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Abstract
In this work we defined the J-invariant of an elliptic curve

over the artinian principal ideal ring Rn of characteristic 3,
[1, 2, 3, 4]. More precisely, we establish π(J) = j, where j is
the j-invariant of an elliptic curve over Fq, q = 3d and π is the
canonical projection defined over ring Rn by Fq.
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1 Introduction

The goal of this article is to study he J-invariant of an elliptic curve over the
artinian principal ideal ring Rn.

Let p be an odd prime number and n be an integer such that n ≥ 1.
Consider the quotient ring Rn = Fq[X]/(Xn) where Fq is the finite field of
characteristic p and q elements. Then the ring Rn may be identified to the
ring Fq[ε] where εn = 0. In other word [1, 2, 3]

Rn =

{
n−1∑
i=0

aiε
i| (ai)0≤i≤n−1 ∈ F n

q

}
.

The following result is easy to prove:

Lemma 1.1 Let X =
∑n−1
i=0 xiε

i and Y =
∑n−1
i=0 yiε

i be two elements of Rn.
Then

XY =
n−1∑
i=0

ziε
i where zj =

j∑
i=0

xiyj−i.
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Remark 1.2 Let Y =
∑n−1
i=0 yiε

i be the inverse of the element X =
∑n−1
i=0 xiε

i.
Then {

y0 = x−1
0

yj = −x−1
0

∑j−1
i=0 yixj−i, ∀j > 0

We consider the canonical projection π defined by:

π : Rn −→ Fq∑n−1
i=0 xiε

i 7−→ x0

Lemma 1.3 π is a morphism of rings.

Proof 1 Let X =
∑n−1
i=0 xiε

i and Y =
∑n−1
i=0 yiε

i, then

X + Y =
n−1∑
i=0

(xi + yi)ε
i

XY =
n−1∑
i=0

ziε
i where zj =

j∑
i=0

xiyj−i.

We have:
π(X + Y ) = x0 + y0 = π(X) + π(Y )

π(XY ) = z0 = x0y0 = π(X)π(Y ).

So, π is a morphism of rings.

2 Elliptic Curve Over Rn

In this section we suppose n ≥ 1. An elliptic curve over ring Rn is curve that
is given by Weierstrass equation [1, 2, 3, 4]:

(?) : Y 2Z + A1XY Z + A3Y Z
2 = X3 + A2X

2Z + A4XZ
2 + A6Z

3

with coefficients Ai ∈ Rn.

Notation 2.1 We denote by:

• B2 = A2
1 + 4A2

• B4 = A1A3 + 2A4

• B6 = A3
3 + 4A6

• B8 = A2
1A6 − A1A3A4 + A2A

2
3 + 4A2A6 − A2

4

• C4 = B2
2 − 24B4
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• C6 = −B3
2 + 36B2B4 − 216B6

Definition 2.2 The discriminant of elliptic curve over ring Rn is defined to
be:

∆ε,n = −B2
2B8 − 8B3

4 − 27B2
6 + 9B2B4B6.

Definition 2.3 Let ∆ε,n is inversible in Rn, then we defined the J-invariant
of an elliptic curve over Rn by:

J =
C3

4

∆ε,n

.

3 Main Result

In this section the field over which the curve is defined has characteristic 3. An
elliptic curve over Rn is the set of all solutions (X, Y, Z) ∈ Rn × Rn × Rn,
(X, Y, Z) 6= (0, 0, 0) to the equation

(?) : Y 2Z = X3 + AX2Z +BZ3

where A, B ∈ Rn and −A3B is invertible in Rn. [1, 2, 3, 4]
We denote an elliptic curve over Rn by En

3d .

Definition 3.1 A Weierstrass equation over Rn is an equation of type

Y 2Z = X3 + AX2Z +BZ3

with A and B in Rn. Then the reduction on Fq of such an equation is

Y 2Z = X3 + a0X
2Z + b0Z

3

with a0 = π(A) and b0 = π(B).

Remark 3.2 Consider a Weierstrass equation over Rn. It defines a Weier-
strass cubic curve over Rn, if and only if −A3B is invertible in Rn.

Lemma 3.3 A Weierstrass equation on Rn defines an elliptic curve on Rn if
and only if its reduction on Fq defines an elliptic curve.

Proof 2 −A3B is invertible in Rn if and only if π(−A3B) 6= 0 if and only
if −π(A)3π(B) 6= 0 if and only if Y 2Z = X3 + π(A)X2Z + π(b)Z3 defines an
elliptic curve on Fq.
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Lemma 3.4 The J-invariant of En
3d can also be written as

J =
−A3

B
.

Proof 3 We have

A1 = A3 = A4 = 0,

A2 = A

and

A6 = B.

Then

• B2 = A

• B4 = 0

• B6 = B

• B8 = AB

• C4 = A2

• C6 = −A3

• ∆ε,n = −A3B.

• C3
4 = A6

So,

J =
A6

−A3B
=
−A3

B
.

Lemma 3.5 Let J the J-invariant of En
3d and j the j-invariant of reduction

on Fq. Then

π(J) = j.

Proof 4 We have

J =
−A3

B
,

and

j =
−π(A)3

π(B)
.
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Let A = a0 + Ã and B = b0 + B̃, where a0, b0 ∈ Fq, Ã, B̃ ∈ εRn. We have

π(A) = a0, π(B) = b0

A3 = (a3
0 +X), X ∈ εRn.

So,
J = −(a3

0 +X)(b0 + B̃)−1,

i.e

J = −a
3
0

b0
+ T, T ∈ εRn.

We conclude
π(J) = j.

Assumption 3.6 Let E1
3d is reduction of En

3d , and N = ]E1
3d .

If 3 does not divide N, then

En
3d
∼= E1

3d × F n−1
3d .

Theorem 3.7 Let J the J-invariant of En
3d , and J

′
the J-invariant of E ′3d

n.
If 3 does not divide N, where N = ]E1

3d = ]E ′3d
1.

Then En
3d and E ′3d

n are isomorphic if and only if π(J) = π(J
′
).

Proof 5 Let j the j-invariant of E1
3d , and j

′
the j-invariant of E ′3d

1. We have

En
3d
∼= E1

3d × F n−1
3d .

and
E ′3d

n ∼= E1
3d × F n−1

3d .

Thus
En

3d
∼= E ′3d

n ⇔ E1
3d × F n−1

3d
∼= E ′3d

1 × F n−1
3d

⇔ E1
3d
∼= E ′3d

1

⇔ j = j
′

⇔ π(J) = π(J
′
).

4 Conclusion

The conclusion in this work we study the elliptic curve over the artinian prin-
cipal ideal ring Rn = F3d [ε], εn = 0. More precisely, we defined the J-invariant
of En

3d . More precisely, we establish π(J) = j, where j is the j-invariant of an
elliptic curve over F3d and π is the canonical projection defined over ring Rn

by F3d , and two elliptic curves on Rn are isomorphic if and only if they have
the same J-invariant.
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5 Open Problem

In this section you should present an open problem.

• Study Elliptic Curve Over Finite Ring Of Characteristic 2.

• The J-invariant Over This Curve.

• Cryptography Over This Curve.

• Discret Logarithm Attack.
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