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Abstract

This paper is concerned with the second change of rings theorems for the
Gorenstein homological dimensions. More precisely, we give the ultimate ver-
sions of these theorems relatively to these new invariants.
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1 Introduction

Throughout this paper, R denotes an associative ring with identity element.
All modules, if not otherwise specified, are assumed to be left R-modules. If
x is a central element of R, when no confusion is likely, R∗ denotes the factor

ring
R

xR
and, for any R-module A, Z(A) denotes the set of all zero-divisors of

A.

The Gorenstein homological algebra has reached an advanced level since the
pioneering works of M. Auslander and M. Bridger in [1, 2]. One of the central
points of the theory is its ability to recognize Gorenstein rings. A Noetherian
local commutative ring R is called Gorenstein if it is Cohen-Macaulay and has
an irreducible parameter ideal. It is worth noting that classical homological
algebra might be viewed as being based on projective modules. Whereas, in
Gorenstein homological algebra, one replaces the projective modules with the
class of Gorenstein projective modules.
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Recall that an R-module M is said to be Gorenstein projective (G-projective
for short), if there exists an exact sequence P of projective modules, called a
complete projective resolution, with

P = ... −→ P2 −→ P1 −→ P0 −→ P−1 −→ P−2 −→ ...

such that the complex HomR(P, Q) is exact for each projective module Q (see
[6, 12]), and M = Im(P0 → P−1). Also, the Gorenstein projective dimension of
an R-module M (GpdR(M) for short) is the least positive integer n such that
there exists an exact sequence 0 −→ Gn −→ Gn−1 −→ ... −→ G0 −→ M −→ 0
with the Gi are Gorenstein projective modules, +∞ otherwise. The Gorenstein
projective dimension is a refinement of the classical projective dimension of a
module M , in the sense that GpdR(M) ≤ pdR(M) with equality when pdR(M)
is finite. It was introduced by Enochs and Jenda in [7] to extend the notion of
the G-dimension defined by Auslander and Bridger. The Gorenstein injective
dimension is defined dually. Moreover, an R-module M is said to be Gorenstein
flat (G-flat for short), if there exists an exact sequence F of flat modules, called
a complete flat resolution, with

F = ... −→ F2 −→ F1 −→ F0 −→ F−1 −→ F−2 −→ ...

such that the complex I⊗R F is exact for each injective right R-module I, and
M = Im(F0 → F−1). The reader is kindly referred to [5, 6, 7, 8, 9, 10, 12] for
basics and in-depth investigations on Gorenstein homological theory.

On the other hand, a recent paper of Bennis and Mahdou, [4], established
the following second change of rings theorems for the Gorenstein projective
dimension and the Gorenstein injective dimension:

Theorem A [4, Theorem 3.1]. Let x be a central non zero-divisor in R. If
M is an R-module such that x is a non zero-divisor on M , then

GpdR∗

( M

xM

)
≤ GpdR(M).

Theorem B [4, Theorem 3.4]. Let x be a central non zero-divisor in R. If
M is an R-module such that x is a non zero-divisor on M , then

1 + GidR∗

( M

xM

)
≤ GidR(M)

except when M is a Gorenstein injective R-module (in which case M = xM).

The aim of this paper is, on the one hand, to generalize Theorem A and
Theorem B dropping the hypothesis “x 6∈ Z(M)” and involving instead the
submodule xM := {z ∈ M : xz = 0} of M annihilated by x, and to give



40 Samir Bouchiba and Mostafa Khaloui

the second change of rings theorem for the Gorenstein flat dimension as well
as its ultimate version in the setting of a right coherent ring, on the other.
Our approach allows to assign the dual result of Theorem A and Theorem
B and to prove that each version of second change of rings theorem for the
Gorenstein projective dimension has a counterpart in the case of the Gorenstein
injective dimension. Our ultimate second change of rings theorem, Theorem
2.13, generalizes Theorem B by stating the following: Let x be a central element
of R such that x 6∈ Z(R). Let M be an R-module which is not a Gorenstein
injective R-module. Then

1 + GidR∗

( M

xM

)
≤ GidR(M) if and only if GidR∗(xM)− 1 ≤ GidR(M).

As to the Gorenstein projective dimension, we transfer to the Gorenstein case
and give its ultimate form a version of the second change of rings theorem for
the projective dimension, that is, [13, Exercise 1, p. 155]. In fact, we prove
the following:

Theorem C. Let x be a central element of R such that x 6∈ Z(R). Let M be
an R-module such that M = xM , that is, R∗ ⊗R M = 0. Then

1 + GpdR∗(xM) ≤ GpdR(M)

except when M is Gorenstein projective over R in which case xM = 0.

Further, through Theorem 2.15, we give the ultimate version of Theorem C
by proving the following: Let x be a central element of R such that x 6∈ Z(R).
Let M be an R-module which is not Gorenstein projective over R. Then

1 + GpdR∗(xM) ≤ GpdR(M) if and only if GpdR∗

( M

xM

)
− 1 ≤ GpdR(M).

Section 3 deals with the Gorenstein flat dimension. Actually, we provide the
second change of rings theorem for the Gorenstein flat dimension as well as
the ultimate form of the Gorenstein flat version of Theorem 2.15 in the setting
of a right coherent ring R.

2 Case of the Gorenstein projective dimension

and Gorenstein injective dimension

This section aims at giving a general version of the second change of rings
theorems for the Gorenstein projective dimension and the Gorenstein injective
one, namely, Theorem A and Theorem B.
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First, for the convenience of the reader, we catalog the following results
from [12] and [4] which will be useful to prove our theorems.

Proposition 2.1 [12, Theorem 2.20]. Let M be an R-module with finite
Gorenstein projective dimension and let n ≥ 0 be an integer. Then the follow-
ing assertions are equivalent:

1) GpdR(M) ≤ n;
2) Exti

R(M,P ) = 0 for all i > n and all projective R-modules P .

Proposition 2.2 [12, Theorem 2.22]. Let M be an R-module with finite
Gorenstein injective dimension and let n ≥ 0 be an integer. Then the following
assertions are equivalent:

1) GidR(M) ≤ n;
2) Exti

R(I, M) = 0 for all i > n and all injective R-modules I.

Proposition 2.3 [12, Theorem 2.24]. Let 0 −→ M ′ −→ M −→ M ′′ −→ 0
be an exact sequence of R-modules. If any two of the modules M,M ′,M ′′ have
finite Gorenstein projective dimension, then so has the third.

Proposition 2.4 [12, Theorem 2.25]. Let 0 −→ M ′ −→ M −→ M ′′ −→ 0
be an exact sequence of R-modules. If any two of the modules M,M ′,M ′′ have
finite Gorenstein injective dimension, then so has the third.

Lemma 2.5 [4, Lemma 2.4]. Let 0 −→ A −→ B −→ C −→ 0 be an exact
sequence of R-modules. Then

1) GpdR(A) ≤max{GpdR(B), GpdR(C)−1} with equality when GpdR(B) 6=
GpdR(C).

2) GpdR(B) ≤ max{GpdR(A), GpdR(C)} with equality when GpdR(C) 6=
GpdR(A) + 1.

3) GpdR(C) ≤max{GpdR(B), GpdR(A)+1} with equality when GpdR(B) 6=
GpdR(A).

Lemma 2.6 [4, Lemma 2.5]. Let 0 −→ A −→ B −→ C −→ 0 be an exact
sequence of R-modules. Then

1) GidR(A) ≤ max{GidR(B), GidR(C) + 1} with equality when GidR(B) 6=
GidR(C).

2) GidR(B) ≤ max{GidR(A), GidR(C)} with equality when GidR(A) 6=
GidR(C) + 1.

3) GidR(C) ≤ max{GidR(B), GidR(A)− 1} with equality when GidR(B) 6=
GidR(A).

Theorem 2.7 [4, Theorem 4.1 and Theorem 4.2]. Let x be a central
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element of R such that x 6∈ Z(R). Let M be an R-module such that xM = 0.
Then 




GpdR(M) = 1 + GpdR∗(M)

GidR(M) = 1 + GidR∗(M)

In particular, GpdR(M) and GpdR∗(M) (resp., GidR(M) and GidR∗(M)) are
simultaneously finite.

Next, we establish the following results which will be useful in the sequel.

Lemma 2.8. Let M be an R-module and x a central element of R such that

x 6∈ Z(R). Then HomR(R∗,M) ∼= xM , Ext1
R(R∗,M) ∼= M

xM
and

TorR
1 (R∗,M) ∼= xM .

Proof. As x 6∈ Z(R), the following sequence is exact 0 −→ R
x−→ R −→

R∗ −→ 0. Applying the functor HomR(−,M), we get the next exact sequence

0 → HomR(R∗, M) → HomR(R,M)
x→ HomR(R, M) → Ext1

R(R∗,M) → 0.

Since HomR(R, M) ∼= M , this latter sequence turns out to be the following
exact one

0 → HomR(R∗,M) → M
x→ M → Ext1

R(R∗,M) → 0.

Then the first two isomorphisms easily follows. Applying the functor ⊗RM
instead of HomR(−, M) to the initial exact sequence yields the last isomor-
phism. ¤

Lemma 2.9. Let x be a central element of R such that x 6∈ Z(R). Let 0 −→
N

i−→ E
α−→ M −→ 0 be an exact sequence of R-modules with x 6∈ Z(E).

Then the natural sequence of R∗-modules

0 −→ xM −→ N

xN

i−→ E

xE

α−→ M

xM
−→ 0

is exact.

Proof. Tensoring with R∗ the sequence 0 −→ N
i−→ E

α−→ M −→ 0 yields,
by Lemma 2.8, the exact sequence of R∗-modules

0 = xE = TorR
1 (R∗, E) → xM = TorR

1 (R∗,M) → N

xM

i→ E

xE

α→ M

xM
→ 0

yielding the desired exact sequence. ¤
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Lemma 2.10. Let x be a central element of R such that x 6∈ Z(R). Let

0 −→ M
i−→ E

α−→ N −→ 0 be an exact sequence of R-modules such that
E = xE. Then the natural sequence of R∗-modules

0 −→ xM
xi−→ xE

xα−→ xN −→ M

xM
−→ 0

is exact.

Proof. Applying the functor HomR(R∗,−) to the sequence 0 −→ M
i−→

E
α−→ N −→ 0, we get the exact sequence

0 −→ xM
xi−→ xE

xα−→ xN −→ Ext1
R(R∗,M) −→ Ext1

R(R∗, E).

As, by Lemma 2.8, Ext1
R(R∗,M) ∼= M

xM
and Ext1

R(R∗, E) ∼= E

xE
= 0, we ob-

tain the desired exact sequence. ¤

In light of Lemma 2.8, a new interpretation of the hypotheses of Theorem
A, that is, x 6∈ Z(M), arises as (xM :=) HomR(R∗,M) = 0 allowing to state
Theorem A in the following way: Let x be a central non zero-divisor in R. If
M is an R-module such that HomR(R∗,M) = 0, then

( GpdR∗(R
∗ ⊗R M) =) GpdR∗

( M

xM

)
≤ GpdR(M).

In view of this, it becomes clear that the dual result of Theorem A is the
following theorem:

Theorem 2.11 [4, Lemma 3.3]. Let x be a central element of R such that
x 6∈ Z(R). Let M be an R-module such that M = xM , that is, R∗ ⊗R M = 0.
Then (

GidR∗(HomR(R∗,M)) =
)

GidR∗(xM) ≤ GidR(M).

Notice that Theorem 2.11 is the Gorenstein version of [13, Theorem 204]
and that Theorem C stands as the dual of Theorem B.

Next, through Theorem 2.12 and Theorem 2.13, we generalize the second
change of rings theorem for the Gorenstein injective dimension, that is Theo-
rem B. First, notice that if M is a Gorenstein injective R-module and x is a
central element of R such that x 6∈ Z(R), then M = xM .

Theorem 2.12. Let x be a central element of R such that x 6∈ Z(R). Let M
be an R-module which is not Gorenstein injective over R. Then

1) 1 + GidR∗

( M

xM

)
≤ max{GidR∗(xM)− 1, GidR(M)}.
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2) If GidR(M) < +∞, then GidR∗

( M

xM

)
and GidR∗(xM) are simultaneously

finite.

3) Assume that GidR∗(xM) > GidR(M). Then GidR∗(xM) = 2+GidR∗

( M

xM

)
.

Proof. 1) (and (2)) If GidR(M) = +∞, then we are done. Next, assume that
1 ≤ GidR(M) < +∞. In view of Theorem 2.7, it suffices to prove that

GidR

( M

xM

)
≤ max{GidR(xM)− 2, GidR(M)}.

Consider the following two exact sequences of R-modules





0 −→ xM −→ M
x−→ xM −→ 0 (∗)

0 −→ xM −→ M −→ M

xM
−→ 0 (∗∗).

First, by Proposition 2.4, GidR

( M

xM

)
is finite if and only GidR(xM) is finite

if and only if GidR(xM) is finite. Then, by Theorem 2.7, (2) holds. Now,

by virtue of Lemma 2.6, via the sequence(∗∗), GidR

( M

xM

)
≤ max{GidR(M),

GidR(xM) − 1}, and via (∗), GidR(xM) ≤ max{GidR(M), GidR(xM) − 1}.
Hence GidR

( M

xM

)
≤ max{GidR(M), GidR(xM)− 2} establishing (1).

3) Assume that GidR∗(xM) > GidR(M). Then, by Theorem 2.7, GidR(xM) >

GidR(M) + 1. Now, by (1), GidR

( M

xM

)
≤ GidR(xM) − 2. Conversely, by

Lemma 2.6, via the sequence (∗), GidR(xM) ≤ max{GidR(M), GidR(xM)+1}
and via the sequence (∗∗), GidR(xM) ≤ max

{
GidR(M), GidR

( M

xM

)
+ 1

}
.

Then GidR(xM) − 1 ≤ max
{

GidR(M), GidR

( M

xM

)
+ 1

}
. As by hypotheses,

GidR(xM) > GidR(M) + 1, we get GidR(xM)− 1 ≤ GidR

( M

xM

)
+ 1 yielding

the desired equality and completing the proof. ¤

Our next result represents the ultimate version of the second change of
rings theorem for the Gorenstein injective dimension, that is, Theorem B from
the introduction.

Theorem 2.13. Let x be a central element of R such that x 6∈ Z(R). Let M
be an R-module which is not a Gorenstein injective R-module. Then

1 + GidR∗

( M

xM

)
≤ GidR(M) if and only if GidR∗(xM)− 1 ≤ GidR(M).
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Proof. If GidR∗(xM)− 1 ≤ GidR(M), then, by Theorem 2.12(1),

1+GidR∗

( M

xM

)
≤ GidR(M). Conversely, assume that 1+GidR∗

( M

xM

)
≤

GidR(M), that is, GidR

( M

xM

)
≤ GidR(M). A similar statement of the as-

sertion (1) of Theorem 2.12 is established for the R∗-module xM in the proof

of Theorem 2.12(3), that is, GidR(xM)−1 ≤max
{

GidR(M), GidR

( M

xM

)
+1

}
.

Hence GidR(xM) − 1 ≤ GidR(M) + 1, so that, by Theorem 2.7, we get
GidR∗(xM)− 1 ≤ GidR(M), as desired. ¤

Next, through Theorem 2.14 and Theorem 2.15, we generalize the second
change of rings theorem for the Gorenstein projective dimension, that is The-
orem A. Note that if M is a Gorenstein projective R-module and x is a central

element of R such that x 6∈ Z(R), then
M

xM
is Gorenstein projective over R∗

and xM = 0. The proofs of Theorem 2.14 and Theorem 2.15 are similar to
those of Theorem 2.12 and Theorem 2.13, respectively, using Lemma 2.5 and
Theorem 2.7.

Theorem 2.14. Let x be a central element of R such that x 6∈ Z(R). Let M
be an R-module. Then

1) GpdR∗

( M

xM

)
≤ max{2 + GpdR∗(xM), GpdR(M)}.

2) If GpdR(M) < +∞, then GpdR∗

( M

xM

)
and GpdR∗(xM) are simultane-

ously finite.
3) If 1+GpdR∗(xM) > GpdR(M) and M is not Gorenstein projective over R,
then

GpdR∗

( M

xM

)
= 2 + GpdR∗(xM).

The following result is the dual of Theorem 2.13 and it represents the ul-
timate version of Theorem C from the introduction. One can easily notice
the duality between the corresponding “if” statements of Theorem 2.13 and
Theorem 2.15 as well as their “only if” statements.

Theorem 2.15. Let x be a central element of R such that x 6∈ Z(R). Let M
be an R-module which is not Gorenstein projective over R. Then

1 + GpdR∗(xM) ≤ GpdR(M) if and only if GpdR∗

( M

xM

)
− 1 ≤ GpdR(M).
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3 Case of the Gorenstein flat dimension

The goal of this section is to establish the second change of rings theorem for
the Gorenstein flat dimension and its ultimate version in the setting of a right
coherent ring R.

Next, we collect useful results concerning basic properties of the Gorenstein
flat dimension.

Proposition 3.1 [12, Theorem 3.14]. Let R be a right coherent ring. Let
M be an R-module with finite Gorenstein flat dimension and let n ≥ 0 be an
integer. Then the following assertions are equivalent:

1) GfdR(M) ≤ n;
2) TorR

i (I, M) = 0 for all i > n and all injective R-modules I;
3) TorR

i (Q,M) = 0 for all i > n and all R-modules Q with finite injective
dimension.

Proposition 3.2 [12, Theorem 3.15]. Let R be a right coherent ring. Let
0 −→ M ′ −→ M −→ M ′′ −→ 0 be an exact sequence of R-modules. If any
two of the modules M,M ′,M ′′ have finite Gorenstein flat dimension, then so
has the third.

Lemma 3.3. Let R be a right coherent ring. Let 0 −→ A −→ B −→ C −→ 0
be an exact sequence of R-modules. Then

1) GfdR(A) ≤ max{GfdR(B), GfdR(C)−1} with equality when GfdR(B) 6=
GfdR(C).

2) GfdR(B) ≤ max{GfdR(A), GfdR(C)} with equality when GfdR(C) 6=
GfdR(A) + 1.

3) GfdR(C) ≤ max{GfdR(B), GfdR(A)+1} with equality when GfdR(B) 6=
GfdR(A).

Proof. It is straightforward via Proposition 3.1 and Proposition 3.2. For a
proof in the general setting of a GF-closed ring R, we refer to [3, Theorem
2.11]. ¤

The following result presents an additional argument that flat modules are
almost projective modules.

Lemma 3.4. 1) Let x be a non zero-divisor element of R and let A be a
direct limit of a direct system of nonzero projective R-modules. Then x is a
non zero-divisor of M .
2) Let x be a non zero-divisor element of R and let M be a flat R-module.
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Then x is a non zero-divisor of M .

Proof. 1) Let {Pi, ϕ
i
j} be a direct system of nonzero projective modules with

ϕi
j : Pi −→ Pj,∀i ≤ j. Let λi : Pi −→

∐
i

Pi be the ith injection into the

direct sum of the Pi. Let H = lim
−→

Pi =

∐
Pi

S
with S is the submodule of∐

Pi generated by all elements of the form λj(ϕ
i
j(ai))−λi(ai). Let z ∈ H such

that xz = 0. Then, by [15, Theorem 2.17(i)], there exists an index i and an
element ai ∈ Pi such that z = λi(ai). Then xz = λi(xai) = 0. Now, applying
[15, Theorem 2.17(ii)], there exists t ≥ i such that xϕi

t(ai) = ϕi
t(xai) = 0 with

ϕi
t(ai) ∈ Pt. As x 6∈ Z(Pt), we get ϕi

t(ai) = 0. A second application of [15,
Theorem 2.17(ii)] yields λi(ai) = 0 = z, as desired.

2) It follows easily from (1) as, by [14, Theorem 1.2], F is a direct limit of a
direct system of finitely generated free R-modules. This completes the proof.
¤

We next establish a version of Rees’s theorem [15, Theorem 9.37] for the
torsion functor.

Theorem 3.5. Let x be a central element of R such that x is not a unit of
R and x 6∈ Z(R). Let A be a right R∗-module and B be a left R-module such
that x 6∈ Z(B). Then

TorR
n (A,B) ∼= TorR∗

n

(
A,

B

xB

)
.

Proof. 1) Let ... −→ P1 −→ P0 −→ B −→ 0 be a projective resolution of
R-modules of B. Tensoring with R∗ and as x 6∈ Z(B)∪Z(Pi) for each integer
i ≥ 0, by successive applications of Lemma 2.9, we get the following exact
sequence of right R∗-modules

... −→ P1

xP1

−→ P0

xP0

−→ B

xB
−→ 0

which is a projective resolution of
B

xB
over R∗. Now, applying the functor

A⊗R∗ to this last sequence yields the next complex

C
(
A,

B

xB

)
= ... −→ A⊗R∗

P1

xP1

−→ A⊗R∗
P0

xP0

−→ A⊗R∗
B

xB
−→ 0.

The homology groups of this complex are the Hn

(
C

(
A,

B

xB

))
= TorR∗

n

(
A,

B

xB

)
.

Note that A⊗R∗
Pi

xPi

ϕi∼= A⊗R Pi for each integer i ≥ 0 and A⊗R∗
B

xB

ϕ∼= A⊗RB.
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Therefore, we get the following commutative diagram

C
(
A,

B

xB

)
= ... −→ A⊗R∗

P1

xP1

−→ A⊗R∗
P0

xP0

−→ A⊗R∗
B

xB
−→ 0

ϕ1 ↓ ϕ0 ↓ ϕ ↓

C(A,B) = ... −→ A⊗R P1 −→ A⊗R P0 −→ A⊗R B −→ 0

with Hn(C(A,B)) = TorR
n (A,B) are the homology groups of the complex

C(A,B). Consequently,

Hn

(
C

(
A,

B

xB

)) ∼= Hn(C(A, B))

for each positive integer n establishing the desired isomorphism. ¤

Theorem 3.5 allows easily to establish the second change of rings theorem
for the flat dimension.

Theorem 3.6. Let x be a central element of R such that x 6∈ Z(R). Let M
be an R-module such that x 6∈ Z(M). Then

fdR∗

( M

xM

)
≤ fdR(M).

Proof. It is a direct consequence of Theorem 3.5.

We next present the second change of rings theorem for the Gorenstein flat
dimension.

Theorem 3.7. Let x be a central element of R such that x 6∈ Z(R). Let M
be an R-module such that x 6∈ Z(M). Then

GfdR∗

( M

xM

)
≤ GfdR(M).

Proof. First, let us prove that if G is a Gorenstein flat R-module, then
G

xG
is

a Gorenstein flat R∗-module. In fact, assume that G is Gorenstein flat over R
and let E = ... −→ F1 −→ F0 −→ F−1 −→ ... be a complete flat resolution of
R-modules such that G := Im(F0 −→ F−1). Let Gi := Im(Fi → Fi−1) for each
integer i with G = G0. Applying Lemma 2.9 to each short exact sequence of
R-modules 0 −→ Gi+1 −→ Fi −→ Gi −→ 0 yields the following short exact
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sequence of R∗-modules 0 −→ Gi+1

xGi+1

−→ Fi

xFi

−→ Gi

xGi

−→ 0 as, by Lemma

3.4, Gi is a submodule of a flat module and thus xGi = 0. Then, we get the

exact sequence of R∗-modules
E

xE
= ...−→ F1

xF1

−→ F0

xF0

−→ F−1

xF−1

−→ ...

with Im
( Fi

xFi

→ Fi−1

xFi−1

)
=

Gi

xGi

for each integer i and each
Fi

xFi

is a flat R∗-

module, by Theorem 3.6. Fix an integer i and let Q be an injective module

over R∗. Then, by Theorem 3.5, TorR∗
1

(
Q,

Gi

xGi

) ∼= TorR
1 (Q,Gi). Since, by [13,

Theorem 202], idR(Q) = 1, we get TorR
1 (Q,Gi) = 0, by Proposition 3.1. Hence

TorR∗
1

(
Q,

Gi

xGi

)
= 0 for each injective R∗-module Q. It follows that

E

xE
is a

complete flat resolution over R∗ and thus
G

xG
is a Gorenstein flat R∗-module,

as claimed.
If GfdR(M) = +∞, then we are done. Assume that GfdR(M) < +∞ and

let 0 −→ G0 −→ G1 −→ ... −→ Gn −→ M −→ 0 be an exact sequence
of Gorenstein flat R-modules with n ≥ 0 is an integer. Now, tensoring this
sequence with R∗ yields, by Lemma 2.9, as x 6∈ Z(M) and x 6∈ Z(Gi) (see
Lemma 3.4) for each integer i = 0, ..., n, the exact sequence of R∗-modules

0 −→ G0

xG0

−→ G1

xG1

−→ ...
Gn

xGn

−→ M

xM
−→ 0.

By the first step, each
Gi

xGi

is a Gorenstein flat R∗-module. It follows that

GfdR∗

( M

xM

)
≤ n yielding the desired inequality. ¤

An analog version of Theorem C from the introduction for the Gorenstein
flat dimension is the following in the setting of a right coherent ring.

Theorem 3.8. Let R be a right coherent ring. Let x be a central element of
R such that x 6∈ Z(R). Let M be an R-module such that M = xM , that is,
R∗ ⊗R M = 0. Then

1 + GfdR∗(xM) ≤ GfdR(M)

except when M is Gorenstein flat over R in which case xM = 0.

We need the following result due to M. Harris.

Lemma 3.9 [11, Theorem 2]. Let R be a right coherent ring and x be a

central element of R. Then R∗ :=
R

xR
is a right coherent ring.
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Proof of Theorem 3.8. Let 0 −→ N −→ G −→ M −→ 0 be a short exact
sequence of R-modules such that G is Gorenstein flat over R and GfdR(M) =
1+GfdR(N). Then, applying the functor R∗⊗R − and Lemma 2.9, we get the
following exact sequence of R∗-modules

xG = 0 −→ xM −→ N

xN
−→ G

xG
−→ M

xM
= 0.

Now, by Theorem 3.7,
G

xG
is a Gorenstein flat R-module. Then, as, by Lemma

3.9, R∗ is right coherent, we get, by Lemma 3.3, GfdR∗

( N

xN

)
= GfdR∗(xM).

Therefore, another application of Theorem 3.7 yields GfdR∗(xM) ≤GfdR(N) =
GfdR(M)− 1, as desired. ¤

Through Theorem 3.10 and Theorem 3.11, we generalize Theorem 3.8 and
give its ultimate version.

Theorem 3.10. Let R be a right coherent ring. Let x be a central element of
R such that x 6∈ Z(R). Let M be an R-module. Then

1) GfdR∗

( M

xM

)
≤ max{2 + GfdR∗(xM), GfdR(M)}.

2) If GfdR(M) < +∞, then GfdR∗

( M

xM

)
and GfdR∗(xM) are simultaneously

finite.

3) If 1+GfdR∗(xM) > GfdR(M) and M is not Gorenstein flat over R, then

GfdR∗

( M

xM

)
= 2+GfdR∗(xM).

Proof. 1) (and (2)) If GfdR(M) = +∞, then we are done. Also, if M is

Gorenstein flat over R, then, by Theorem 3.7,
M

xM
is Gorenstein flat over R∗

and, by Lemma 3.4, xM = 0. Then, assume that 1 ≤ GfdR(M) = n < +∞.
Let 0 −→ A −→ G −→ M −→ 0 (∗) be an exact sequence of R-modules such
that G is Gorenstein flat over R. Note that as A is a submodule of a Gorenstein
flat module and x 6∈ Z(R), x 6∈ Z(A), that is, xA = 0. So, by Theorem 3.7,

GfdR∗

( A

xA

)
≤ GfdR(A) ≤ n − 1. On the other hand, tensoring the sequence

(∗) with R∗ yields, by Lemma 2.9, the exact sequence of R∗-modules

0 −→ xM −→ A

xA
−→ G

xG
−→ M

xM
−→ 0.

Now, let H = Im
( A

xA
→ G

xG

)
. We have the next two exact sequences of
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R∗-modules 



0 −→ xM −→ A

xA
−→ H −→ 0 (∗∗)

0 −→ H−→ G

xG
−→ M

xM
−→ 0 (∗ ∗ ∗).

As, by Lemma 3.9, R∗ is right coherent, it is then clear, by Proposition 3.2, that

GfdR∗

( M

xM

)
< +∞ if and only if GfdR∗(H) < +∞ if and only if GfdR∗(xM) <

+∞ establishing (2). Also, as R∗ is right coherent, via the sequence (∗∗), we

get, by Lemma 3.3, GfdR∗(H) ≤ max
{

1+GfdR∗(xM), GfdR∗

( A

xA

)}
. More-

over, by the sequence (∗ ∗ ∗), we have GfdR∗

( M

xM

)
≤ 1+GfdR∗(H). It follows

that

GfdR∗

( M

xM

)
≤ 1 + max{1 + GfdR∗(xM), n− 1}
= max{2 + GfdR∗(xM), GfdR(M)}, as desired.

3) Assume that 1+GfdR∗(xM) > GfdR(M) ≥ 1. Then, by (1), GfdR∗

( M

xM

)
≤

2+GfdR∗(xM). Conversely, proceeding as in (1), consider the above-mentioned
two exact sequences





0 −→ xM −→ A

xA
−→ H −→ 0 (∗∗)

0 −→ H−→ G

xG
−→ M

xM
−→ 0 (∗ ∗ ∗).

If
M

xM
is Gorenstein flat over R∗, then, as R∗ is right coherent, H is Goren-

stein flat over R∗, and thus GfdR∗(xM) = GfdR∗

( A

xA

)
≤ GfdR(M)− 1 which

is contradictory to our initial assumption. Then GfdR∗

( M

xM

)
≥ 1, so that

GfdR∗(H) = GfdR∗

( M

xM

)
−1. Also, via the sequence (∗∗) and by Lemma 3.3,

as R∗ is right coherent,

GfdR∗(xM) ≤ max
{

GfdR∗

( A

xA

)
, GfdR∗(H)− 1

}

≤ max
{

GfdR(M)− 1, GfdR∗

( M

xM

)
− 2

}
.

This ensures, as 1+GfdR∗(xM) > GfdR(M), that GfdR∗(xM) ≤GfdR∗

( M

xM

)
−

2. It follows that GfdR∗

( M

xM

)
= 2+GfdR∗(xM) establishing (3) and complet-
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ing the proof. ¤

The following result represents the ultimate version of Theorem 3.8.

Theorem 3.11. Let R be a right coherent ring. Let x be a central element of
R such that x 6∈ Z(R). Let M be an R-module which is not Gorenstein flat
over R. Then

1 + GfdR∗(xM) ≤ GfdR(M) if and only if GfdR∗

( M

xM

)
− 1 ≤ GfdR(M).

Proof. Let GfdR∗

( M

xM

)
−1 ≤ GfdR(M). If 1+GfdR∗(xM) > GfdR(M), then,

by Theorem 3.10(3),

GfdR∗

( M

xM

)
= 2 + GfdR∗(xM)

> 1 + GfdR(M) which is absurd.

It follows that 1+GfdR∗(xM) ≤ GfdR(M). Conversely, assume that
1+GfdR∗(xM) ≤ GfdR(M). Then, using Theorem 3.10(1),

GfdR∗

( M

xM

)
≤ 1 + max{1 + GfdR∗(xM), GfdR(M)}
≤ 1 + GfdR(M), as desired. ¤

4 An open problem

We end this paper by the following problem concerning the change of rings
theorem related to the Gorenstein projective and injective dimensions. Recall
that it is shown in Theorem 2.13 and Theorem 2.15 that: If x is a central ele-
ment of R such that x 6∈ Z(R) and M is an R-module which is not Gorenstein
injective (resp., M is not Gorenstein projective), then

1 + GidR∗

( M

xM

)
≤ GidR(M) if and only if GidR∗(xM)− 1 ≤ GidR(M)

(
resp., 1+GpdR∗

( M

xM

)
≤ GpdR(M) if and only if GpdR∗(xM)−1 ≤ GpdR(M)

)
.

From these two theorems arise the following natural question:
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Problem. Let x be a central element of R such that x 6∈ Z(R) and M be
an R-module which is not Gorenstein injective (resp., M is not Gorenstein
projective). Then, have we

1 + GidR∗

( M

xM

)
= GidR(M) if and only if GidR∗(xM)− 1 = GidR(M)?

(
resp., 1+GpdR∗

( M

xM

)
= GpdR(M) if and only if GpdR∗(xM)−1 = GpdR(M)?

)
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