
Int. J. Open Problems Comput. Math., Vol. 5, No. 3, September, 2012
ISSN 2074-2827; Copyright c©ICSRS Publication, 2012
www.i-csrs.org

On β-expansions of unity for

Perron power series

F. Abbes and M. Hbaib

Department of Mathematics, University of Sfax, BP 1171, 3038 Sfax, Tunisia.
e-mail: farah.abbes@yahoo.fr and mmmhbaib@gmail.com

Abstract

The aim of this paper is to prove that the stings of 0 in the β-expansion of
1 exhibit a lacunarity bounded when β is a Perron power series over the finite
field Fq with |β| > 1.
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1 Introduction

β-expansions of real numbers were introduced by A. Rényi [13]. Since then,
their arithmetic, diophantine and ergodic properties have been extensively
studied by several authors.
Let β > 1 be a real number. The β-expansion of a real number x ∈ [0, 1] is
defined as the sequence (xi)i≥1 with values in {0, 1, ..., [β]} produced by the
β-transformation Tβ : x −→ βx (mod 1) as follows :

∀ i ≥ 1, xi = [βT i−1
β (x)], and thus x =

∑
i≥1

xi

βi
.

An expansion is finite if (xi)i≥1 is eventually 0. A β-expansion is periodic if
there exists p ≥ 1 and m ≥ 1 such that xk = xk+p holds for all k ≥ m; if
xk = xk+p holds for all k ≥ 1, then it is purely periodic.

The β-expansion of 1 plays an important role in the study of the classifi-
cation of algebraic numbers β > 1. Numbers β such that dβ(1) is ultimately
periodic are called Parry numbers and those such that dβ(1) is finite are called
simple Parry numbers. These families of numbers were introduced by Parry



On β-expansions of unity for Perron power series 29

[12] and its elements were initially called β-numbers and an easy argument
implies that these elements are algebraic integer numbers. It is known that if
β is a Pisot number (an algebraic integer whose conjugates have modulus <1),
then β is a Parry number and it was proved in [5] that if β is a Salem number
(an algebraic integer whose conjugates have modulus ≤ 1 and there exists at
least one conjugate with modulus 1) of degree 4, then β is a Parry number.
But, it is clair that there is not a full characterization of Parry numbers or
simple Parry numbers.

In particular, Mahler [10], in an old result, has interested in the gaps be-
tween non-zero digits in dβ(1) and he proved that if β > 1 is a algebraic number
such that dβ(1) = (ai)i≥1 is an infinite and lacunary sequence in the following
sense: There exists two sequences (mn)n≥1 and (sn)n≥0 such that :

1 = s0 ≤ m1 < s1 ≤ m2 < s2 · · · ≤ mn < sn ≤ mn+1 < sn+1 ≤ · · ·

with (sn −mn) ≥ 2, amn 6= 0, asn 6= 0 and ai = 0 if mn < i < sn for all n ≥ 1,
then

lim sup
n→+∞

(
sn

mn

) < ∞.

Verger-Gaugry in [14] proved that the gaps in dβ(1) are shown to exhibit
a gappiness bounded using a version of Liouville’s inequality which extends
Mahler and Güting’s approximation theorems and he obtained that if β > 1
is a algebraic number such that dβ(1) = (ai)i≥1 is an infinite and lacunary
sequence, then

lim sup
n→+∞

(
sn

mn

) ≤ Log(M(β))

Log(β)
. (1)

This result provides, in a natural way, a new classification of algebraic numbers
β > 1. Allouche and Cosnard in [3] proved that there exists a smallest q ∈]1, 2[

for which there exists a unique expansion of 1 as 1 =
+∞∑
n=1

δnq
−n with δn ∈ {0, 1}.

Furthermore, for this smallest q, the coefficient δn is equal to 0 (respectively, 1)
if the sum of the binary digits of n is even (respectively, odd). This constant
q is named Komornik-Loreti constant. Since the strings of zeros and 1’s in
the sequence δn are known and uniformly bounded, the constant q satisfies
lim sup
n→+∞

( sn

mn
) = 1. However, authors in [3] have shown that q is a transcendental

number.
A far reaching generalization of (1) with the same upper bound Log(M(β))

Log(β)
for

a so-called Diophantine exponent of the sequence dβ(1) = (ai)i≥1 was obtained
by Adamczewski and Bugeaud in [1]. Both in [1] and in the subsequent paper
of Bugeaud [6] the main ingredient is Subspace Theorem.

Recently, Dubickas in [7] obtained an upper bound for two strings of con-
secutive zeros in dβ(1) for rational β, unsing the theorem of Ridout, he proved
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that if β = p
q

satisfying 1 < β < 2, then

lim sup
n→+∞

(
sn

mn

) ≤ Log(M(β))

Log(β)
=

Log(p)

Log(p
q
)
.

In this paper, we consider an analogue of this concept in algebraic function
over finite fields.

In section 2, We will define Fq((x
−1)), the field of formal power series.

Furthermore, we will provide the algebraic series as well as the analogues to
Pisot and Salem numbers.

In section 3, we introduce the β-expansion algorithm for Fq((x
−1)).

The last section is devoted to prove that if β is a Perron power series of
algebraic degree d ≥ 2 such that, dβ(1) = (ai)i≥1 is an infinite and lacunary
sequence then the quotient of gaps in the string of 0 in the sequence (ai)i≥1 is
bounded. This implies that if dβ(1) has unbounded quotient of gaps so β has

at last one conjugate β̃ with |β̃| < |β|.

2 Field of formal power series

Let p be a prime , q be a power of p, and let Fq be the finite field of q elements.
By analogy with the real case , one can classically extend arithmetical results
concerning the ring Z to the ring Fq[x] of polynomials with coefficient in Fq

and the field Fq(x) to the field of rational functions.
Let Fq((x

−1)) be the field of formal power series of the form :

f =
l∑

k=−∞

fkx
k, fk ∈ Fq

where

l = degf :=

{
max{k : fk 6= 0} for f 6= 0;
−∞ for f = 0.

Define the absolute value

|f | =
{

qdeg f for f 6= 0;
0 for f = 0.

Since |.| is not archimedean, |.| fulfills the strict triangle inequality

|f + g| ≤ max (|f |, |g|) and

|f + g| = max (|f |, |g|) if |f | 6= |g|.
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Let f ∈ Fq((x
−1)), define the integer (polynomial) part [f ] =

l∑
k=0

fkx
k where

the empty sum, as usual, is defined to be zero.
Therefore [f ] ∈ Fq[x] and (f − [f ]) = {f} is in the unit disk D(0, 1) for all
f ∈ Fq((x

−1)).

Let f ∈ Fq((x
−1)), we say that f is an algebraic series over Fq[x] if it is root

of a polynomial P ∈ Fq[x][y] and it is called an integer algebraic series when
P is unit irreducible polynomial. Note that if f is not an algebraic series, we
say that f is a transcendental power series.

Theorem 2.1 [11] Let K be complete with respect to |.| and L/K be an
algebraic extension of degree n. Then |.| has a unique extension to L defined
by |a| = n

√
|NL/K(a)|, and L is complete with respect to this extension.

We apply Proposition 2.1 to algebraic extensions of Fq((x
−1)).

Therefore, since Fq[x] ⊂ Fq((x
−1)), every algebraic element over Fq[x] can be

valuated. However, since Fq((x
−1)) is not algebraically closed, such an element

do not necessarily expressed as a power series. For a full characterization of
the algebraic closure of Fq[x], we refer to K. S. Kedlaya [9].

3 β-expansions in Fq((x
−1))

Similarly to the classical β-expansions for real numbers, we define the β-
expansions for power series. For this, let β, f ∈ Fq((x

−1)) with |β| > 1 and
|f | < 1. A representation in base β (or β-representation) of f is an infinite
sequence (ai)i≥1 in Fq[x], such

f =
∑
i≥1

ai

βi
.

A particular β-representation of f is called the β-expansion of f in base β,
noted dβ(f), which is obtained by using the β-transformation Tβ in the unit
disk which is given by Tβ(f) = βf − [βf ]. Then dβ(f) = (ai)i≥1 where

ai = [βT i−1
β (f)] (∗)

The following theorem provides an analogue to the Parry condition in the real
case.

Theorem 3.1 [8] A β-representation (ai)i≥1 is the β-expansion of f in the
unit disk D(0, 1) if and only if |ai| < |β| for all i ≥ 1.
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Now let f ∈ Fq((x
−1)) be an element with |f | ≥ 1. Then there is a unique

k ∈ N∗ such that |β|k−1 ≤ |f | < |β|k, so | f
βk | < 1 and we can represent f by

shifting dβ( f
βk ) by k digits to the left. Therefore, if dβ(f) = 0.a1a2a3... then

dβ(βf) = a1.a2a3...
Note that the β-expansion is finite if (ai)i≥1 is eventually 0, it is periodic if
there exists p ≥ 1 and m ≥ 1 such that ak = ak+p holds for all k ≥ m; if
ak = ak+p holds for all k ≥ 1, then it is purely periodic.

In contrast to the real case, there is no carry occurring, when we add two
digits. Therefore, if f and g ∈ Fq((x

−1)), we have dβ(f + g) = dβ(f) + dβ(g)
digitwise.

It is clair that the natural β-expansion of 1 is 1.0∞. However, if we replace
f by 1 in the previous algorithm (∗), we get a sequence (ai)i≥1 which plays an
important role in the study of the classification of algebraic series β (in this
case |a1| = |β|). In the sequel, dβ(1) mains the sequence obtained by (∗).

This following theorem characterizes the sequence of polynomial (ai)i≥1

able to be a certain β-expansion of 1.

Theorem 3.2 [8] For all sequence of polynomial (ai)i≥1 such that deg(a1) >
deg(ai) for all i ≥ 2, there exist β ∈ Fq((x

−1)) with |β| > 1 such that dβ(1) =
(ai)i≥1.

Series β such that dβ(1) is ultimately periodic are called β-series and those
such that dβ(1) is finite are called simple β-series and also an easy argument
implies that these elements are algebraic integer series.
An element β = β(1) ∈ Fq((x

−1)) is said to be Pisot if it is an algebraic integer
over Fq[x], |β| > 1 and |β(j)| < 1 holds for all its conjugates β(j). An element
β = β(1) ∈ Fq((x

−1)) is said to be Salem if it is an algebraic integer over Fq[x],
|β| > 1 and |β(j)| ≤ 1 and there exists at least one conjugate β(k) such that
|β(k)| = 1. An element β = β(1) ∈ Fq((x

−1)) is said to be Perron if it is an
algebraic integer over Fq[x], |β| > 1 and |β(j)| ≤ |β|.

P. Bateman and A. L. Duquette [4] characterized the Pisot and Salem
power series:

Theorem 3.3 Let β ∈ Fq((x
−1)) be an algebraic integer over Fq[x] and

P (y) = yn − A1y
n−1 − · · · − An, Ai ∈ Fq[x],

be its minimal polynomial. Then

(i) β is a Pisot series if and only if |A1| > max
2≤i≤n

|Ai|.

(ii) β is a Salem series if and only if |A1| = max
2≤i≤n

|Ai|.

Hbaib and Mkaouar [8] have proved that the simple β-series are the Pisot
series and the β-series are the Salem series.
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4 Results

In the previous section, we have seen that the β-expansion of 1 play a crucial
role in the study of the algebraicity of power series β. This motivates the
following problem first investigated in [8]. As a first result, we establish the
following theorem:

Theorem 4.1 Let β ∈ Fq((x
−1)) be a Perron series of algebraic degree

d ≥ 2 such that dβ(1) = (ai)i≥1 is an infinite and lacunary sequence in the
following sense:
There exists two sequences (mn)n≥1 and (sn)n≥0 such that:

1 = s0 ≤ m1 < s1 ≤ m2 < s2 · · · ≤ mn < sn ≤ mn+1 < sn+1 ≤ · · ·

with (sn −mn) ≥ 2, amn 6= 0, asn 6= 0 and ai = 0 if mn < i < sn for all n ≥ 1.
Then,

lim sup
n→+∞

(
sn

mn

) ≤ d

In order to prove this result, we need these Lemmas:

Lemma 4.2 Let Q ∈ Fq[x][y] and F (y(1), y(2), ..., y(d)) = Q(y(1))Q(y(2))...Q(y(d)).
Then, there exists a polynomial T with d variables and coefficients in Fq[x] such
that

F (y(1), y(2), ..., y(d)) = T (σ1, σ2, ..., σd)

where: 

σ1 =
d∑

i=1

y(i)

σ2 =
∑

1≤i<j≤d

y(i)y(j)

σ3 =
∑

1≤i<j<k≤d

y(i)y(j)y(k)

...
σd = y(1)y(2)...y(d)

Note moreover that the total degree of T is lower or equal to the degree of Q.
Proof:
Let α1 = deg(Q).
Among terms containing (y(1))α1 , we designate by α2 the maximal exponent
of y(2).
Among terms containing (y(1))α1(y(2))α2 , we designate by α3 the maximal ex-
ponent of y(3) and so on. We define ,thus, the dominant term of the forms
A(y(1))α1(y(2))α2 ...(y(d))αd . Since F is symmetrical, we have α1 ≥ α2 ≥ · · · ≥ αd
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( indeed, F contains all terms A(y(π(1)))α1(y(π(2)))α2 ...(y(π(d)))αd where π is a
permutation of {1, 2, ..., d}).
We remark ,thus, that the dominant term of σα1−α2

1 ...σ
αd−1−αd

d−1 σα1
d is (y(1))α1(y(2))α2 ...(y(d))αd ,

hence by calculating F (y(1), y(2), ..., y(d))−Aσα1−α2
1 ...σ

αd−1−αd

d−1 σαd
d , we eliminate

of F all terms of the forms A(y(π(1)))α1(y(π(2)))α2 ...(y(π(d)))αd .
Finally we get the result by induction.

Lemma 4.3 Let β be a Perron series with minimal polynomial Pβ(y) =
yd + Ad−1y

d−1 + · · ·+ A0 , where Ai ∈ Fq[x] for all 0 ≤ i ≤ d.
Let K(y) = Bmym + Bm−1y

m−1 + · · ·+ B0 where Bi ∈ Fq[x] for all 0 ≤ i ≤ m
and m ≥ d. Then,

|K(β)| ≥ 1

H(K)d−1|β|(d−1)m
,

where H(K) is the height of K defined by H(K) = max
0≤i≤m

|Bi|.

Proof:
Let K(y) = Bmym + Bm−1y

m−1 + · · ·+ B0 a polynomial of degree m ≥ d.
Since βd = −Ad−1β

d−1 − · · · − A0, there exist C(i,s) ∈ Fq[x] such that

βd+s−1 = C(d−1,s)β
d−1 + · · ·+ C(0,s) for all s ≥ 1.

Let β = β(1) and β(2), . . . , β(d) be the conjugates of β. For s = m−d+1, there
exist Di ∈ Fq[x] such that

K(β(j)) = Dd−1(β
(j))d−1 + · · ·+ D0 for all 1 ≤ j ≤ d.

By Lemma 4.2, there exists a polynomial T with d variables and coefficients
in Fq[x] such that

d∏
j=1

K(β(j)) = T (σ1, σ2, ..., σd)

with |σi| = |
∑

1≤j1<j2<...≤d

β(j1)β(j2)...β(ji)| = |Ad−i| for all 1 ≤ i ≤ d, and the

total degree of T is lower or equal to the degree of d which implies that

d∏
j=1

K(β(j)) ∈ Fq[x].

We obtain

|K(β)| ≥ 1
d∏

j=2

|K(β(j))|
.
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However, for all 2 ≤ j ≤ d, we have

|K(β(j))| = |Bm(β(j))m + Bm−1(β
(j))m−1 + · · ·+ B0|

≤ H(K)|βm|

which implies that

|
d∏

j=2

K(β(j))| ≤ H(K)d−1|β|(d−1)m

Finally, we have

|K(β)| ≥ 1

H(K)d−1|β|(d−1)m

Proof of Theorem 4.1.
We consider the polynomial

Kn(y) := −ymn + a1y
mn−1 + a2y

mn−2 + · · ·+ amn .

It is clair that Kn(y) is a polynomial of degree mn and H(Kn) = |β|.
Let now Pβ(y) = yd + Ad−1y

d−1 + · · ·+ A0 be the minimal polynomial of β.
By lemma 4.3, we have

|Kn(β)| ≥ 1

|β|(d−1)(mn+1)
. (1)

On the other hand, Kn(β) = βmn(asnβ−sn + asn+1β
−sn+1 + · · ·). Then,

|Kn(β)| ≤ |β|mn|β|
|β|sn

= |β|mn−sn+1 (2)

Combining (1) and (2), we get

|β|sn−mn−1 < |β|2d−1

which implies that

(sn − d).deg(β) < (d− 1)(mn + 1).deg(β).

So,
sn

mn

− d

mn

<
2d− 1

mn

Finally, we get that

lim sup
n→+∞

(
sn

mn

) ≤ d
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Corollary 4.4 Let β ∈ Fq((x
−1)) with |β| > 1 such that dβ(1) is an infi-

nite and lacunary sequence in the following sense: There exists two sequences
(mn)n≥1 and (sn)n≥0 such that:

1 = s0 ≤ m1 < s1 ≤ m2 < s2 · · · ≤ mn < sn ≤ mn+1 < sn+1 ≤ · · ·

with (sn −mn) ≥ 2, amn 6= 0, asn 6= 0 and ai = 0 if mn < i < sn for all n ≥ 1.

If lim sup
n→+∞

( sn

mn
) = +∞ then β has at last one conjugate with |β̃| < |β|.

5 Open Problem

Is it possible to generalize Theorem 4.1 for any algebraic series by introducing
its Mahler measure in the analogue way of real case.
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