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Abstract

We establish the existence of at least three positive solutions for the 3nth
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Williams fixed point theorem. We also establish the existence of at least 2m−1
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1 Introduction

In this paper, we establish the existence of multiple positive solutions for the
3nth order boundary value problem on time scales,

(−1)ny∆(3n)

(t) = f(t, y(t)), t ∈ [t1, σ(t3)], (1.1)
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satisfying the general three-point boundary conditions,

α3i−2,1y
∆(3i−3)

(t1) + α3i−2,2y
∆(3i−2)

(t1) + α3i−2,3y
∆(3i−1)

(t1) = 0,

α3i−1,1y
∆(3i−3)

(t2) + α3i−1,2y
∆(3i−2)

(t2) + α3i−1,3y
∆(3i−1)

(t2) = 0,

α3i,1y
∆(3i−3)

(σ(t3)) + α3i,2y
∆(3i−2)

(σ(t3)) + α3i,3y
∆(3i−1)

(σ(t3)) = 0,

 (1.2)

for 1 ≤ i ≤ n, where n ≥ 1, α3i−2,j, α3i−1,j, α3i,j, for j = 1, 2, 3, are real con-
stants, t1 < t2 < σ(t3). We assume that f : [t1, σ(t3)]×R+ → R+ is continuous
and f(t, ·) does not vanish identically on any subset of [t1, σ(t3)]. The study of
the existence of positive solutions of the higher order boundary value problems
(BVPs) arises in various fields of applied mathematics and physics. BVPs de-
scribe many phenomena in the applied mathematical sciences, which can be
found in the theory of nonlinear diffusion generated by nonlinear sources, in
thermal ignition of gases and in chemical or biological problems. In these
applied settings only positive solutions are meaningful.

Recently, there has been much attention focussed on existence of positive
solutions to the BVPs on time scales due to their striking applications to al-
most all area of science, engineering and technology. Studying BVPs on time
scales will unify the theory of differential and difference equations and provide
an accurate information of phenomena that manifest themselves partly in con-
tinuous time and partly in discrete time. The existence of positive solutions
are studied by many authors. A few papers along these lines are Agarwal
and Regan [1], Anderson [4], Anderson and Avery [6], F. M. Atici and G.
Sh.Guseinov [7], Kaufmann [19] and Sun [20].

For convenience, we use the following notations. For 1 ≤ i ≤ n, let us de-
note, βij = α3i−3+j,1tj + α3i−3+j,2, γij = α3i−3+j,1t

2
j + α3i−3+j,2(tj + σ(tj)) +

2α3i−3+j,3, for j = 1, 2; βi3 = α3i,1σ(t3) + α3i,2 and γi3 = α3i,1(σ(t3))2 +
α3i,2(σ(t3) + σ2(t3)) + 2α3i,3. Also, for 1 ≤ i ≤ n, we define,

mijk =
α3i−3+j,1γik − α3i−3+k,1γij

2(α3i−3+j,1βik − α3i−3+k,1βij)
, Mijk =

βijγik − βikγij
α3i−3+j,1βik − α3i−3+k,1βij

,

for j, k = 1, 2, 3 and let pi = max{mi12 ,mi13 ,mi23},

qi = min

{
mi23 +

√
m2
i23
−Mi23 , mi13 +

√
m2
i13
−Mi13

}
,

di = α3i−2,1(βi2γi3 −βi3γi2)−βi1(α3i−1,1γi3 −α3i,1γi2) + γi1(α3i−1,1βi3 −α3i,1βi2)
and lij = α3i−3+j,1σ(s)σ2(s) − βij(σ(s) + σ2(s)) + γij , where j = 1, 2, 3. We
assume the following conditions throughout this paper:

(A1) α3i−2,1 > 0, α3i−1,1 > 0, α3i,1 > 0 and
α3i,2

α3i,1
>

α3i−1,2

α3i−1,1
>

α3i−2,2

α3i−2,1
,

for all 1 ≤ i ≤ n,

(A2) pi ≤ t1 < t2 < σ(t3) ≤ qi and 2α3i−2,3α3i−2,1 > α2
3i−2,2,

2α3i−1,3α3i−1,1 < α2
3i−1,2, 2α3i,3α3i,1 > α2

3i,2, for all 1 ≤ i ≤ n,
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(A3) m2
i23
> Mi23 , m

2
i12
< Mi12 , m

2
i13
> Mi13 and di > 0, for all 1 ≤ i ≤ n,

(A4) The point t ∈ [t1, σ(t3)] is not left dense and right scattered at the same
time.

This paper is organized as follows. In Section 2, we establish certain lemmas
which are needed in our main results. In Section 3, we establish the existence
of at least three positive solutions of the BVP (1.1)-(1.2) by using the Leggett-
Williams fixed point theorem. We also establish the existence of at least 2m−1
positive solutions of the BVP (1.1)-(1.2) for an arbitrary positive integer m.
Finally as an application, we give an example to illustrate our result.

2 The Green’s Function and Bounds

In this section, we construct the Green’s function for the homogeneous problem
corresponding to (1.1)-(1.2) and estimate bounds for the Green’s function.

Let Gi(t, s) be the Green’s function for the homogeneous BVP,

−y∆3

(t) = 0, t ∈ [t1, σ(t3)], (2.1)

satisfying the general three-point boundary conditions,

α3i−2,1y(t1) + α3i−2,2y
∆(t1) + α3i−2,3y

∆2

(t1) = 0,

α3i−1,1y(t2) + α3i−1,2y
∆(t2) + α3i−1,3y

∆2

(t2) = 0,

α3i,1y(σ(t3)) + α3i,2y
∆(σ(t3)) + α3i,3y

∆2

(σ(t3)) = 0,

 (2.2)

for 1 ≤ i ≤ n.

Lemma 2.1 For 1 ≤ i ≤ n, the Green’s function Gi(t, s) for the homogeneous
BVP (2.1)-(2.2) is given by

Gi(t, s) =



Gi(t,s)
t∈[t1,t2] =


Gi1(t, s), t1 < σ(s) < t ≤ t2 < σ(t3)
Gi2(t, s), t1 ≤ t < s < t2 < σ(t3)
Gi3(t, s), t1 ≤ t < t2 < s < σ(t3)

Gi(t,s)
t∈[t2,σ(t3)] =


Gi4(t, s), t1 < t2 < σ(s) < t ≤ σ(t3)
Gi5(t, s), t1 < t2 ≤ t < s < σ(t3)
Gi6(t, s), t1 ≤ σ(s) < t2 < t < σ(t3)

(2.3)

where

Gi1(t, s) =
1

2di
[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2)− t2(α3i−1,1βi3−

α3i,1βi2)]li1 ,
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Gi2(t, s) =
1

2di
{[−(βi1γi3 − βi3γi1) + t(α3i−2,1γi3 − α3i,1γi1)− t2(α3i−2,1βi3−

α3i,1βi1)]li2 + [(βi1γi2 − βi2γi1)− t(α3i−2,1γi2 − α3i−1,1γi1)+

t2(α3i−2,1βi2 − α3i−1,1βi1)]li3},

Gi3(t, s) =
1

2di
[(βi1γi2 − βi2γi1)− t(α3i−2,1γi2 − α3i−1,1γi1) + t2(α3i−2,1βi2−

α3i−1,1βi1)]li3 ,

Gi4(t, s) =
1

2di
{[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2)− t2(α3i−1,1βi3−

α3i,1βi2)]li1 + [(βi1γi3 − βi3γi1)− t(α3i−2,1γi3 − α3i,1γi1)+

t2(α3i−2,1βi3 − α3i,1βi1)]li2},

Gi5(t, s) =
1

2di
[(βi1γi2 − βi2γi1)− t(α3i−2,1γi2 − α3i−1,1γi1) + t2(α3i−2,1βi2−

α3i−1,1βi1)]li3 ,

Gi6(t, s) =
1

2di
[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2)− t2(α3i−1,1βi3−

α3i,1βi2)]li1 .

Lemma 2.2 Assume that the conditions (A1)-(A4) are satisfied. Then, for
1 ≤ i ≤ n, the Green’s function Gi(t, s) of (2.1)-(2.2) is positive, for all
(t, s) ∈ [t1, σ(t3)]× [t1, t3].

Proof: For 1 ≤ i ≤ n, the Green’s function Gi(t, s) is given in (2.3). By using
the conditions (A1)-(A4), we obtain

Gi1(t, s) > 0, for all (t, s) ∈ [t1, σ(t3)]× [t1, t3].

Similarly, we can establish the positivity of the Green’s function in the remain-
ing cases. 2

Theorem 2.3 Assume that the conditions (A1)-(A4) are satisfied. Then, for
1 ≤ i ≤ n, the Green’s function Gi(t, s) satisfies the following inequality,

miGi(σ(s), s) ≤ Gi(t, s) ≤ Gi(σ(s), s), for all (t, s) ∈ [t1, σ(t3)]× [t1, t3],
(2.4)

where

0 < mi = min

{
Gi1(σ(t3), s)

Gi1(t1, s)
,
Gi3(t1, s)

Gi3(σ(t3), s)
,
Gi2(t1, s)

Gi2(σ(t3), s)
,
Gi4(σ(t3), s)

Gi4(t1, s)

}
< 1.
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Proof: For 1 ≤ i ≤ n, the Green’s function Gi(t, s) is given (2.3) in six different
cases. In each case we prove the inequality as in (2.4).

Case 1. For t1 < σ(s) < t ≤ t2 < σ(t3).

Gi(t,s)
Gi(σ(s),s)

=
Gi1

(t,s)

Gi1
(σ(s),s)

=
[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2)− t2(α3i−1,1βi3 − α3i,1βi2)]

[−(βi2γi3 − βi3γi2) + σ(s)(α3i−1,1γi3 − α3i,1γi2)− (σ(s))2(α3i−1,1βi3 − α3i,1βi2)]
.

From (A1)-(A4), we have Gi1(t, s) ≤ Gi1(σ(s), s) and also

Gi(t, s)

Gi(σ(s), s)
=

Gi1(t, s)

Gi1(σ(s), s)
≥ Gi1(t, s)

Gi1(t1, s)
≥ Gi1(σ(t3), s)

Gi1(t1, s)
.

Therefore, Gi(t, s) ≤ Gi(σ(s), s) and Gi(t, s) ≥
Gi1

(σ(t3),s)

Gi1
(t1,s)

Gi(σ(s), s), for all

(t, s) ∈ [t1, σ(t3)]× [t1, t3].

Case 2. For t1 ≤ t < t2 < s < σ(t3).

Gi(t,s)
Gi(σ(s),s)

=
Gi3

(t,s)

Gi3
(σ(s),s)

=
[(βi1γi2 − βi2γi1)− t(α3i−2,1γi2 − α3i−1,1γi1) + t2(α3i−2,1βi2 − α3i−1,1βi1)]

[(βi1γi2 − βi2γi1)− σ(s)(α3i−2,1γi2 − α3i−1,1γi1) + (σ(s))2(α3i−2,1βi2 − α3i−1,1βi1)]
.

From (A1)-(A4), we have Gi3(t, s) ≤ Gi3(σ(s), s) and also

Gi(t, s)

Gi(σ(s), s)
=

Gi3(t, s)

Gi3(σ(s), s)
≥ Gi3(t, s)

Gi3(σ(t3), s)
≥ Gi3(t1, s)

Gi3(σ(t3), s)
.

Therefore, Gi(t, s) ≤ Gi(σ(s), s) and Gi(t, s) ≥
Gi3

(t1,s)

Gi3
(σ(t3),s)

Gi(σ(s), s), for all

(t, s) ∈ [t1, σ(t3)]× [t1, t3].

Case 3. For t1 ≤ t < s < t2 < σ(t3).
From (A1)-(A4) and case 2, we have Gi2(t, s) ≤ Gi2(σ(s), s) and also

Gi(t, s)

Gi(σ(s), s)
≥ min

{
Gi3(t1, s)

Gi3(σ(t3), s)
,
Gi2(t1, s)

Gi2(σ(t3), s)

}
.

Therefore, Gi(t, s) ≤ Gi(σ(s), s) and

Gi(t, s) ≥ min

{
Gi3(t1, s)

Gi3(σ(t3), s)
,
Gi2(t1, s)

Gi2(σ(t3), s)

}
Gi(σ(s), s),



Existence of Multiple Positive Solutions 77

for all (t, s) ∈ [t1, σ(t3)]× [t1, t3].

Case 4. For t1 < t2 < σ(s) < t ≤ σ(t3).
From (A1)-(A4) and case 1, we have Gi4(t, s) ≤ Gi4(σ(s), s) and

Gi(t, s)

Gi(σ(s), s)
≥ min

{
Gi1(σ(t3), s)

Gi1(t1, s)
,
Gi4(σ(t3), s)

Gi4(t1, s)

}
.

Therefore, Gi(t, s) ≤ Gi(σ(s), s) and

Gi(t, s) ≥ min

{
Gi1(σ(t3), s)

Gi1(t1, s)
,
Gi4(σ(t3), s)

Gi4(t1, s)

}
Gi(σ(s), s),

for all (t, s) ∈ [t1, σ(t3)]× [t1, t3].

Case 5. For t1 < t2 ≤ t < s < σ(t3).

From case 2, we haveGi(t, s) ≤ Gi(σ(s), s) andGi(t, s) ≥
Gi3

(t1,s)

Gi3
(σ(t3),s)

Gi(σ(s), s),

for all (t, s) ∈ [t1, σ(t3)]× [t1, t3].

Case 6. For t1 ≤ σ(s) < t2 < t < σ(t3).

From case 1, we haveGi(t, s) ≤ Gi(σ(s), s) andGi(t, s) ≥
Gi1

(σ(t3),s)

Gi1
(t1,s)

Gi(σ(s), s),

for all (t, s) ∈ [t1, σ(t3)]× [t1, t3].

From all above cases, for 1 ≤ i ≤ n, we have

miGi(σ(s), s) ≤ Gi(t, s) ≤ Gi(σ(s), s), for all (t, s) ∈ [t1, σ(t3)]× [t1, t3],

where

0 < mi = min

{
Gi1(σ(t3), s)

Gi1(t1, s)
,
Gi3(t1, s)

Gi3(σ(t3), s)
,
Gi2(t1, s)

Gi2(σ(t3), s)
,
Gi4(σ(t3), s)

Gi4(t1, s)

}
< 1.

2

Lemma 2.4 Assume that the conditions (A1)-(A4) are satisfied and Gi(t, s)
is defined as in (2.3). Take H1(t, s) = G1(t, s) and recursively define

Hj(t, s) =

∫ σ(t3)

t1

Hj−1(t, r)Gj(r, s)∆r, for 2 ≤ j ≤ n.

Then Hn(t, s) is the Green’s function for the homogeneous BVP corresponding
to (1.1)-(1.2).
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Lemma 2.5 Assume that the conditions (A1)-(A4) hold. If we define

K =
n−1∏
j=1

Kj and L =
n−1∏
j=1

mjLj,

then the Green’s function Hn(t, s) in Lemma 2.4 satisfies

0 ≤ Hn(t, s) ≤ K‖Gn(·, s)‖, for all (t, s) ∈ [t1, σ(t3)]× [t1, t3]

and

Hn(t, s) ≥ mnL‖Gn(·, s)‖, for all (t, s) ∈ [t2, σ(t3)]× [t1, t3],

where mn is given as in Theorem 2.3,

Kj =

∫ σ(t3)

t1

‖Gj(·, s)‖∆s > 0, for 1 ≤ j ≤ n,

Lj =

∫ σ(t3)

t2

‖Gj(·, s)‖∆s > 0, for 1 ≤ j ≤ n

and ‖ · ‖ is defined by

‖x‖ = max
t∈[t1,σ(t3)]

|x(t)|.

3 Existence of Multiple Positive Solutions

In this section, we establish the existence of at least three positive solutions to
the BVP (1.1)-(1.2) by using the Leggett-Williams fixed point theorem. We
also establish the existence of at least 2m − 1 positive solutions for the BVP
(1.1)-(1.2) for an arbitrary positive integer m.

Let E be a real Banach space with cone P . A map S : P → [0,∞) is said
to be a nonnegative continuous concave functional on P , if S is continuous and

S(λx+ (1− λ)y) ≥ λS(x) + (1− λ)S(y),

for all x, y ∈ P and λ ∈ [0, 1]. Let α and β be two real numbers such that
0 < α < β and S be a nonnegative continuous concave functional on P . We
define the following convex sets

Pα = {y ∈ P : ‖y‖ < α} and

P (S, α, β) = {y ∈ P : α ≤ S(y), ‖y‖ ≤ β}.
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Theorem 3.1 [Leggett-Williams fixed point theorem] Let T : P c → P c be
completely continuous and S be a nonnegative continuous concave functional
on P such that S(y) ≤ ‖y‖, for all y ∈ P c. Suppose that there exist a, b, c
and d with 0 < d < a < b ≤ c such that
(i) {y ∈ P (S, a, b) : S(y) > a} 6= ∅ and S(Ty) > a, for y ∈ P (S, a, b),
(ii) ‖Ty‖ < d, for ‖y‖ ≤ d,
(iii) S(Ty) > a, for y ∈ P (S, a, c) with ‖Ty‖ > b.
Then T has at least three fixed points y1, y2, y3 in P c satisfying

‖y1‖ < d, a < S(y2), ‖y3‖ > d, S(y3) < a.

Let

M = mn

n−1∏
j=1

mjLj
Kj

.

Theorem 3.2 Assume that the conditions (A1)-(A4) are satisfied and also
assume that there exist real numbers a0, a1 and a2 with 0 < a0 < a1 <

a1
M
< a2

such that

f(t, y(t)) <
a0∏n
j=1Kj

, for t ∈ [t1, σ(t3)] and y ∈ [0, a0], (3.1)

f(t, y(t)) >
a1∏n

j=1 mjLj
, for t ∈ [t2, σ(t3)] and y ∈ [a1,

a1

M
], (3.2)

f(t, y(t)) <
a2∏n
j=1Kj

, for t ∈ [t1, σ(t3)] and y ∈ [0, a2]. (3.3)

Then the BVP (1.1)-(1.2) has at least three positive solutions.

Proof: Let the Banach Space E = C[t1, σ(t3)] be equipped with the norm

‖y‖ = max
t∈[t1,σ(t3)]

|y(t)|.

We denote
P = {y ∈ E : y(t) ≥ 0, t ∈ [t1, σ(t3)]}.

Then, it is obvious that P is a cone in E. For y ∈ P , we define

S(y) = min
t∈[t2,σ(t3)]

|y(t)| and

Ty(t) =

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s, t ∈ [t1, σ(t3)].

It is easy to see that S is a nonnegative continuous concave functional on P
with S(y) ≤ ‖y‖, for y ∈ P and that T : P → P is completely continuous and
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fixed points of T are solutions of the BVP (1.1)-(1.2). First, we prove that, if
there exists a positive number r such that f(t, y(t)) < r∏n

j=1Kj
, for t ∈ [t1, σ(t3)]

and y ∈ [0, r], then T : P r → Pr. Indeed, if y ∈ P r, then for t ∈ [t1, σ(t3)], we
have

Ty(t) =

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s

<
r∏n

j=1Kj

∫ σ(t3)

t1

Hn(t, s)∆s

≤ r∏n
j=1 Kj

K

∫ σ(t3)

t1

‖Gn(·, s)‖∆s = r.

Thus, ‖Ty‖ < r, that is, Ty ∈ Pr. Hence, we have shown that if (3.1) and
(3.3) hold, then T maps P a0 into Pa0 and P a2 into Pa2 . Next, we show that
{y ∈ P (S, a1,

a1
M

) : S(y) > a1} 6= ∅ and S(Ty) > a1, for all y ∈ P (S, a1,
a1
M

). In
fact, the constant function

a1 + a1
M

2
∈ {y ∈ P (S, a1,

a1

M
) : S(y) > a1}.

Moreover, for y ∈ P (S, a1,
a1
M

), we have

a1

M
≥ ‖y‖ ≥ y(t) ≥ min

t∈[t2,σ(t3)]
y(t) = S(y) ≥ a1,

for all t ∈ [t2, σ(t3)]. Thus, in view of (3.2), we see that

S(Ty) = min
t∈[t2,σ(t3)]

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s

≥ min
t∈[t2,σ(t3)]

∫ σ(t3)

t2

Hn(t, s)f(s, y(s))∆s

>
a1∏n

j=1 mjLj
mnL

∫ σ(t3)

t2

‖Gn(·, s)‖∆s = a1

as required. Finally, we show that, if y ∈ P (S, a1, a2) and ‖Ty‖ > a1
M

, then
S(Ty) > a1. To see this, we suppose that y ∈ P (S, a1, a2) and ‖Ty‖ > a1

M
,

then, by Lemma 2.5, we have

S(Ty) = min
t∈[t2,σ(t3)]

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s

≥ min
t∈[t2,σ(t3)]

mnL

∫ σ(t3)

t1

‖Gn(·, s)‖f(s, y(s))∆s

≥ mnL

∫ σ(t3)

t2

‖Gn(·, s)‖f(s, y(s))∆s
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for all t ∈ [t1, σ(t3)]. Thus

S(Ty) ≥ mnL

K
max

t∈[t1,σ(t3)]

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s

=
mnL

K
‖Ty‖

>
mnL

K

a1

M
= a1.

To sum up, all the hypotheses of Theorem 3.1 are satisfied. Hence T has at
least three fixed points, that is, the BVP (1.1)-(1.2) has at least three positive
solutions y1, y2 and y3 such that

‖y1‖ < a0, a1 < min
t∈[t2,σ(t3)]

y2(t), ‖y3‖ > a0, min
t∈[t2,σ(t3)]

y3(t) < a1.

2

Theorem 3.3 Let m be an arbitrary positive integer. Assume that there exist
numbers ai(i = 1, 2, · · ·,m) and bj(j = 1, 2, · · ·,m−1) with 0 < a1 < b1 <

b1
M
<

a2 < b2 <
b2
M
< · · · < am−1 < bm−1 <

bm−1

M
< am such that

f(t, y(t)) <
ai∏n
j=1 Kj

, for t ∈ [t1, σ(t3)] and y ∈ [0, ai], i = 1, 2, · · ·,m, (3.4)

f(t, y(t)) >
bj∏n

j=1mjLj
, for t ∈ [t2, σ(t3)] and y ∈ [bj,

bj
M

], j = 1, 2, · · ·,m−1.

(3.5)
Then the BVP (1.1)-(1.2) has at least 2m− 1 positive solutions in P am.

Proof: We use induction on m. First, for m = 1, we know from (3.4) that
T : P a1 → Pa1 , then, it follows from Schauder fixed point theorem that the
BVP (1.1)-(1.2) has at least one positive solution in P a1 . Next, we assume
that this conclusion holds for m = k. In order to prove that this conclusion
holds for m = k+1, we suppose that there exist numbers ai(i = 1, 2, · · ·, k+1)
and bj(j = 1, 2, · · ·, k) with 0 < a1 < b1 <

b1
M
< a2 < b2 <

b2
M
< · · · < ak <

bk <
bk
M
< ak+1 such that

f(t, y(t)) <
ai∏n
j=1 Kj

, for t ∈ [t1, σ(t3)] and y ∈ [0, ai], i = 1, 2, · · ·, k + 1,

(3.6)

f(t, y(t)) >
bj∏n

j=1mjLj
, for t ∈ [t2, σ(t3)] and y ∈ [bj,

bj
M

], j = 1, 2, · · ·, k.

(3.7)
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By assumption, the BVP (1.1)-(1.2) has at least 2k − 1 positive solutions
ui(i = 1, 2, · · ·, 2k− 1) in P ak . At the same time, it follows from Theorem 3.2,
(3.6) and (3.7) that the BVP (1.1)-(1.2) has at least three positive solutions
u, v and w in P ak+1

such that

‖u‖ < ak, bk < min
t∈[t2,σ(t3)]

v(t), ‖w‖ > ak, min
t∈[t2,σ(t3)]

w(t) < bk.

Obviously, v and w are different from ui(i = 1, 2, · · ·, 2k − 1). Therefore, the
BVP (1.1)-(1.2) has at least 2k + 1 positive solutions in P ak+1

, which shows
that this conclusion holds for m = k + 1. 2

4 Example

Let us consider an example to illustrate the usage of the Theorem 3.2. Let
n = 2 and T = {0}∪{ 1

2n+1 : n ∈ N}∪ [1
2
, 3

2
]. Now, consider the following BVP,

y∆6

(t) = f(t, y), t ∈ [0, σ(1)] ∩ T (4.1)

subject to the boundary conditions,

1

2
y(0)− y∆(0) + 2y∆2

(0) = 0,

2y
(1

2

)
− 3y∆

(1

2

)
+ 2y∆2

(1

2

)
= 0,

y(σ(1)) +
1

2
y∆(σ(1)) +

1

3
y∆2

(σ(1)) = 0,

3

4
y∆3

(0)− 2y∆4

(0) + 3y∆5

(0) = 0,

y∆3
(1

2

)
− 2y∆4

(1

2

)
+ y∆5

(1

2

)
= 0,

y∆3

(σ(1)) +
1

2
y∆4

(σ(1)) +
1

2
y∆5

(σ(1)) = 0,



(4.2)

and

f(t, y) =

{
sint
100

+ 13
50
y10, y ≤ 2,

sint
100

+ 6656
25
, y ≥ 2.
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Then the conditions (A1)-(A4) are satisfied. The Green’s function G1(t, s) in
Lemma 2.1 is

G1(t, s) =



G1(t,s)

t∈[0, 1
2

]
=


G11(t, s), 0 < σ(s) < t ≤ 1

2
< σ(1)

G12(t, s), 0 ≤ t < s < 1
2
< σ(1)

G13(t, s), 0 ≤ t < 1
2
< s < σ(1)

G1(t,s)

t∈[ 1
2
,σ(1)]

=


G14(t, s), 0 < 1

2
< σ(s) < t ≤ σ(1)

G15(t, s), 0 < 1
2
≤ t < s < σ(1)

G16(t, s), 0 ≤ σ(s) < 1
2
< t < σ(1)

where

G11(t, s) =
12

481

[91

12
+

23

6
t− 5t2

][1

2
σ(s)σ2(s) + (σ(s) + σ2(s)) + 4

]
,

G12(t, s) =
12

481

{[26

3
− 8

3
t− 7

4
t2
][

2σ(s)σ2(s) + 2(σ(s) + σ2(s)) +
3

2

]
+
[13

2
+

29

4
t+ t2

][
σ(s)σ2(s)− 3

2
(σ(s) + σ2(s)) +

8

3

]}
,

G13(t, s) =
12

481

[13

2
+

29

4
t+ t2

][
σ(s)σ2(s)− 3

2
(σ(s) + σ2(s)) +

8

3

]
,

G14(t, s) =
12

481

{[91

12
+

23

6
t− 5t2

][1

2
σ(s)σ2(s) + (σ(s) + σ2(s)) + 4

]
+
[
− 26

3
+

8

3
t+

7

4
t2
][

2σ(s)σ2(s) + 2(σ(s) + σ2(s)) +
3

2

]}
,

G15(t, s) =
12

481

[13

2
+

29

4
t+ t2

][
σ(s)σ2(s)− 3

2
(σ(s) + σ2(s)) +

8

3

]
,

G16(t, s) =
12

481

[91

12
+

23

6
t− 5t2

][1

2
σ(s)σ2(s) + (σ(s) + σ2(s)) + 4

]
.

The Green’s function G2(t, s) in Lemma 2.1 is

G2(t, s) =



G2(t,s)

t∈[0, 1
2

]
=


G21(t, s), 0 < σ(s) < t ≤ 1

2
< σ(1)

G22(t, s), 0 ≤ t < s < 1
2
< σ(1)

G23(t, s), 0 ≤ t < 1
2
< s < σ(1)

G2(t,s)

t∈[ 1
2
,σ(1)]

=


G24(t, s), 0 < 1

2
< σ(s) < t ≤ σ(1)

G25(t, s), 0 < 1
2
≤ t < s < σ(1)

G26(t, s), 0 ≤ σ(s) < 1
2
< t < σ(1)

where

G21(t, s) =
16

635

[39

8
+

11

4
t− 3t2

][3

4
σ(s)σ2(s) + 2(σ(s) + σ2(s)) + 6

]
,



84 K. R. Prasad and N. Sreedhar

G22(t, s) =
16

635

{[
15− 15

4
t− 25

8
t2
][
σ(s)σ2(s) +

3

2
(σ(s) + σ2(s)) +

1

4

]
+
[17

2
+

93

16
t+

7

8
t2
][
σ(s)σ2(s)− 3

2
(σ(s) + σ2(s)) + 3

]}
,

G23(t, s) =
16

635

[17

2
+

93

16
t+

7

8
t2
][
σ(s)σ2(s)− 3

2
(σ(s) + σ2(s)) + 3

]
,

G24(t, s) =
16

635

{[39

8
+

11

4
t− 3t2

][3

4
σ(s)σ2(s) + 2(σ(s) + σ2(s)) + 6

]
+
[
− 15 +

15

4
t+

25

8
t2
][
σ(s)σ2(s) +

3

2
(σ(s) + σ2(s)) +

1

4

]}
,

G25(t, s) =
16

635

[17

2
+

93

16
t+

7

8
t2
][
σ(s)σ2(s)− 3

2
(σ(s) + σ2(s)) + 3

]
,

G26(t, s) =
16

635

[39

8
+

11

4
t− 3t2

][3

4
σ(s)σ2(s) + 2(σ(s) + σ2(s)) + 6

]
.

From Theorem 2.3 and Lemma 2.5, we get

m1 = 0.4406779661, K1 = 0.6552328771, L1 = 0.183991684,

m2 = 0.5596707819, K2 = 0.7449516076, L2 = 0.2551181102.

Therefore, K = 0.6552328771, L = 0.08108108108 and M = 0.06925585335.
Clearly f is continuous and increasing on [0,∞). If we choose a0 = 0.25, a1 = 2
and a2 = 150 then 0 < a0 < a1 <

a1
M
< a2 and f satisfies

(i) f(t, y) < 0.512172512 = a0
Π2

j=1Kj
, for t ∈ [0, σ(1)] and y ∈ [0, 0.25],

(ii) f(t, y) > 172.757353 = a1
Π2

j=1mjLj
, for t ∈ [1

2
, σ(1)] and y ∈ [2, 28.87842548],

(iii) f(t, y) < 307.3035072 = a2
Π2

j=1Kj
, for t ∈ [0, σ(1)] and y ∈ [0, 150].

Then all the conditions of Theorem 3.2 are satisfied. Thus, by Theorem 3.2,
the BVP (4.1)-(4.2) has at least three positive solutions y1, y2 and y3 satisfying

‖ y1 ‖< 0.25, 2 < min
t∈[ 1

2
,σ(1)]

y2(t), ‖ y3 ‖> 0.25, min
t∈[ 1

2
,σ(1)]

y3(t) < 2.

Remark: If f involves the derivatives of y in the equation (1.1), we can estab-
lish the existence of positive solutions by defining a suitable cone in Banach
space with suitable norm or by applying the method used by Xu and Yang
[22].
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5 Open Problem

In this paper, we established the existence of at least three positive solutions
for 3nth order three-point boundary value problem on time scales by using
Leggett-Williams fixed point theorem. It will be interesting to obtain multiple
positive solutions for the 3nth order general boundary value problem on time
scales,

(−1)ny∆(3n)

(t) = f(t, y(t), y∆(t), · · ·, y∆(3n−1)

(t))

satisfying the general three-point boundary conditions,

3∑
k=1

[α3i−3+j,ky
∆(3i−4+k)

(t1)+β3i−3+j,ky
∆(3i−4+k)

(t2)+γ3i−3+j,ky
∆(3i−4+k)

(σ(t3))] = 0,

for j = 1, 2, 3, and 1 ≤ i ≤ n, where n ≥ 1.
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