〈M(yt, vt), η(y, x)〉+ tf(y, x)− tpα(y − x) 6∈ −int P (x).

〈M(yt, vt), η(y, x)〉+ f(y, x)− tp−1α(y − x) 6∈ −int P (x).

Since T is M -η-hemicontinuous and p > 1, there exists u ∈ T (x) such that

〈M(x, u), η(y, x)〉+ f(y, x) 6∈ −int P (x).

as t → 0+. This completes the proof.

Now, we have following existence theorem for (GVVLIP).

Theorem 3.5 Let X be real reflexive Banach space and Y be a Banach
space. Let K ⊂ X be a nonempty, bounded, closed and convex subset of X
and N a nonempty subset of L(X, Y ). Let P : K → 2Y be such that for
each x ∈ K, P (x) is a proper, closed, convex cone with intP 6= ∅. Let M :
K ×N → L(X, Y ) be a mapping, α : X → Y is weakly lower semicontinuous
and P -convex mapping. Suppose following conditions hold:

(i) The set-valued mapping W : K → 2Y defined as W (x) = Y \{−int P (x)}
such that graph of W is weakly closed in X × Y ;

(ii) η : K ×K → X is continuous in second argument such that η(x, x) = 0,
∀x ∈ K;

(iii) f : K × K → Y is lower semicontinuous and P -convex in second and
first arguments, respectively, with f(x, x) = 0, ∀x ∈ K;

(iv) for any fixed x ∈ K and u ∈ T (x), the mapping y → 〈M(x, u), η(y, x)〉
is P -convex;

(v) T : K → 2N be M-η-hemicontinuous and relaxed M-η-α-P -pseudomonotone-
type mapping with compact-values.

Then (GVVLIP) is solvable.

Proof. Let F1, F2 : K → 2X be two set-valued mappings such that for any
y ∈ K,

F1(y) = {x ∈ K : ∃ u ∈ T (x) such that 〈M(x, u), η(y, x)〉+f(y, x) 6∈ −int P (x)}.

F2(y) = {x ∈ K : ∃ v ∈ T (y) such that 〈M(y, v), η(y, x)〉+f(y, x)−α(y − x) 6∈ −int P (x)}.
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We claim that F1 is KKM mapping. Indeed, let αi ≥ 0, 1 ≤ i ≤ n, with
n∑

i=1
αi = 1. Suppose that x =

n∑
i=1

αixi /∈
n⋃

i=1
F1(xi). Then, for any u ∈ T (x),

〈M(x, u), η(xi, x)〉+ f(xi, x) ∈ −int P (x), i = 1, 2, ..., n.

We have
0 = 〈M(x, u), η(x, x)〉+ f(x, x)

= 〈M(x, u), η(
n∑

i=1

αixi, x)〉 + f(
n∑

i=1

αixi, x)

≤P

n∑
i=1

αi[〈M(x, u), η(xi, x)〉 + f(xi, x)]

i.e., 0 ∈ −int P (x), which is not possible for a pointed cone and thus our claim
is verified.

Next, we prove that F1(y) ⊂ F2(y) for each y ∈ K. For any given y ∈ K, let
x ∈ F1(y) then there exists u ∈ T (x) such that

〈M(x, u), η(y, x)〉+ f(y, x) 6∈ −int P (x).

Since T is relaxed M -η-α-P -pseudomonotone-type, we have

〈M(y, v), η(y, x)〉+ f(y, x)− α(y − x) 6∈ −int P (x).

i.e., x ∈ F2(y). It follows that F1(y) ⊂ F2(y) for each y ∈ K. Hence F2 is also
a KKM mapping.

Now, we claim that F2(y) is weakly closed in K for each y ∈ K. Indeed, let
{xn} ⊂ F2(y) such that xn → x0 ∈ K. Since xn ∈ F2(y), there exists vn ∈ T (y)
such that

〈M(y, vn), η(y, xn)〉 + f(y, xn)− α(y − xn) 6∈ −int P (xn),

i.e., 〈M(y, vn), η(y, xn)〉+f(y, xn)−α(y − xn) ∈ Y \{−int P (xn)} ∈ W (xn).

Since T (y) is compact, {vn} has a convergent subsequence in T (y) without
loss of generality, we can assume that there exists v0 ∈ T (y) such that vn →
v0. Since graph of W is weakly closed, T is continuous, f and α are lower
semicontinuous, it follows that

〈M(y, vn), η(y, xn)〉+ f(y, xn)− α(y − xn) →

〈M(y, v0), η(y, x0)〉+f(y, x0)−α(y − x0) ∈ W (x0)

i.e, x0 ∈ F2(y) and hence F2(y) is closed. Since K is closed, bounded and
convex subset of a reflexive Banach space X, then K is weakly compact. F2(y)
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is also weakly compact because F2(y) ∈ K. Hence by KKM-Fan Theorem 2.4,
we have ⋂

y∈K

F2(y) 6= ∅.

By Lemma 3.4, we have ⋂
y∈K

F1(y) 6= ∅.

Consequently, there exists x0 ∈ K such that for each y ∈ K and u0 ∈ T (x0)
such that

〈M(x0, u0), η(y, x0)〉 + f(y, x0) 6∈ −int P (x0).

This completes the proof.

Theorem 3.6 Let X be real reflexive Banach space and Y be a Banach
space. Let K ⊂ X be a nonempty, bounded, closed and convex subset of X
and N a nonempty subset of L(X, Y ). Let P : K → 2Y be such that for
each x ∈ K, P (x) is a proper, closed, convex cone with intP 6= ∅. Let M :
K ×N → L(X, Y ) be a mapping, α : X → Y is weakly lower semicontinuous
and P -convex mapping. Let the conditions (i)-(v) of Theorem 3.5 hold and
also the following conditions hold:

(vi) For each x ∈ K, ∃ x0 ∈ K, such that u0 ∈ T (x0) and 〈M(x0, u0), η(x0, x)〉+
f(x0, x)− α(x0 − x) 6∈ −int P (x);

(vii) There exists a nonempty set K0 contained in a compact and convex subset
K1 of K such that

D :=
⋂

x0∈K0

⋂
u0∈T (x0)

{x ∈ K : 〈M(x0, u0), η(x0, x)〉 +f(x0, x)−α(x0 − x) ∈ W (x)}.

Then (GVVLIP) is solvable.

Proof. Suppose on contrary that (GVVLIP) admits no solution, then for each
x0 ∈ K, there exists u0 ∈ T (x0) and x ∈ K such that

〈M(x0, u0), η(x, x0)〉+ f(x, x0) ∈ −int P (x0)

then the set

F (x0) := {x ∈ K : ∃u0 ∈ T (x0) such that 〈M(x0, u0), η(x, x0)〉+f(x, x0)) ∈ −int P (x0)},

is nonempty. We claim that the set F (x0) is convex. Indeed, let x1, x2 ∈ F (x0)
and let m, n ≥ 0 be such that m + n = 1 then ∃u0 ∈ T (x0) such that

m[〈M(x0, u0), η(x1, x0)〉+ f(x1, x0)] ∈ m(−int P (x0)) = −intP (x0)



On Generalized Vector Variational-Like 113

n[〈M(x0, u0), η(x2, x0)〉+ f(x2, x0)] ∈ n(−int P (x0)) = −intP (x0)

Since η(., x0) and f(., x) are P -convex, then from preceding two inclusions,
we have mx1 + nx2 ∈ F (x0), i.e., the set F (x0) is convex for each x0 ∈ K.
Thus F : K → 2K is a nonempty and convex set-valued mapping. Now
F−1(x0) := {x ∈ K : x0 ∈ F (x0)}

= {x ∈ K : ∃u ∈ T (x) such that 〈M(x, u), η(x0, x)〉+f(x0, x) ∈ −int P (x)}

[F−1(x0)]
c = {x ∈ K : ∃u ∈ T (x), 〈M(x, u), η(x0, x)〉+f(x0, x) 6∈ −int P (x)}

Since T is relaxed M -η-α-P -pseudomonotone-type mapping, therefore above
inclusion implies that

⊆ {x ∈ K : ∃u0 ∈ T (x0), 〈M(x0, u0), η(x0, x)〉+f(x0, x)−α(x0−x) 6∈ −int P (x)}

= {x ∈ K : ∃u0 ∈ T (x0), 〈M(x0, u0), η(x0, x)〉+f(x0, x)−α(x0−x) ∈ Y \(−int P (x))}

=: B(x0) ⊆ K.

Since α, f(., x) are P -convex and η(., x) is affine, we can easily show that
B(x0) is convex. Also lower semicontinuity of f(., x), continuity of η(x0, .) and
closeness of Y \(−int P (x)) yield the relatively closeness of B(x0).

Hence, for each x0 ∈ K, Ox0 := [B(x0)]
c is a relatively open subset of K. Now,

by assumption (vi), it follows that
⋃

x0∈K
Ox0 . Finally from assumption (vii)

D =
⋂

x0∈K0

⋂
u0∈T (x0)

B(x0) =
⋂

x0∈K0

⋂
u0∈T (x0)

Oc(x0)

is compact or empty. Hence from fixed point Theorem 2.5, there exists x0 ∈ K
such that x0 ∈ F (x0), i.e., 0 ∈ −int P (x), which is not possible for a pointed
cone. Hence (GVVLIP) admits a solution. This completes the proof.

4 Open Problem

It is of further research effort to study and establish existence results for the
strong generalized vector variational-like inequality problem, i.e., to find x ∈ K
such that for all y ∈ K there exists an u ∈ T (x) satisfying that

〈M(x, u), η(y, x)〉 + f(y, x) 6∈ −P (x)\{0}.
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