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Abstract
In this work the determination of an optimal choice of the simple multipole

coefficients for an exterior Dirichlet problem in two-dimensional elastic waves
is investigated. We introduce a modification of the Green’s function in order to
remove the lack of uniqueness for the solution of the boundary integral equation
describing the problem, and to simultaneously minimize his condition number.
In view of this procedure the cases of the circle and perturbations of circle are
examined.

Keywords: Multipole coefficients, Green’s function, integral equations of
Fredholm type, elasticity.

MSC (2000): 45B05, 34B27, 34B30.

1 Introduction

As is well known, the reformulation of an exterior boundary value problem to
a boundary integral equation presents difficulties caused by the lack of unique-
ness of its solutions. In order to remove this problem the modified Green’s
function technique was proposed by Jones [9] and Ursell [19] for the acousti-
cal case. In [12, 11] Kleinman and Roach have shown that the choice of the
multipole coefficients, apart from the removal of the non-uniqueness problem,
can also satisfy other criteria of best modification. These include that of the
best approximation to the actual Green’s function and that of minimization
of the norm of the modified integral operator. In [10] Kleinman and Kress
have established the criterion of minimization of the condition number of the
boundary integral equation for the acoustical case.
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Similar arguments hold for the elastic case. The first work in linear elastic-
ity in which this technique was introduced is due to Jones [9]. In [5, 6] results
for the elastic two-dimensional case are presented by Bencheikh. In [1, 3] and
[8] exterior elastic problems in IR3 are examined and criteria for best mod-
ification are also established by Argyropoulos, Kiriaki, Roach and Gintides.
In [14, 16] we have established the minimization of the norm of the modified
integral operator, and in [17, 18, 15] we have also with the colaboration of
Bencheikh established the minimization of the norm of the modified Green’s
function for the elastic two-dimensional case.

In this work we treat an open problem cited in [17, 18], the modified Green’s
function technique is adopted and using it, the minimization of the condition
number of the boundary integral operator describing the exterior Dirichlet
problem in IR2 is established.

Many ideas of [2] are exploited, nevertheless there are noteworthy differ-
ences between the acoustic and the elastic case. In section 2 the formulation
of the problem in integral form through a layer theoretic approach is given. In
section 3 the criterion of minimization is established for the circular boundary.
In section 4 the shapes which can be produced as perturbations of the circle
are discussed.

2 Preliminary notes

Let D− denote a bounded connected domain in IR2 with boundary ∂D, which
will be assumed closed, bounded and Lyapunov. Let D+ = IR2/ D−, where
D− = D−∪∂D. We assume that D+ is filled by an isotropic and homogeneous
elastic medium specified by the Lamé constants λ, µ and mass density ρ.

The displacement field U(P ) ∈ L2(D) satisfies the following equation :

1

k2
grad (div U(P ))− 1

K2
rot (rot U(P )) + U(P ) = 0 P ∈ D+ (2.1)

We also define the surface stress operator :

T U (p) = λ.
∧
n (p) div U (p)+2µ

∂U (p)

∂nP

+µ
∧
n (p)×rot U (p) p ∈ ∂D (2.2)

where
∧
n is the exterior unit normal on ∂D. The radiation conditions, due to

Kupradze, which the displacement field must satisfy are [13] :

Lim
rP −→+∞

U
′
(P ) = 0, Lim

rP −→+∞
U

′′
(P ) = 0 (2.3)
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Lim
rP −→+∞

(rp)
1
2

{
∂U

′
(P )

∂rP

− i k U
′
(P )

}
= 0

Lim
rP −→+∞

(rp)
1
2

{
∂U

′′
(P )

∂rP

− i K U
′′
(P )

}
= 0

where

U
′

(P ) = − 1

k2
grad (div U (P ))

U
′′
(P ) = − 1

K2
rot (rot U (P ))

and k2 = ρ ω2

λ+2µ
, K2 = ρ ω2

µ
and ω is the angular frequency.

The exterior boundary value problems which we examine are the problems
of the rigid body and the cavity. So we have to determine the displacement field
which satisfies the differential equation (2.1) for D+, the boudary condition :

U (p) = g p ∈ ∂D (2.4)

where g is a known function, and the radiation conditions (2.3).

In order to reformulate the problem in itegral form, we can follow either
the direct method, based on Betti’s formulae, or the indirect method using the
layer potential.

Following the layer theoretic approach, we define the double layer potential
:

(D ϕ)(P ) =
1

2 π ∂D
TqG0(P, q).ϕ(q).dsq P ∈ D (2.5)

for a density ϕ ∈ L2 (∂D), where G0(P,Q) is the Green’s function given by [4]
:

G0(P,Q) =
i

4 µ

[
ψ.I +

1

K2
grad (grad (ψ − φ))

]
(2.6)

here I denotes the identity tensor, and ψ(P,Q) = H1
0 (K R), φ(P,Q) =

H1
0 (k R). H1

0 ( . ) denotes the function of Hankel andR is the distance between
P and Q.

Exploiting the jump relations at the boundary [13], we can see that if we
seek solutions of the exterior Dirichlet problem in terms of a double layer
potential of an unknown density ϕ, then ϕ is required to satisfy the boundary
integral equation :
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(
1

2
I +K∗

0

)
ϕ (p) = g (p) p ∈ ∂D (2.7)

where the integral operator appearing in (2.7) is the L2-adjoint of K0 given by
the relation :

(K0 ϕ)(p) =
1

2 π ∂D
TpG0(p, q).ϕ(q).dsq p ∈ ∂D (2.8)

So K∗
0 may be expressed as :

(K∗
0 ϕ)(p) =

1

2 π ∂D
TqG0(p, q).ϕ(q).dsq p ∈ ∂D (2.9)

and the bar in (2.9) indicates the complex conjugate.
The above defined integral operators K0 and K∗

0 have singular kernels.
In [13] a Fredholm type theory for these boundary integral equations based
on a regularization procedure is established. The global regularizer, which is
shown to exist, is equivalent. So the original and the regularized equations
have the same solutions. Many properties of the resolvents are also presented.
It is proven that the homogeneous interior Dirichlet problem has a discrete
spectrum. In order to have uniqueness for the boundary integral equation
describing the exterior problem we have to avoid the irregular frequencies,
that is, the eigenvalues of the adjoint interior problem. To accommodate this
difficulty we shall adopt the modified Green’s function technique established
in [4]. The modified Green’s function G1(P,Q) is given by [4] :

G1(P,Q) = G0(P,Q) +
i

4µK2

∞∑
m=0

2∑
σ=1

2∑
l=1

(
aσl

m F σl
m (P )⊗ F σl

m (Q)
)

(2.10)

where

F σ1
m (P ) = grad

(
H1

m (k RP ) . Eσ
m (θP )

)
(2.11)

F σ2
m (P ) = rot

(
H1

m (K RP ) . Eσ
m (θP ) ê3

)
are the mutipole vectors, and aσl

m are the simple multipole coefficients. (RP , θP )
are the polar coordinates of the point P , andEσ

m (θP ) =
√
εm .{.cos (m θP ) σ = 1sin (m θP ) σ = 2

, with εm = {.1 m = 02 m > 0
In view of this multipole vectors system the Green’s function G0(P,Q)

admits the representation [4] :

G0(P,Q) =
i

4µK2

∞∑
m=0

2∑
σ=1

2∑
l=1

(
F σl

m (P )⊗ F̂ σl
m (Q)

)
(2.12)
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where F̂ σl
m is obtained by changing H1

m ( .) by the function of Bessel J1
m ( .)

In [4] sufficient conditions on the simple multipole coefficients of the modifi-
cation for unique solvability of the boundary integral equation are established.
These conditions are given by :∣∣aσl

m + 1
2

∣∣2 − 1
4
< 0, (∀ m = 0 : ∞, ∀ σ, l = 1 : 2) (2.13)

In [17, 18] we have proposed a criterion for minimizing the norm of the
kernel of the modified integral operator.

3 Mains results

3.1 Minimization of the condition number (circular case)

If we introduce the operator :

M : L2 (∂D) −→ L2 (∂D)

where M = 1
2
I +K∗

1 , then (2.7) may be written as :

M (ϕ) = g

we also introduce his L2−adjoint M∗.
As is well known, the condition number which is given by the relation [7] :

Cond (M) = ‖M‖ .
∥∥M−1

∥∥
with respect to the L2−norm can be expressed as :

Cond (M) =

√
λM

max

λM
min

where λM
max and λM

min denote the largest and the smallest spectral value of the
self-adjoint operator M∗M .

As is shown in [12], it is extremely difficult to get explicit results for the
multipole coefficients which minimize the operator norms for arbitrary bound-
aries ∂D. Similar discussions are given in [10] for the condition number of
integral equations in acoustics and in [2] for the elastic three-dimensional case.
Neverthless, the special result for minimizing the condition number when ∂D
is a circle serves as a guide to an explicit coefficient choice which leads to
well conditioned integral equations for perturbations of circular domains. So
we examine first the circular case. It is easily proved [14] that the following
relations hold for a circle centered at the origin with radius a :
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F σ1
m (p) = (k H ′

m (k a))P σ
m (θP ) +

(m
a
Hm (k a)

)
Qσ

m (θP ) (3.1)

(−1)σ F σ2
m (p) =

(m
a
Hm (K a)

)
P (3−σ)

m (θP ) + (K H ′
m (K a))Q(3−σ)

m (θP )

where P σ
m (θP ) = Eσ

m (θP ) −→r and Qσ
m (θP ) = (−1)σ E

(3−σ)
m (θP )

−→
θ

TpG0 (p, q) = [TqG0 (p, q)]t and TpH (p, q) = [TqH (p, q)]t (3.2)

where the superscript t indicates the transpose matrix. In view of (3.2) we
conclude that K1 = K∗

1 . We now consider the modified single layer potentials
with densities given by P ν

n and Qν
n :

V ν
n (p) =

1

2 πRq = a
G1(p, q).P

ν
n (θq) .dsq (3.3)

U ν
n (p) =

1

2 πRq = a
G1(p, q).Q

ν
n (θq) .dsq (3.4)

exploiting the orthogonality relations for the vectors P ν
n and Qν

n, we obtain :

1

2 π
2 π
0 F

σ1
m (q).P ν

n (θq) .a .dθq = k a H ′
m (k a) δm n δσ ν (3.5)

1

2 π
2 π
0 F

σ2
m (q).P ν

n (θq) .a .dθq = (−1)σ m Hm (K a) δm n δ(3−σ) ν (3.6)

1

2 π
2 π
0 F

σ1
m (q).Qν

n (θq) .a .dθq = m Hm (k a) δm n δσ ν (3.7)

1

2 π
2 π
0 F

σ2
m (q).Qν

n (θq) .a .dθq = (−1)(3−ν) K a H ′
m (K a) δm n δσ (3−ν) (3.8)

Substituting the expressions (3.5)-(3.8) in (3.3) and (3.4), we obtain the
relations :

V ν
n (p) =

i

4µK2
k a H ′

n (k a)
[
F̂ ν1

n (p) + aν1
n F ν1

n (p)
]

(3.9)

+
i

4µK2
(−1)3−ν n Hn (K a)

[
F̂ (3−ν) 2

n (p) + a(3−ν) 2
n F (3−ν) 2

n (p)
]

U ν
n (p) =

i

4µK2
n Hn (k a)

[
F̂ ν1

n (p) + aν1
n F ν1

n (p)
]

(3.10)
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+
i

4µK2
(−1)3−ν K a H ′

n (K a)
[
F̂ (3−ν) 2

n (p) + a(3−ν) 2
n F (3−ν) 2

n (p)
]

In order to find the eigenvalues of M , the following relation has to be
satisfied :

MU (p) = λU (p) Rp = a (3.11)

Taking into account that {P ν
n , Q

ν
n} is a basis in (L2 (∂D))2. We can express

U (p) as a linear combination of these vectors, So :

U (p) =
∞∑

m=0

2∑
σ=1

(ασ
m P σ

m (p) + βσ
m Qσ

m (p)) (3.12)

To calculate MU (p), we must calculate MP ν
n (p) =

(
1
2
I +K∗

1

)
P ν

n (p) and

MQν
n (p) =

(
1
2
I +K∗

1

)
Qν

n (p). If we apply the Neumann boundary condition
to V ν

n , we obtain [18] :

TV ν
n (p) =

(
1

2
I +K1

)
P ν

n (p) Rp = a (3.13)

using K1 = K∗
1 , (3.13) becomes :

MP ν
n (p) =

(
1

2
I +K∗

1

)
P ν

n (p) = TV ν
n (p) Rp = a (3.14)

in the same way, we can obtain :

MQν
n (p) =

(
1

2
I +K∗

1

)
Qν

n (p) = TUν
n (p) Rp = a (3.15)

Exploiting the following relations [14] :

TF ν1
n (p) = k2 (2µ H ′′

n (k a)− λ Hn (k a))P ν
n (θP ) (3.16)

+

(
2µ n

a

(
k H ′

n (k a)− Hn (k a)

a

))
Qν

n (θP )

TF ν2
n (p) = µ K2 (2 H ′′

n (K a) +Hn (K a)) (−1)ν P (3−ν)
n (θP ) (3.17)

+
2µ n

a

(
K H ′

n (K a)− Hn (K a)

a

)
(−1)ν Q(3−ν)

n (θP )
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T F̂ ν1
n (p) = k2 (2µ J ′′n (k a)− λ Jn (k a))P ν

n (θP ) (3.18)

+

(
2µ n

a

(
k J ′n (k a)− Jn (k a)

a

))
Qν

n (θP )

T F̂ ν2
n (p) = µ K2 (2 J ′′n (K a) + Jn (K a)) (−1)ν P (3−ν)

n (θP ) (3.19)

+
2µ n

a

(
K J ′n (K a)− Jn (K a)

a

)
(−1)ν Q(3−ν)

n (θP )

and using the notations :

bν1
n = k2 (2µ J ′′n (k a)− λ Jn (k a)) 3.20 (1)

+aν1
n k2 (2µ H ′′

n (k a)− λ Hn (k a))

bν2
n = µ K2 (2 J ′′n (K a) + Jn (K a)) 3.21 (2)

+a(3−ν) 2
n µ K2 (2 H ′′

n (K a) +Hn (K a))

bν3
n =

2µ n

a

(
k J ′n (k a)− Jn (k a)

a

)
+ aν1

n

2µ n

a

(
k H ′

n (k a)− Hn (k a)

a

)
(3.22)

bν4
n =

2µ n

a

(
K J ′n (K a)− Jn (K a)

a

)
+a(3−ν) 2

n

2µ n

a

(
K H ′

n (K a)− Hn (K a)

a

)
(3.23)

Then we obtain :

TV ν
n (p) =

i

4µK2
k a H ′

n (k a)
[
bν1
n P ν

n (θP ) + bν3
n Qν

n (θP )
]
3.24 (3)

− i

4µK2
n Hn (K a)

[
bν2
n P ν

n (θP ) + bν4
n Qν

n (θP )
]

TUν
n (p) =

i

4µK2
n Hn (k a)

[
bν1
n P ν

n (θP ) + bν3
n Qν

n (θP )
]
3.25 (4)

+
i

4µK2
K a H ′

n (K a)
[
bν2
n P ν

n (θP ) + bν4
n Qν

n (θP )
]
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In view of (3.14), (3.15), (3.24) and (3.25). (3.11) leads to the equations :

(
λ− i

4µK2

[
k a H ′

n (k a) bν1
n + n Hn (K a) bν2

n

])
αν

n (3.26)

− i

4µK2

[
n Hn (k a) bν1

n + K a H ′
n (K a) bν2

n

]
βν

n = 0

− i

4µK2

[
k a H ′

n (k a) bν3
n + n Hn (K a) bν4

n

]
αν

n

+

(
λ− i

4µK2

[
n Hn (k a) bν3

n + K a H ′
n (K a) bν4

n

])
βν

n = 0

If we use the following notations :

Aν1
n = k a H ′

n (k a) bν1
n + n Hn (K a) bν2

n

Aν2
n = k a H ′

n (k a) bν3
n + n Hn (K a) bν4

n

Aν3
n = n Hn (k a) bν1

n + K a H ′
n (K a) bν2

n

Aν4
n = n Hn (k a) bν3

n + K a H ′
n (K a) bν4

n

then (3.26) can be rewritten as follows :(
λ− i

4µK2
Aν1

n

)
αν

n −
i

4µK2
Aν3

n βν
n = 0 (3.27)

− i

4µK2
Aν2

n αν
n +

(
λ− i

4µK2
Aν4

n

)
βν

n = 0

In order that the solution of the above system be non-trivial, its determi-
nant must vanish. So we arrive at the following relation which the eigenvalues
must satisfy :

λ2 − i

4µK2

(
Aν4

n + Aν1
n

)
λ+

(
i

4µK2

)2 (
Aν1

n Aν4
n − Aν2

n Aν3
n

)
= 0 (3.28)

Obviously, in order to minimize the condition number we have to choose
the multipole coefficients, in such a way that all eigenvalues become 1. Then
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the condition number is 1. From (3.28), using the same technique developed
in [2], in order that all the eigenvalues be equal to 1, we obtain the relations

(
i

4µK2

)2 (
Aν1

n Aν4
n − Aν2

n Aν3
n

)
= e2 i θν

n (3.29)

− i

4µK2

(
Aν4

n + Aν1
n

)
= ρν

n e
i θν

n

where ρν
n, θ

ν
n are arbitrary real numbers satisfying the inequalities :

0 ≤ ρν
n ≤ 2 and 0 ≤ θν

n < 2 π.

Indeed, using (3.25), (3.24) becomes :

λ2 +
(
ρν

n e
i θν

n
)
λ+ e2 i θν

n = 0 (3.30)

which admits the solutions :

λ1 =
−

(
ρν

n e
i θν

n
)

+ i ei θν
n

√
4− (ρν

n)2

2

λ2 =
−

(
ρν

n e
i θν

n
)
− i ei θν

n

√
4− (ρν

n)2

2

note here that we have : |λ1| = |λ2| = 1.

Obviously there are infinitely many choices of simple mulitipole coefficients
aσ l

m , which satisfy the imposed conditions. If we choose aσ l
m as the coefficients

which minimize the norm of the modified integral operator [14], after some
calculations we obtain :

Aν1
n = Aν4

n = − 4 i µ K2 and Aν2
n = Aν3

n = 0 (3.31)

For these values (3.31) and for ρν
n = 2, θν

n = π, we find that (3.28) has a
double root λ = 1.

The above choice of the multipole coefficients does not satisfy the inequal-
ities (2.13) imposed on the coefficients by the uniqueness theorem [4]. But,
as in [14], it has been proved that with this choice, the norm of the modified
integral operator equals zero. So the boundary integral equation is uniquely
solvable.
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3.2 Minimization of the condition number ( the pertur-
bation of the circle)

As in [11, 10, 3, 14] we can consider a family of non-circular boundaries given
parametrically by the relation :

Rε = a+ ε ϕ (θP ) 0 ≤ θP ≤ 2π (3.32)

where ϕ and ∂ϕ
∂θ

are all bounded. We will use the estimates for the multipole
vectors given in [14] :

F σl
m (Pε) = F σl

m (pa) +O (ε) (3.33)

TF σl
m (Pε) = TF σl

m (pa) +O (ε) (3.34)

where Pε is a point in the perturbed circle while pa describes points on the circle
of radius a. In [14] it has been proved that the boundary integral operator Kε

1

is a perturbation of the boundary integral operator Ka
1 defined on the circle :

Kε
1 = Ka

1 +O (ε) (3.35)

In view of these estimates it is straightforward that the eigenvalues of the
perturbed operator Mε are perturbations of the eigenvalues of the original
operator M . So :

Cond (Mε) = Cond (M) +O (ε) = 1 +O (ε) (3.36)

4 Open problems

1- Investigate an other special cases.

2- Investigate an other criterion of optimization choosing the cross multi-
pole coefficients of the modification, that of the minimization of the condition
number of the integral equation (in the case of three dimensions, see [10] for
acoustical case and [2] for elastical case).

3- Investigate an other criterion of optimization choosing the simple and
cross multipole coefficients of the modification, that of the minimization of the
traction of the modified Green’s function ‖TG1‖.

4- Establish the numerical results for this work (for numerical results see
[5] and [6] ).
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