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Abstract

In this paper, we will show some new inequalities for convex sequences,
and we will also make a connection between them and Chebyshev’s inequality,
which implies the existence of new class of sequences satisfying Chebyshev’s
inequality. We give also some applications and generalization of Haber and
Mercer’s inequalities.

Keywords: Chebyshev’s inequality, Convex Sequences, Symmetric sequences.

1 Introduction and main results

A classic result due to Chebyshev (1882-1883) (see [2, 5, 6, 10, 11, 13]) is stated
in the following theorem.

Theorem A Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two sequences
of real numbers monotonic in the same direction, and p = (p1, p2, · · · , pn) be
a positive sequence. Then(

n∑
i=1

pi

)(
n∑

i=1

piaibi

)
≥

(
n∑

i=1

piai

)(
n∑

i=1

pibi

)
. (1.1)

If a and b are monotonic in opposite directions, then the reverse of the in-
equality in (1.1) holds. In either case equality holds if and only if either
a1 = a2 = · · · = an or b1 = b2 = · · · = bn.
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There exist several results which show that Chebyshev inequality is valid
under weaker conditions, for example the condition that the sequences be
monotonic can be replaced by the condition that they be similarly ordered. In
this case Theorem A is a simple consequence of the following identity(

n∑
i=1

pi

)(
n∑

i=1

piaibi

)
−

(
n∑

i=1

piai

)(
n∑

i=1

pibi

)

=
1

2

n∑
i=1

n∑
j=1

pipj (ai − aj) (bi − bj) . (1.2)

Note that the sequences a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) are said
to be similarly ordered if

(ai − aj) (bi − bj) ≥ 0, 1 ≤ i, j ≤ n (1.3)

holds, and they are said to be oppositely ordered if the reverse inequality holds.

Considerable attention has been given to the study of convex sequences
and their properties, and the corresponding inequalities with applications. In
general, convex sequences as discrete versions of convex functions play an im-
portant role in mathematical analysis and in the theory of inequalities. In-
equalities for convex sequences provided considerable interest in proving a large
number of elegant results with applications (see Wu and Shi [15] , Wu and Deb-
nath [16] and Mercer [9]). In addition, several authors including Mitrinovic
and Vasic [11], Roberts and Varberg [14], and Mitrinovic et al. [10] presented
a large number of major results for convex sequences and related inequalities.

The aim of this paper is to prove new type of inequalities for convex
sequences, and we put a link between these inequalities and Chebyshev’s in-
equality. Before we state our results we give the following definition.

Definition A ([7]) Let a = (a1, a2, · · · , an) be a sequence of real numbers, a
is a convex sequence if for all i = 1, · · · , n− 2, we have

ai + ai+2 ≥ 2ai+1.

If the above inequality reversed, then a is termed concave sequence.

We obtain the following results.
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Theorem 1.1 Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two convex
(concave) sequences, and p = (p1, p2, · · · , pn) be a positive sequence symmetric
about

[
n+1

2

]
(pk = pn+1−k, for all k = 1, · · · , n). Then(

n∑
i=1

piaibi

)
+

(
n∑

i=1

piaibn+1−i

)

≥ 2(
n∑

i=1

pi

) ( n∑
i=1

piai

)(
n∑

i=1

pibi

)
. (1.4)

If a is convex (or concave) and b is concave (or convex ) sequences, then the
inequality (1.4) is reversed. In either case equality holds if and only if either
a1 = a2 = · · · = an or b1 = b2 = · · · = bn.

Corollary 1.1 Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two convex
(concave) sequences. If either a or b is symmetric about

[
n+1

2

]
, then

n∑
i=1

aibi ≥
1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
. (1.5)

If a is convex (or concave) and b is concave (or convex ) sequences, then the
inequality (1.5) is reversed. In either case equality holds if and only if either
a1 = a2 = · · · = an or b1 = b2 = · · · = bn.

Theorem 1.2 Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two convex
(or concave) sequences.
(i) If a and b are similarly ordered, then

n∑
i=1

aibi ≥
1

2

(
n∑

i=1

aibi +
n∑

i=1

an+1−ibi

)
≥ 1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
. (1.6)

(ii) If a and b are oppositely ordered, then

n∑
i=1

an+1−ibi ≥
1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
≥

n∑
i=1

aibi. (1.7)

Theorem 1.3 Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two se-
quences of real numbers where a is convex sequence and b decreasing for all
k = 1, · · · ,

[
n+1

2

]
and increasing for all k =

[
n+1

2

]
, · · · , n. Then the inequality

(1.4) holds.
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Here we obtain the discrete version of Fejér [3] double inequality.

Theorem 1.4 Let a = (a1, a2, · · · , an) be a convex sequence of real numbers
and p = (p1, p2, · · · , pn) be a positive sequence symmetric about

[
n+1

2

]
. Then(

n∑
i=1

pi

)
aN + an+1−N

2
≤

n∑
i=1

piai ≤

(
n∑

i=1

pi

)
a1 + an

2
. (1.8)

If a = (a1, a2, · · · , an) is concave sequence then the inequality (1.8) is reversed.

2 Some lemmas

Lemma 2.1 Let a = (a1, a2, · · · , an) be convex (or concave) sequence of real
numbers. Then the sequence c = (c1, c2, · · · , cn), where

ck = ak + an+1−k (2.1)

is decreasing (increasing) for all k = 1, · · · ,
[

n+1
2

]
and increasing (decreasing)

for all k =
[

n+1
2

]
, · · · , n.

Proof. Suppose that a is convex sequence. Since c is a symmetric sequence
about

[
n+1

2

]
, then we need only to prove that c is decreasing for all k =

1, · · · ,
[

n+1
2

]
. We have

ck − ck+1 = (ak + an+1−k)− (ak+1 + an−k)

= (ak + ak+1 − ak+1 + · · ·+ an−k − an−k + an+1−k)

− (ak+1 + ak+2 − ak+2 + · · ·+ an−k−1 − an−k−1 + an−k)

= (ak + ak+2 − 2ak+1) + (ak+1 + ak+3 − 2ak+2)

+ · · ·+ (an−1−k + an+1−k − 2an−k) (2.2)

for all k = 1, · · · ,
[

n+1
2

]
. By using mathematical induction and (2.2) , we obtain

ck − ck+1 =
n−1−k∑

i=k

(ai + ai+2 − 2ai+1) ≥ 0. (2.3)

If a is a concave sequence, then by using similar proof we obtain the result.

Lemma 2.2 Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two sequences
of real numbers. If a and b are similarly ordered, then

n∑
i=1

aibi ≥
n∑

i=1

aibn+1−i. (2.4)
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If a and b are oppositely ordered, then the inequality (2.4) is reversed.

Proof. Since a and b are similarly ordered, then we have for all i = 1, · · · , n

(ai − an+1−i) (bi − bn+1−i) ≥ 0 (2.5)

which implies that

aibi + an+1−ibn+1−i ≥ aibn+1−i + an+1−ibi. (2.6)

Then

2
n∑

i=1

aibi =
n∑

i=1

(aibi + an+1−ibn+1−i)

≥
n∑

i=1

(aibn+1−i + an+1−ibi) = 2
n∑

i=1

aibn+1−i. (2.7)

It follows that
n∑

i=1

aibi ≥
n∑

i=1

aibn+1−i.

If a and b are oppositely ordered, then by using similar proof we obtain the
result.

In the following we denote

N∑∗

i=1

ci =

{
c1 + c2 + · · ·+ cN , if n is even,

c1 + c2 + · · ·+ cN−1 + 1
2
cN , if n is odd,

where c = (c1, c2, · · · , cn) and N =
[

n+1
2

]
.

Lemma 2.3 Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two sequences
of real numbers and p = (p1, p2, · · · , pn) be a positive sequence, we denote by
N =

[
n+1

2

]
. If a and b are similarly ordered, then(

N∑∗

i=1

pi

)(
N∑∗

i=1

piaibi

)
≥

(
N∑∗

i=1

piai

)(
N∑∗

i=1

pibi

)
. (2.8)

If a and b are oppositely ordered, then the inequality (2.8) is reversed.

Proof.(i) If n is even, then the inequality (2.8) is equivalent to(
N∑

i=1

pi

)(
N∑

i=1

piaibi

)
≥

(
N∑

i=1

piai

)(
N∑

i=1

pibi

)
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which is Chebychev’s inequality.

(ii) If n is odd, we have

N∑∗

i=1

ci = c1 + c2 + · · ·+ 1

2
cN .

Since a and b are similarly ordered, then

(ai − aj) (bi − bj) ≥ 0, 1 ≤ i, j ≤ n

which implies
aibi + ajbj ≥ aibj + ajbi, 1 ≤ i, j ≤ n. (2.9)

Multiplying both sides of inequality (2.9) by pipj

pipjaibi + pipjajbj ≥ pipjaibj + pipjajbi, 1 ≤ i, j ≤ n (2.10)

which implies

pjp1a1b1 + p1pjajbj ≥ p1a1pjbj + p1b1pjaj,
pjp2a2b2 + p2pjajbj ≥ p2a2pjbj + p2b2pjaj,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
pjpN−1aN−1bN−1 + pN−1pjajbj ≥ pN−1aN−1pjbj + pN−1bN−1pjaj,

1
2
pjpNaNbN + 1

2
pNpjajbj ≥ 1

2
pNaNpjbj + 1

2
pNbNpjaj,

(2.11)

for all 1 ≤ j ≤ N. Summing both sides of inequalities (2.11) with respect to
i = 1, · · · , N , we obtain

pj

N∑∗

i=1

piaibi + pjajbj

N∑∗

i=1

pi ≥ pjbj

N∑∗

i=1

piai + pjaj

N∑∗

i=1

pibi. (2.12)

By the same reasoning as before we have by using (2.12)(
N∑∗

j=1

pj

)(
N∑∗

i=1

piaibi

)
+

(
N∑∗

j=1

pjajbj

)(
N∑∗

i=1

pi

)

≥

(
N∑∗

j=1

pjbj

)(
N∑∗

i=1

piai

)
+

(
N∑∗

j=1

pjaj

)(
N∑∗

i=1

pibi

)
(2.13)

which is equivalent to (2.8) . If a and b are oppositely ordered, then by using
similar proof we obtain the result.
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3 Proof of the Theorems

Proof of Theorem 1.1 Without loss of generality we suppose that a and b
are convex sequences and we denote by U and V the following sequences

Ui = ai + an+1−i, Vi = bi + bn+1−i.

Since a and b are convex sequences, then by using Lemma 2.1 we deduce that
U and V have the same direction of monotony. By applying Lemma 2.3 for all
i = 1, · · · , N =

[
n+1

2

]
, we obtain(

N∑∗

i=1

pi

)(
N∑∗

i=1

piUiVi

)
≥

(
N∑∗

i=1

piUi

)(
N∑∗

i=1

piVi

)
, (3.1)

where p = (p1, p2, · · · , pn) is a positive sequence and symmetric about
[

n+1
2

]
.

Then
N∑∗

i=1

pi (aibi + an+1−ibn+1−i) +

N∑∗

i=1

pi (aibn+1−i + an+1−ibi)

≥ 1(
N∑∗

i=1

pi

) ( N∑∗

i=1

pi (ai + an+1−i)

)(
N∑∗

i=1

pi (bi + bn+1−i)

)
. (3.2)

Using the identities

N∑∗

i=1

pi (aibi + an+1−ibn+1−i) =
n∑

i=1

piaibi, (3.3)

N∑∗

i=1

pi (aibn+1−i + an+1−ibi) =
n∑

i=1

piaibn+1−i, (3.4)

N∑∗

i=1

pi =
1

2

n∑
i=1

pi, (3.5)

and

N∑∗

i=1

pi (ai + an+1−i) =
n∑

i=1

piai,

N∑∗

i=1

pi (bi + bn+1−i) =
n∑

i=1

pibi. (3.6)

By using (3.3)− (3.6) , we obtain from (3.2)

n∑
i=1

piaibi +
n∑

i=1

piaibn+1−i ≥
2

n∑
i=1

pi

(
n∑

i=1

piai

)(
n∑

i=1

pibi

)
.
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Now, if a convex (concave) and b concave ( convex) sequences, then by using
similar proof as above we obtain the result.

Proof of Theorem 1.2 (i) Since a and b are convex sequences and similarly
ordered, then by Lemma 2.2 we have

n∑
i=1

aibi ≥
n∑

i=1

aibn+1−i (3.7)

which we can write

2
n∑

i=1

aibi ≥
n∑

i=1

aibn+1−i +
n∑

i=1

aibi. (3.8)

By Theorem 1.1 and (3.8), we have

2
n∑

i=1

aibi ≥
n∑

i=1

(aibn+1−i + aibi) ≥
2

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
. (3.9)

(ii) Since a and b are convex sequences, then by Theorem 1.1

n∑
i=1

aibn+1−i −
1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)

≥ 1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
−

n∑
i=1

aibi. (3.10)

On the other hand, we have

1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
≥

n∑
i=1

aibi, (3.11)

because a and b are oppositely ordered. By (3.10) and (3.11) , we get

n∑
i=1

aibn+1−i ≥
1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
. (3.12)

Now, if a and b are concave sequences, then by using similar proof as above
we obtain the result.

Proof of Theorem 1.3 We denote by U and V the following sequences

Ui = ai + an+1−i, (3.13)
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Vi = bi + bn+1−i. (3.14)

Since U is convex sequence, then by Lemma 2.1, U is decreasing for all i =
1, · · · ,

[
n+1

2

]
and increasing for all i =

[
n+1

2

]
, · · · , n. In order to prove (1.4)

we need to prove that V is decreasing for all i = 1, · · · ,
[

n+1
2

]
and increasing

for all i =
[

n+1
2

]
, · · · , n. Let 1 ≤ i ≤

[
n+1

2

]
, we denote by j = n + 1 − i([

n+1
2

]
≤ j ≤ n

)
. Then

Vi − Vi+1 = (bi + bn+1−i)− (bi+1 + bn−i)

= (bi − bi+1) + (bn+1−i − bn−i)

= (bi − bi+1) + (bj − bj−1) ≥ 0 (3.15)

because b is decreasing for all i = 1, · · · ,
[

n+1
2

]
and increasing for all i =[

n+1
2

]
, · · · , n. By the same method we can prove easily that V is increasing

for all i =
[

n+1
2

]
, · · · , n. Then we have U and V having the same direction of

monotony, and by applying Theorem A with p = (p1, p2, · · · , pn) is a positive
sequence symmetric about

[
n+1

2

]
, we obtain inequality (1.4) .

Proof of Theorem 1.4 Suppose that a = (a1, a2, · · · , an) is a convex se-
quence. By applying Lemma 2.1 for the sequence vk = ak + an+1−k we obtain
the following inequalities

vN ≤ vk ≤ v1, for all k = 1, · · · , N (3.16)

and

vN ≤ vk ≤ vn, for all k = N, · · · , n. (3.17)

By (3.16) and (3.17) we deduce that

(aN + an+1−N) ≤ ak + an+1−k ≤ (a1 + an) , k = 1, · · · , n. (3.18)

Multiplying inequalities (3.18) by pk, we obtain for all k = 1, · · · , n

(aN + an+1−N) pk ≤ (ak + an+1−k) pk ≤ (a1 + an) pk, k = 1, · · · , n

which implies

(aN + an+1−N)

(
n∑

k=1

pk

)
≤

n∑
k=1

pkak ≤ (a1 + an)

(
n∑

k=1

pk

)
.

For the case of concave sequence we use similar proof.
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4 Some Applications

In 1978, S. Haber [4] proved the following inequality:

Theorem B Let a and b be non negative real numbers, then for every n ≥ 0,
we have

1

n + 1

(
an + an−1b + · · ·+ bn

)
≥
(

a + b

2

)n

.

Many authors are interested by this inequality (see [1, 4, 8]) . It’s easy to show
that

xk = an−kbk (a ≥ 0, b ≥ 0) (k = 0, 1, · · · , n)

is a convex sequence. Then by Theorem 1.4, we have for xk = an−kbk (a ≥ 0, b ≥ 0)
(k = 0, 1, · · · , n) and p = (1, 1, · · · , 1)

1

n + 1

n∑
k=0

xk ≤
x0 + xn

2
,

hence
1

n + 1

(
an + an−1b + · · ·+ bn

)
≤ an + bn

2

which is the upper bound of Haber inequality, and we can state:

Theorem 4.1 Let a and b be non negative real numbers, then for every n ≥ 0,
we have (

a + b

2

)n

≤ 1

n + 1

(
an + an−1b + · · ·+ bn

)
≤ an + bn

2
.

A. McD. Mercer generalized Haber inequality for convex sequences and
obtained the following result:

Theorem C ([8]) Let {u}n
i=0 be convex sequence of real numbers. Then

1

n + 1

n∑
i=0

ui ≥
1

2n

n∑
i=0

Ci
nui.

In this section we prove that Mercer inequality can be deduced by Theorem
1.3. It’s clear that the symmetric sequence about

[
n
2

]
vi =

1

n + 1
− Ci

n

2n
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is decreasing for i = 0, · · · ,
[

n
2

]
and increasing for i =

[
n
2

]
, · · · , n. Then by

applying Theorem 1.3 for the sequences ui, vi (i = 0, · · · , n) (where vi is a
convex sequence) and p = (1, 1, · · · , 1) we obtain

n∑
i=0

uivi ≥
1

n + 1

(
n∑

i=0

ui

)(
n∑

i=0

vi

)
,

and since
n∑

i=0

vi = 0, we obtain

1

n + 1

n∑
i=0

ui −
1

2n

n∑
i=0

Ci
nui ≥ 0.

Theorem 4.2 Let (ai)i∈N be a convex and symmetric sequence of real numbers
such that

n∑
i=0

ai > 0.

Then the polynomial

Pn (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

don’t have any non negative zero.

Proof. Suppose that x ≥ 0. It’s clear that bi = xi (i = 1, 2, · · · , n) is a convex
sequence for x ≥ 0. Then by applying (1.5) we obtain for x 6= 1

Pn (x) =
n∑

i=0

aix
i ≥ 1

n + 1

n∑
i=0

ai

n∑
i=0

xi

=

(
1

n + 1

)(
1− xn+1

1− x

) n∑
i=0

ai > 0.

For x = 1 the result is trivial. This completes the proof of Theorem 4.2.

Remark 4.1 Putting p = (1, 1, · · · , 1) in Theorem 1.4, it’s clear that we have
equality in Theorem 1.4 if and only if that a = (a1, · · · , an) is arithmetic
sequence ( i. e., ai+2 + ai = 2ai+1 for all i = 1, · · · , n− 2) and (1.8) become

n∑
i=1

ai =
n

2
(a1 + an) ,

which is the sum of n terms of arithmetic sequence.
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5 Open problem

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [10, Chapter X] es-
tablished the following discrete version of Grüss inequality:

Theorem D Let a = (a1, a2, · · · , an) , b = (b1, b2, · · · , bn) be two n-tuples of
real numbers such that r ≤ ai ≤ R and s ≤ bi ≤ S for i = 1, 2, · · · , n. Then
one has ∣∣∣∣∣ 1n

n∑
i=1

aibi −
1

n2

(
n∑

i=1

ai

)(
n∑

i=1

bi

)∣∣∣∣∣ ≤
1

n

[n
2

](
1− 1

n

[n
2

])
(R− r) (S − s) ,

where [x] denotes the integer part of x, x ∈ R.

The following question arises: Can we obtain an analogue result for convex
n-tuples a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn)?
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