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Abstract

The author introduces the concept of intrinsic set property,
by means of which the well-known Cantor’s Theorem can be
deduced. As a natural consequence of this fact, it is proved
that Cantor’s Theorem need not imply the existence of a tower
of different-size infinities, because the impossibility of defining
a bijection between any infinite countable set and its power
can be a consequence of the existence of any intrinsic property
which does not depend on size.
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1 Introduction

Roughly speaking, what we term intrinsic set properties are those predicates,
being satisfied by some sets, which are preserved under bijections. Thus, if an
intrinsic set property P is satisfied by a set X, then it is also satisfied by any
other set Y having the same cardinal as X. Recall that two sets have the same
cardinal if and only if there is a bijection between them. Thus, cardinality is
the most natural intrinsic set property, because of it is a concept that cannot
be separated from the bijection notion.

Other intrinsic property of any set is its size. Indeed, size is preserved
under bijections. It is worth mentioning that, although size and cardinality
are frequently regarded as synonymous, in this paper cannot be identified.

1 Mathematical Subject classification: 03E10,03E65
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Cardinals are defined by means of bijective maps; therefore the concept of
cardinal is comparative. In fact, cardinals are equivalence-classes, and the
corresponding equivalence relation C is cardinality, which is defined as follows.
For every couple of sets X and Y , the pair (X, Y ) lies in C if and only if there is
a bijection f : X → Y . Usually this relation is denoted writing #(X) = #(Y ).
However, assuming the existence of at least one couple of sets X and Y such
that the existence of a bijection between them is an undecidable question, then
the cardinals of both X and Y cannot be compared, but we can suppose that,
although there were no possibility of discerning whether or not the equality
#(X) = #(Y ) holds, each of these sets has a certain size. Of course, for
ordinary finite sets cardinality and size can be always identified, but in our
context we are assuming that there are sets the cardinals of which cannot be
compared. Nevertheless, even when it is a non-accessible attribute, size is
an intrinsic set property which cannot be disregarded without forgetting the
identity of the considered set.

To analyze these concepts deeply, consider the following statements.

A1: “There is a bijection between X and Y ”.

A2: “Both sets X and Y have the same size”.

The first predicate is equivalent to the relation #(X) = #(Y ), since bijection-
existence and cardinal-equality are synonymous. With these statements, the
well-known Hume’s principle can be stated as follows.

A3: There is a bijection between X and Y if and only if both sets are equal
in size.

This equivalence can be split into the following implications.

A3a: If there is a bijection between X and Y , then both sets are equal in size.

A3b: If both sets X and Y are equal in size, then there is a bijection between
them.

The later is equivalent to the following one.

A3bb: If there is no bijections between X and Y , then both sets are different
in size.

Statement A3a is evident; but, in general, both Statement A3b and State-
ment A3bb cannot be assumed without proving them. On the one hand, sup-
pose that each member of a set X = {x1, x2 . . . xn} is defined by means of an
infinite collection of predicates and there is no algorithm handling them. Un-
der these circumstances it is not clear that a bijection can be defined between
X and In = {1, 2 . . . n}, since to define a bijection it is required to discern
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whether or not two members of X are the same. If there is no algorithm
by means of which they can be distinguished, it is not clear that a bijection
can be defined by some finite procedure. Even the existence of a bijection
γ : X → In can be an undecidable question. In fact, the possibility of defining
a bijection only is guaranteed whenever the members of the involved sets can
be determined or approached arbitrarily, by means of some finite procedure or
algorithm. If a general bijection theory dealing only with bijection existence
is consistent, then, according to Gödel’s theorem [6], such a theory cannot be
complete, that is to say, it must contain at least one undecidable proposition.
Such an undecidability can involve the existence of some bijection, and conse-
quently the cardinals of the corresponding sets cannot be compared. If this is
the case, the nonexistence of a bijection need not imply size-inequality, that is
to say, Statement A3bb need not be true.

To illustrate this fact, consider a real number r lying in the unit interval
[0, 1], and suppose that the decimal notation of r is 0.c1c2 . . . cn . . . . If no
previous constrain is imposed, then, in order to construct r, the figures cn can
be chosen at random; however to obtain a rational number lying in the unit
interval the method is not admissible. Thus, the possibility of constructing a
real number by this method is a property that no rational one can satisfy. It is
not difficult to see, that the randomness nature is preserved under bijections;
consequently, no bijection can translate random constructions from R ∩ [0, 1]
into Q ∩ [0, 1], and proofs and inferences can be based upon this construction
method. By contrast, for other purposes any result can be biased depending
on the assumed construction method, for instance see [9].

On the other hand, consider that bijections are structure-free set isomor-
phisms. An isomorphism between two structured sets X and Y can only be de-
fined provided that both X and Y satisfy the same structure properties. For in-
stance, if G4 = (Z4,+) is the cyclic group of order 4, and P4 = (Z2,+)×(Z2,+)
is the direct product of two instances of (Z2,+), then both G4 and P4 consist
of 4 members, but there is no isomorphism between them. However, if the
algebraic structure of both groups is forgotten, then there is a bijection, that
is, a set-isomorphism between the corresponding underlying sets. Accordingly,
bijection existence is possible when structures are forgotten. However, set-size
is an unforgettable property, and this is why bijection existence depends on
size, and set-size is an intrinsic set property.

The aim of this paper consists of proving the existence of another intrinsic
or unforgettable set property, namely, T -representability, and consequently
the nonexistence of a bijection between two arbitrary sets need not be always
a consequence of size-difference. At least, to assume Statement A3b a proof
must be required, and this is an open problem. After these considerations the
following definition is adequate.
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Definition 1.1 A property P of a set X is forgettable, provided that there is
at least one set Y which does not satisfy P together with a bijection f : X → Y .
From now on, let us say every non-forgettable property P of any set X to be
intrinsic.

Lemma 1.2 If a set property P is preserved under bijections, then it is
intrinsic.

Proof. If P is a property of a class of sets C which is preserved under
bijections, then for every set Y and any member X of C, the existence of a
bijection f : X → Y implies that Y satisfies P; consequently, P cannot be
forgettable.

Lemma 1.3 If {Pi|i ∈ I} is a class of intrinsic set-properties, then their
conjunction

P = ∧i∈IPi

is again an intrinsic one.

Proof. It is a straightforward consequence of Definition 1.1.
In Theorem 2.3 it is shown the existence of an intrinsic set property, namely,

T -representability, being satisfied by N that its power P(N) does not satisfy.
Likewise, in Corollary 2.4 Cantor’ Theorem is derived from T -representability;
consequently the existence of a tower of different infinities need not be inter-
preted as the existence of different-size infinities. Perhaps the only difference
consists of T -representability. Discerning which is the correct case is an open
problem which is proposed in section 3.

2 Intrinsic Properties

Henceforth, say a set T = {Ti | i ∈ I} of Turing machines, indexed by a no-void
subset I of N, to be regular provided that the following axioms hold.

Axiom 1: All members of T have the same finite tape-alphabet Γ, the
same blank ∅ ∈ Γ, the same initial state q0 and the same one-element final
state set F = {Halt}. In addition, the tape of each member of T is infinite.

Axiom 2: The tape alphabet Γ contains the n figures Bn = {0, 1, 2 . . . n}
of a base-n numeral system.

Notation. To denote a tape-configuration a1a2a3 . . . an together with the
underlying state q of any Turing machine T , write (a1a2a3 . . . an; q). Recall
that, in general, blanks are disregarded, hence only those blanks lying between
two non-blank symbols will be considered. In addition, denote as Γ∗ the free-
monoid generated by tape-alphabet Γ; and likewise, denote as ΓN the collection
of all sequences in Γ.
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Definition. With the same notations as in the preceding axioms, given a
regular set of Turing machines T , say a nonempty set X to be T -representable,
provided that there are two maps ϕ : X → Γ∗ and τ : X → T together with
an injective one Λ : X → ΓN satisfying the following condition.

Condition 1: For each x ∈ X, if ϕ(x) = ax,1ax,2 . . . ax,k, then for every
integer j ∈ N, the base-n expression of which is c1c2 . . . cm, and from the initial
tape-configuration (c1c2 . . . cm∅ax,1ax,2 . . . ax,k; q0), after a finite step sequence
the Turing machine τ(x) = Tix gets the final state Halt together with a tape-
configuration (e1e2 . . . el∅bx,1bx,2 . . . bx,s; Halt) such that, if

Λ(x) = r1r2r3 · · · ∈ ΓN

then ∀m ≤ j : bx,m = rm.
It is worth pointing out, that T -representability for a set X implies that

there is some algorithm, which is performed by a member T of T , by means of
which, for every positive integer j, the member rj of the sequence Λ(x) =
r1r2r3 . . . can be computed. For instance, the set X = {

√
n | n ∈ N} is

T -representable, whenever there is T ∈ T the corresponding algorithm of
which computes the digits of the square root of any integer, in any base-m
numeral system. In this case, the injective mapping ϕ : X → Γ∗ sends each
member

√
x of X into the corresponding expression s1s2s3 . . . denoting x in the

base-m numeral system, while Λ (
√
n) = r1r2r3 . . . is the numeric expression

for
√
n in the base-m numeral system.

Analogously, the set A of all algebraic numbers is T -representable with re-
spect to any regular Turing-machine set T such that some member T of which
can perform the following actions. On the one hand, T can compute arbitrary
numeric approaches for every solution x of any algebraic equation. On the
other hand, for each positive integer j, T can compute an approach for x con-
taining at least j-digits. Indeed, at the initial state, the tape-configuration of T
contains the expression for the integer j together with the equation coefficients.

Lemma 2.1 Let T be a regular set of Turing machines. Every nonempty
subset Y of each T -representable one X is again T -representable.

Proof. It is a straightforward consequence of the preceding definition.

Lemma 2.2 For every regular set T of Turing machines, T -representability
is preserved under bijections; consequently, by virtue of Lemma 1.2, it is an
intrinsic property.

Proof. Let X be a T -representable set and f : X → Y a bijection. By
hypothesis, there are two maps ϕ : X → Γ∗, and τ : X → T together with
an injective one Λ : X → ΓN satisfying Condition 1. It is not difficult to see,
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that the three maps ϕ ◦ f−1 : Y → Γ∗, Λ ◦ f−1 : Y → ΓN and τ ◦ f−1 : Y → T
satisfy Condition 1 too.

Remark. Lemma 2.1 implies that the concept of T -representability does
not depend on set-size, since it is a property inherited by all proper nonempty
subsets. Likewise, the preceding lemma shows that it is an intrinsic property.
Thus, it is an instance of intrinsic property which does not depend on size.

Theorem 2.3 The following statements are true.

1. There is a regular set of Turing machines T such that the set N of all
natural numbers is T -representable.

2. There is a regular set of Turing machines T such that the set Q of all
rational numbers is T -representable.

3. If a set X is T -representable, then there is an injective map γ : X → N,
for every regular set of Turing machines T .

4. There is no regular Turing-machine set T , such that the powerset P(N)
is T -representable.

5. There is no regular Turing-machine set T , such that the unit interval
[0, 1] is T -representable.

Proof.

1. Let B = {c1c2 . . . cn} be the digits of a base-n numeral system. For
every m ∈ N, let ϕ(m) = c1c2 . . . ck ∈ Γ∗ be the expression for m in
the numeral system B, and let Λ(m) = c1c2 . . . ck∅∅ · · · ∈ ΓN. If T is a
Turing machine such that from the initial state q0 changes to the final one
Halt, remaining its tape unaltered, then Condition 1 is satisfied. Thus,
Statement 1) holds for any regular Turing-machine set T containing T .

2. Let B2 = {0, 1} ⊆ Γ the figures of the binary numeral system, and Λ the
map sending each rational number n

m
into its binary expression

Λ
( n
m

)
= r1r2 . . . rn.rn+1rn+2 . . .

Let
ϕ
( n
m

)
= am,1am,2 . . . am,k∅an,k+1an,k+2 . . . an,k+j

where the sequences am,1am,2 . . . am,k and an,k+1an,k+2 . . . an,k+j are the
binary expressions for n and m respectively. Let T = τ

(
n
m

)
be a Turing

machine performing the ordinary division algorithm working with binary
digits. Assume that the algorithm T can determine the j-th figure of
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every quotient, for every positive integer j. With these assumptions,
from the initial configuration

(c1c2 . . . cs∅am,1am,2 . . . am,k∅an,k+1an,k+2 . . . an,k+j; q0)

where c1c2 . . . c2 is the binary expression for j, by means of the divi-
sion algorithm performed by T , it is possible to obtain the j-th digit of
Λ
(
n
m

)
, for every positive integer j ∈ N, and Condition 1 can be satisfied.

Accordingly, for every regular Turing machine set T containing such an
algorithm T , the set Q of rational numbers is T -representable.

3. Since it is assumed X to be T -representable, then, by definition, for
every x ∈ X there are a Turing machine τ(x) = Tix ∈ T and a word
ϕ(x) = ax,1ax,2 . . . ax,k ∈ Γ∗ satisfying Condition 1. Likewise, since T is
indexed by a subset I of N, there is an injective map ξ : T → {pi | i ∈ N};
where {pi | i ∈ N} is the collection of all primes.

With these assumptions, the injective map γ : X → N can be defined as
follows.

γ(x) = p
β(ax,1)β(ax,2)...β(ax,k)
ix

∈ N
where pix = ξ(Tix) and β : Γ→ C is any bijection onto the figure set C
of a base-n numeral system. Recall, that since Γ is assumed to be finite,
then there is such a bijection, provided that #(C) = #(Γ).

It remains to be shown that γ is injective. To this end, consider that for
each couple x and y of members of X, the equality

γ(x) = p
β(ax,1)β(ax,2)...β(ax,k)
ix

= p
β(ay,1)β(ay,2)...β(ay,k)
iy

= γ(y) (1)

implies pix = piy , and because of ξ is injective, then Tix = Tiy ; accordingly
τ(x) = τ(y). In addition, since both pix and piy are primes, then equation
(1) implies that both exponents must be the same; therefore ∀j ≤ k :
β(ax,j) = β(ay,j), and because β is bijective, then it follows that ∀j ≤ k :
ax,j = ay,j; hence ϕ(x) = ϕ(y). Since Tix = Tiy , by virtue of Condition 1,
if Λ(x) = a1a2a3 . . . and Λ(y) = b1b2b3 . . . , then for every j ∈ N: aj = bj;
consequently Λ(x) = Λ(y). Now, taking into account, that by definition,
the map Λ is injective; it follows that x = y, and γ is also injective.

4. By virtue of the preceding statement, the existence of a regular Tur-
ing machine set T , such that the powerset P(N) is T -representable,
implies the existence of an injective map γ : P(N) → N. Thus, if
λ : img(γ) → N is the canonical inclusion, since γ is injective, then
the map γ∗ : P(N) → img(γ) determined by γ = λ ◦ γ∗ is bijective,
consequently there is a bijection between P(N) and a subset of N which
contradicts Cantor’s Theorem. Recall that since λ is the canonical in-
clusion, then it is injective; hence γ∗ is uniquely specified by γ = λ ◦ γ∗.
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5. First, we prove that there is a bijection δ : [0, 1] → P(N). For ev-
ery x ∈ [0, 1], let 0, cx,1cx,2 . . . cx,n . . . be the expression for x in the
binary numeral system; hence ∀xj ∈ N : cx,j ∈ {0, 1}. Now, letting
δ(x) = {n ∈ N | cx,n = 1} the mapping δ is bijective; hence, by virtue of
Lemma 2.2, if [0, 1] is T -representable, then so is P(N), which contradicts
the former statement.

Remark. Both Statement 3) and Statement 4) in the preceding theorem
state some relationship between countability and T -representability, and such
a relationship can be understood. To this end, consider any infinite subset
X of the unit interval [0, 1]. If X can be defined by means of a finite set of
conditions, in general, its members can be constructed through some proce-
dure, which involves some effective algorithm. However, it is possible to build
members of [0, 1] at random. For instance, one can write the binary expression
for a member x of [0, 1] tossing a coin in an endless process, that is to say, the
n-th digit of the binary expression for x is 0 or 1 depending on the obtained
result. For any member x = 0.c1c2c3 . . . of an infinite subset of [0, 1] being
built at random, in general, it is not possible to define an algorithm satisfying
Condition 1 in order to determine its digits, because, there is no predictable
pattern in the corresponding digit sequence 0.c1c2c3 . . . . By contrast, Con-
dition 1 implies that every member x of X is determined by a finite set of
initial data a1a2 . . . an; hence the expression for x in terms of tape-alphabet
symbols cannot be obtained at random; consequently Condition 1 cannot be
satisfied by [0, 1]. In addition, to define a bijection by means of a finite pro-
cedure it is required to discern whether or not two members of [0, 1] are the
same by means of a finite method, because under bijections different points
must have different images. Notice, that for each couple of rational numbers
x1 = 0.c1c2 . . . cn . . . and x2 = 0.d1d2 . . . dn . . . there is a positive integer Nx1,x2

such that the predicate ∀n ≤ Nx1,x2 : cn = dn implies x1 = x2. By contrast, for
all members of [0, 1] this criterion does not work properly, since the possibility
of defining the figures c1, c2, c3 . . . at random excludes the existence of any
predictable pattern.

Corollary 2.4 Cantor’s Theorem can be derived from the conjunction of
Statement 1) and Statement 4) in the preceding theorem.

Proof. Let us assume that both Statement 1) Statement 4) in the preced-
ing theorem are true for some regular Turing machine set T . If there were a
bijection f : N → P(N), by virtue of Lemma 2.2 together with Statement 1)
in the preceding theorem, P(N) would be T -representable, which contradicts
Statement 4); consequently there is no bijection between N and P(N), and
Cantor’s Theorem holds.



70 J. E. Palomar

3 Open Problem

From Aristotle to Gauss and Pointcaré, the existence of actual infinity is fre-
quently rejected. For instance consider the following quotation from Henri
Poincaré (1854-1912).

Actual infinity does not exist. What we call infinite is only the
endless possibility of creating new objects no matter how many exist
already.

However, Cantor’s Theorem introduces a tower of different infinities. Never-
theless, the axiomatic set theorists state that all existing definitions of “actual
infinity” are unsatisfactory and have no role to play in serious logical and
mathematical analysis, for instance see [1] or [11]. In fact, there is some op-
position against the negation of the uniqueness of infinity, or more accurately,
against the assumption that an infinity could be surpassed by another. To
clarify these ideas, Corollary 2.4 provides a version of Cantor’s Theorem de-
duced from the existence of an intrinsic property, namely, T -representability.
If Cantor’s Theorem is induced by any intrinsic property, this fact need not
imply the existence of two infinities being different in size, but it implies one
of the following statements.

1. Both N and P(N) have the same size, and for only one of them there is
a regular Turing-machine set T with respect to which is T -representable.

2. N and P(N) have different size, and for only one of them there is a
regular Turing-machine set T with respect to which is T -representable.

Thus, Corollary 2.4 implies that the existence of two infinities being dif-
ferent in size is not an unavoidable consequence of Cantor’s Theorem, but in
order to solve this question it must be proved which of the preceding statements
holds, and this is an open problem.

Finally, since there are other cardinals apart from #(N) and # (P(N)), for
instance, the Woodin or Shelah cardinals [10], it must be proved whether or
not the existence of each of which can be a consequence of a specific intrinsic
set property, and this is another open problem.
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