Int. J. Open Problems Comput. Math., Vol. 5, No. 3, September, 2012 ISSN 2074-2827; Copyright ©ICSRS Publication, 2012 www.i-csrs.org

Note on a nonlocal boundary value problem with solutions positive on an interval

A. Guezane-Lakoud

Laboratory of Advanced Materials Badji Mokhtar-Annaba University. Algeria e-mail: a_guezane@yahoo.fr

Abstract

We reconsider the boundary value problem studied in [1] and prove the existence of sign changing solutions under more general conditions on the nonlinear term.

Keywords: *Three-point boundary condition* **2000 Mathematics Subject Classification:** 34B10, 34B15

1 Introduction

The following problem is studied in [1]

$$u'' + g(t)f(u(t)) = 0, \quad 0 < t < 1$$
(1)

$$u(0) = \alpha u'(0), \quad u(1) = \beta u'(\eta)$$
 (2)

where $\eta \in (0, 1), g \in C([0, 1], [0, \infty)), f \in C(\mathbb{R}, [0, \infty))$. The parameters α and β are such that $\alpha > 0, \beta > 0$ and $1 + \alpha \neq \beta$. In a personal communication, Prof. J.R.L. Webb remarked that proper account was not taken of the fact that G is both discontinuous and changes sign, and, in fact, positive solutions may not exist under the given conditions, the main result in [1] is therefore not valid. We give a correction here and provide new results on existence of solutions that are positive on a sub-interval of [0, 1].

This type of problem has been studied by Infante-Webb in [2,3]. The case $\alpha = 0, 0 \leq \beta < 1 - \eta$ was studied in detail in [2]. They established, using fixed point index theory, the existence of multiple nonzero solutions that are positive on a subinterval of [0, 1] but can change sign. Similar problems were

studied in [3] and in the interesting paper [4] which studied the model of a thermostat. In [4] the authors proved that there is loss of positivity as the parameter decreases, and proved a uniqueness result. For more results on this subject we refer to [3,5,6].

2 Preliminaries

Let E = C[0, 1], with the supremum norm $||y|| = \sup \{|y(t)|, t \in [0, 1]\}$. To study the problem (1)-(2), we write it as an equivalent fixed point problem for the Hammerstein integral operator

$$Tu(t) = \int_0^1 G(t,s)g(s)f(u(s)))ds$$

where the Green's function is defined by

$$G(t,s) = \frac{(t+\alpha)(1-s)}{1+\alpha-\beta} - \begin{cases} \beta \frac{t+\alpha}{1+\alpha-\beta}, s \le \eta\\ 0, s > \eta \end{cases} - \begin{cases} (t-s), s \le t\\ 0, s > t \end{cases}$$

We give a correction to [1] here and provide new results for the case for $\alpha > 0$ and $0 < \beta < 1 - \eta$. We replace the previous assumptions that f is either sublinear or superlinear by more general conditions and prove existence of sign changing solutions. The method used is to apply the theory of [2,3] which is based on the fixed point index for the compact map T defined on a cone in the Banach space E.

3 Main Results

Following the theory of [2,3], an important step is to show that

$$|G(t,s)| \le \Phi(s), \forall (t,s) \in [0,1] \times [0,1],$$
(3)

$$G(t,s) \ge c\Phi(s), \ \forall t \in [0,b], \forall s \in [0,1].$$

$$(4)$$

Theorem 3.1 If $0 < \beta < 1 - \eta$ and $\alpha > 0$, then there exists a continuous function $\Phi(s) = \frac{(1+\alpha)}{1+\alpha-\beta}(1-s)$ on [0,1], a real number $b \in (0,1-\beta)$ and a constant $c = \frac{\alpha \min((1-b-\beta),(1-\eta-\beta))}{1+\alpha} \in (0,1)$ such that inequalities (3) and (4) hold.

Proof. We find upper and lower bounds of G. Upper bounds. Case 1. $s > \eta$. If t < s then $G(t, s) \ge 0$ and

$$G(t,s) = \frac{(t+\alpha)(1-s)}{1+\alpha-\beta} \le \frac{(1+\alpha)}{1+\alpha-\beta}(1-s) = \Phi(s)$$

If $t \ge s$ then $G(t, s) \ge 0$ since

$$G(t,s) = \frac{(t+\alpha)(1-s)}{1+\alpha-\beta} - (t-s) = \frac{(s+\alpha)(1-t) + \beta(t-s)}{1+\alpha-\beta} \ge 0$$

and we have

$$G(t,s) = \frac{(t+\alpha)(1-s)}{1+\alpha-\beta} - (t-s) \le \frac{(t+\alpha)(1-s)}{1+\alpha-\beta}$$
$$\le \frac{1+\alpha}{1+\alpha-\beta}(1-s) = \Phi(s)$$

Case 2. $s < \eta$. If t < s, then $G(t,s) = \frac{(t+\alpha)(1-s-\beta)}{1+\alpha-\beta}$ and the function G is positive because we are taking $\beta < 1 - \eta$. Consequently we have

$$G(t,s) = \frac{(t+\alpha)(1-s-\beta)}{1+\alpha-\beta} \le \frac{(1+\alpha)}{1+\alpha-\beta}(1-s) = \Phi(s),$$

(the case $\eta > s > 1 - \beta$ is impossible since by hypothesis we have $\beta < 1 - \eta$.) If $t \geq s$ then

$$G(t,s) = \frac{(t+\alpha)(1-s-\beta)}{1+\alpha-\beta} - (t-s) = \frac{(s+\alpha)(1-t-\beta)}{1+\alpha-\beta}$$

the function G is positive if $t \leq 1 - \beta$, in this case we get

$$G(t,s) = \frac{(s+\alpha)\left(1-t-\beta\right)}{1+\alpha-\beta} \le \frac{(1+\alpha)}{1+\alpha-\beta}\left(1-s\right) = \Phi\left(s\right)$$

if $t > 1 - \beta$ then $G(t, s) \leq 0$ and

$$-G(t,s) = \frac{(s+\alpha)(-1+t+\beta)}{1+\alpha-\beta} \le \frac{(1+\alpha)}{1+\alpha-\beta} (1-\eta)$$
$$\le \frac{(1+\alpha)}{1+\alpha-\beta} (1-s) = \Phi(s)$$

therefore $|G(t,s)| \leq \frac{1+\alpha}{1+\alpha-\beta} (1-s) = \Phi(s)$. Lower bounds. Let $b \in (0, 1-\beta)$ and $\alpha > 0$, then for $t \in [0, b]$ and $s \in [0, 1]$ it yields: Case 1. $s > \eta$, if t < s then

$$G(t,s) = \frac{(t+\alpha)(1-s)}{1+\alpha-\beta} \ge \frac{\alpha(1-s)}{1+\alpha-\beta} = \frac{\alpha}{1+\alpha}\Phi(s)$$

If $t \geq s$ then

$$G(t,s) = \frac{(s+\alpha)(1-t)+\beta(t-s)}{1+\alpha-\beta} \ge \frac{\alpha(1-t)}{1+\alpha-\beta}$$
$$\ge \frac{\alpha(1-b)}{1+\alpha-\beta}(1-s) = \frac{\alpha(1-b)}{1+\alpha}\Phi(s)$$

Case 2. $s < \eta$. If t < s then

$$G(t,s) = \frac{(t+\alpha)\left(1-s-\beta\right)}{1+\alpha-\beta} \ge \frac{\alpha\left(1-\eta-\beta\right)}{1+\alpha-\beta}\left(1-s\right) = \frac{\alpha\left(1-\eta-\beta\right)}{1+\alpha}\Phi\left(s\right)$$

If $t \geq s$ then

$$G(t,s) = \frac{(s+\alpha)\left(1-t-\beta\right)}{1+\alpha-\beta} \ge \frac{\alpha\left(1-b-\beta\right)}{1+\alpha}\Phi\left(s\right).\Box$$

Define the operator $T: E \to E$ by $Tu(t) = \int_0^1 G(t,s)g(s)f(u(s))ds$.

Notations. Let K be the cone $K = \left\{ u \in C[0,1] : \min_{t \in [0,b]} u(t) \ge c ||u|| \right\}$ and define the following subsets of K, $K_r = \{u \in K : ||u|| < r\}, \ \overline{K}_r = \{u \in K : ||u|| \le r\},\$ $\overline{K}_{\rho,r} = \{ u \in K : \rho \le ||u|| \le r \}, \text{ where } 0 < \rho < r < \infty.$

We also let

$$f^{0} = \limsup_{u \to 0} \frac{f(u)}{|u|}, \quad f^{\infty} = \limsup_{|u| \to \infty} \frac{f(u)}{|u|}, \quad f_{0} = \liminf_{u \to 0+} \frac{f(u)}{u}, \quad f_{\infty} = \liminf_{u \to \infty} \frac{f(u)}{u},$$

and

and

$$f^{-\rho,\rho} = \sup_{u \in [-\rho,\rho]} \frac{f(u)}{\rho}, \quad f_{c\rho,\rho} = \inf_{u \in [c\rho,\rho]} \frac{f(u)}{\rho}.$$
Let $m = \left(\max_{0 \le t \le 1} \int_0^1 |G(t,s)| \, g(s) ds\right)^{-1}$ and $M = \left(\min_{t \in [0,b]} \int_0^b G(t,s) g(s) ds\right)^{-1}$.

As in [5] define the continuous function $q: E \to \mathbb{R}, q(u) = \min_{t \in [0,b]} u(t)$ and the set $\Omega_{\rho} = \{ u \in K : q(u) < c\rho \}$. It is clear that if $u \in \partial \Omega_{\rho}$, (the boundary relative to K) then $c\rho \leq u(t) \leq \rho$ for all $t \in [0, b]$. The set Ω_{ρ} was introduced in [5] for cones of positive functions, the case here was used in [2], for further properties of Ω_{ρ} see [5].

Now we state the existence results from [2] specialized to our case.

Theorem 3.2 Assume that $0 < \beta < 1 - \eta$, and let $b \in (0, 1 - \beta)$ and suppose that $\int_0^b \Phi(s)g(s)ds > 0$. Then for $\alpha > 0$, the problem (1)-(2) has at least one nonzero solution, positive on [0, b], if either

H1) $0 \leq f^0 < m$ and $M < f_{\infty} \leq \infty$, or

H2) $0 \leq f^{\infty} < m \text{ and } M < f_0 \leq \infty$,

and has two nonzero solutions, positive on [0, b], if there is $\rho > 0$ such that either

S1)
$$0 \leq f^0 < m$$
, $f_{c\rho,\rho} \geq cM$, $u \neq Tu$ for $u \in \partial \Omega_{\rho}$ and $0 \leq f^{\infty} < m$ or
S2) $M < f_0 \leq \infty$, $f^{-\rho,\rho} \leq m$, $u \neq Tu$ for $u \in \partial K_{\rho}$ and $M < f_{\infty} \leq \infty$.

Note on a nonlocal boundary value problem

Example 3.3 Consider the following BVP

$$u'' + 1 = 0, t \in (0, 1), u(0) = u'(0), u(1) = \frac{1}{3}u'(\frac{1}{2}).$$
 (5)

Here $\alpha = 1$, $\eta = 1/2$, $\beta = 1/3$, g(t) = 1 on [0,1] and f = 1 on \mathbb{R} . Then $f_0 = \infty$, $f^{\infty} = 0$ so this is a sublinear case. Choosing $b = \frac{3}{5} < 2/3$, then $\int_0^b \Phi(s)g(s)ds > 0$, (H2) holds and the Theorem gives that the BVP has at least one solution which is positive on [0, 3/5]. In fact, the solution is easily found to be $u(t) = \frac{1}{5} + \frac{1}{5}t - \frac{t^2}{2}$ which is positive on $[0, (1 + \sqrt{11})/5] \approx [0, 0.863]$.

Example 3.4 Let
$$f(u) = \begin{cases} 10^3 u^2, |u| < 1\\ -999u + 1999, 1 \le |u| < 2\\ 1, |u| \ge 2 \end{cases}$$

Choosing $g = 1 \ \alpha = 1 \ \eta = 1/2 \ \beta = 1/3 \ and \ b = 3/5$ as in Example 2.4, then $f^0 = 0$. $f^{\infty} = 0$, $c = \frac{1}{30}$, $M = \frac{1250}{79} \approx 15.823$. Let $\rho = \frac{1}{2}$ then $f_{c\rho,\rho} = \frac{10}{18} \approx 0.55556 \ge cM = \frac{1250}{79 \times 30} \approx 0.52743$. Assume that there exists $u \in \partial \Omega_{\rho}$ such that u = Tu, then for $t \in [0, \frac{3}{5}]$ it yields by property of Ω_{ρ} ,

$$\begin{split} u(t) &= Tu(t) = \int_0^1 G(t,s) f(u(s)) \, ds \ge \int_0^{\frac{3}{5}} G(t,s) f(u(s)) \, ds \\ &= 10^3 \int_0^{\frac{3}{5}} G(t,s) u^2(s) ds \ge 10^3 c^2 \rho^2 \int_0^{\frac{3}{5}} G(t,s) ds. \end{split}$$

Taking the minimum over $t \in [0, \frac{3}{5}]$, we get

$$c\rho \ge 10^3 c^2 \rho^2 / M$$
, that is $c\rho \le M / 10^3$.

Since $c\rho = 1/60 > M/10^3$, this is a contradiction, consequently (S1) holds and the BVP has at least two nonzero solutions positive on $[0, \frac{3}{5}]$.

4 Open problem

In the present note we have established the existence of nonzero solutions changing sign and positive on a subinterval of [0,1], in the case $\alpha > 0$, $0 < \beta < 1 - \eta$ and under more general conditions on f. The existence of nonzero solutions for problem (1)-(2) could be investigated for other cases such as $\alpha > 0$ and $\beta < 0$.

Acknowledgement. The author thanks Professor J.R.L. Webb for bringing her attention to several works on this type of problem.

References

- A. Guezane-Lakoud, S. Kelaiaia, A.M. Eid, A positive solution for a nonlocal boundary value problem, Int. J. Open problem Compt. Math., Vol 4, No 1, (2011) 36–43.
- [2] G. Infante, J.R.L. Webb, Nonzero solutions of Hammerstein integral equations with discontinuous kernels, J. Math. Anal, Appl. Vol 272, No 1, (2002) 30–42.
- [3] G. Infante, J.R.L. Webb, Three-point boundary value problems with solutions that change sign, J. Integral Equations Appl. 15 (2003), no. 1, 37–57.
- [4] G. Infante, J.R.L. Webb, Loss of positivity in a nonlinear scalar heat equation, NoDEA Nonlinear Differential Equations Appl. 13 (2006) 249– 261.
- [5] K.Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc. 63 (2001) 690–704.
- [6] K. Q. Lan and J. R. L. Webb, Positive Solutions of Semilinear Differential Equations with Singularities, Journal of differential equations, 148, (1998) 407–421.