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Abstract

In this note we investigate left multipliers satisfying certain alge-
braic identities on Lie ideals of rings with involution and discuss related
results. Moreover we provide examples to show that the assumed re-
strictions cannot be relaxed.
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1 Introduction

Throughout this paper, R will represent an associative ring with center Z(R).
Recall that R is 2-torsion free if 2x = 0 forces x = 0 and R is prime if aRb = 0
implies a = 0 or b = 0. If R admits an involution ∗, then R is ∗-prime if
aRb = aRb∗ = 0 yields a = 0 or b = 0. Note that every prime ring having an
involution ∗ is ∗-prime but the converse is in general not true. Indeed, if R
is a prime ring with opposite Ro, then R × Ro equipped with the exchange
involution ∗ex, defined by ∗ex(x, y) = (y, x), is ∗ex-prime but not prime. This
example shows that every prime ring can be injected in a ∗-prime ring and
therefore ∗-prime rings constitute a more general class of prime rings.
An additive map F : R −→ R is called a left multiplier (resp. derivation)
if F (xy) = F (x)y (resp. F (xy) = F (x)y + xF (y)) for all x, y in R. A left
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multiplier F on R is said to be trivial if F is the identity map on R. An
additive map F : R −→ R is called a generalized derivation if there exists
a derivation d : R −→ R such that F (xy) = F (x)y + xd(y) holds for all
x, y ∈ R. Obviously, generalized derivation with d = 0 covers the concept of
left multipliers.
There has been an ongoing interest concerning the relationship between the
commutativity of a prime ring R and the behavior of a generalized derivation
of R, with associated nonzero derivation. Many of obtained results extend
other ones previously proven just for the action of the generalized derivation
on the whole ring. In this direction, it seems natural to ask what we can say
about the commutativity of R if the generalized derivation is replaced by a left
multiplier. Our aim in this paper is to investigate the commutativity of a ring
with involution (R, ∗) satisfying certain identities involving a left multiplier
acting on Lie ideals.

2 Left multipliers acting on Lie ideals

Throughout, (R, ∗) will represent an associative ring with involution and Sa∗(R) :=
{r ∈ R/ r∗ = ± r} the set of symmetric and skew symmetric elements of R.
We shall need the following lemmas quoted from [4] and [5].

Lemma 2.1 ([4], Lemma 4) If U 6⊆ Z(R) is a ∗-Lie ideal of a 2-torsion
free ∗-prime ring R and a, b ∈ R such that aUb = a∗Ub = 0, then a = 0 or
b = 0.

Lemma 2.2 ([5], Lemma 2.3) Let 0 6= U be a ∗-Lie ideal of a 2-torsion free
∗-prime ring R. If [U,U ] = 0, then U ⊆ Z(R).

We first fix the following facts which will be used in the sequel.

Fact 1. Let U be a noncentral ∗-Lie ideal of a ∗-prime ring R. If aU = 0 or
Ua = 0, then a = 0. Indeed, if aU = 0 (resp. Ua = 0), then aUa = 0 = aUa∗

(resp. aUa = 0 = a∗Ua) and Lemma 2.1 yields a = 0.

Fact 2. Every ∗-prime ring is semiprime. Indeed, if aRa = 0 then aRaRa∗ = 0
so that a = 0 or aRa∗ = 0. But aRa∗ = 0 together with aRa = 0 force a = 0.

Theorem 2.3 Let R be a 2-torsion free ∗-prime ring and U be a ∗-Lie
ideal of R. If R admits a left multiplier F such that F (xy) − xy ∈ Z(R) for
all x, y ∈ U, then either F is trivial or U ⊆ Z(R).

Proof. Assume that U 6⊆ Z(R). From F (uv)− uv ∈ Z(R) it follows that

F (u)v − uv ∈ Z(R) for all u, v ∈ U. (1)
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Using (1) together with F (v)u− vu ∈ Z(R) we get

F ([u, v])− [u, v] ∈ Z(R) for all u, v ∈ U. (2)

Replacing u by [x, y] in (1), where x, y ∈ U , we obtain

(F ([x, y])− [x, y])v ∈ Z(R) for all v, x, y ∈ U. (3)

Hence [(F ([x, y])− [x, y])v, r] = 0 for all r ∈ R which, because of (2), yields

(F ([x, y])− [x, y])[v, r] = 0 for all v, x, y ∈ U, r ∈ R. (4)

In particular, equation (4) yields

(F ([x, y])− [x, y])[U,U ] = 0 for all x, y ∈ U. (5)

Since U 6⊆ Z(R) and R is a 2-torsion free semiprime ring, then [U,U ] is a
noncentral ∗-Lie ideal of R. Using Fact 1, equation (5) forces

F ([x, y]) = [x, y] for all x, y ∈ U. (6)

Since F is a left multiplier, then

F ([[x, y], z]) = [x, y]z − F (z)[x, y] for all x, y, z ∈ U. (7)

Employing F ([[x, y], z]) = [[x, y], z] by (6), then (7) reduces

(F (z)− z)[x, y] = 0 for all x, y, z ∈ U

in such a way that

(F (z)− z)[U,U ] = 0 for all z ∈ U. (8)

Once again using the fact that [U,U ] is a noncentral ∗-Lie ideal of R, in light
of equation (8), Fact 1 forces to be

F (z) = z for all z ∈ U.

From F ([u, r]) = [u, r], it follows that (F (r)− r)u = 0 and thus

(F (r)− r)U = 0 for all r ∈ R. (9)

Using Fact 1, equation (9) forces F (r) = r for all r ∈ R so that F is the
identity map on R.

Theorem 2.4 Let R be a 2-torsion free ∗-prime ring and U be a ∗-Lie
ideal of R. If R admits a left multiplier F such that F (xy) +xy ∈ Z(R) for all
x, y ∈ U, then either −F is trivial or U ⊆ Z(R).
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Proof. If F is a left multiplier satisfying the property F (xy)+xy ∈ Z(R) for all
x, y ∈ U, then the left multiplier (−F ) satisfies the condition (−F )(xy)−xy ∈
Z(R) for all x, y ∈ U and hence Theorem 2.3 forces U ⊆ Z(R) or −F = Id.

Remark 1. If we choose U a ∗-ideal instead of a ∗-Lie ideal, then Theo-
rems 2.3 and 2.4 hold without the assumption on the characteristic of the
ring.

Corollary 2.5 Let R be a ∗-prime ring and I be a nonzero ∗-ideal of R.
If R admits a left multiplier F such that neither F nor (−F ) is trivial and
F (xy) − xy ∈ Z(R) (or F (xy) + xy ∈ Z(R)) for all x, y ∈ I, then R is
commutative.

The following example proves that the ∗-primeness hypothesis in the above
theorems is not superfluous.

Example 1.
Let (R, σ) be a noncommutative prime ring with involution and setR = R×R.
Consider U = R×{0} and define an involution ∗ onR by (x, y)∗ = (σ(x), σ(y)).
It is straightforward to check that U is a ∗-Lie ideal of the semiprime ring R.
Moreover, if we set F (x, y) = (x, 0) (resp. F (x, y) = (−x, 0)), the F is a left
multiplier such that F (uv) − uv ∈ Z(R) (resp. F (uv) + uv ∈ Z(R)) for all
u, v ∈ U ; but U 6⊆ Z(R). Hence Theorems 1 and 2 cannot be extended to
semiprime rings.

As an application of Theorems 2.3 and 2.4, the following result improves The-
orem 3.1 & 3.2 of [1], but only with further assumption that the ring R be
2-torsion free.

Theorem 2.6 Let R be a 2-torsion free prime ring and U be a Lie ideal
of R. If R admits a left multiplier F such that F (xy) − xy ∈ Z(R) (resp.
F (xy) + xy ∈ Z(R)) for all x, y ∈ U, then F (resp. (−F )) is trivial or
U ⊆ Z(R).

Proof. Assume that F (xy) − xy ∈ Z(R) for all x, y ∈ U. Let F be the left
multiplier defined on the ∗ex-prime ring R = R×R0 by F(x, y) = (F (x), y).
If we set W = U × U , then W is a ∗ex-Lie ideal of R. Moreover, we have

F((x, y)(u, v))− (x, y)(u, v) = (F (xu)− xu, 0) for all (x, y), (u, v) ∈ W,

which forces F((x, y)(u, v)) − (x, y)(u, v) ∈ Z(R). In view of Theorem 2.3,
either F is trivial or W ⊆ Z(R). Accordingly, F is trivial or U ⊆ Z(R).
If F (xy) + xy ∈ Z(R) for all x, y ∈ U, then F(x, y) = (F (x),−y) is a
left multiplier on R such that F((x, y)(u, v)) + (x, y)(u, v) ∈ Z(R) for all
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(x, y), (u, v) ∈ R. The same above strategy combined with Theorem 2.4 leads
to the result.

Application of Theorem 2.6 together with Remark 1 yield the following re-
sult which improves ([2], Theorem 2.1).

Theorem 2.7 Let R be a prime ring and F be a generalized derivation
which is not the identity map on R. If F (xy) − xy ∈ Z(R) for all x, y in a
nonzero ideal I of R, then R is commutative.

Proof. Assume that F is a generalized derivation associated with a deriva-
tion d. When the associated derivation d = 0, then using Theorem 2.6, we get
the required result. On the other hand if d 6= 0, then the proof follows from
Theorem 2.1 of [2].

Similarly, in view of Theorem 2.6, we obtain the following result which im-
proves ([2], Theorem 2.2)

Theorem 2.8 Let R be a prime ring and I be a nonzero ideal of R. If
R admits a generalized derivation F associated with a derivation d such that
F (xy) + xy ∈ Z(R) for all x, y ∈ I, then R is commutative.

3 Open Problem

We conclude our paper with following open questions:

(i) Does Theorem 2.3 remain valid without 2-torsion freeness hypothesis?

(ii) What can we say if the condition ”F (xy) − xy ∈ Z(R)” is replaced by
”F (xy)− yx ∈ Z(R)”?

References

[1] M. Ashraf and A. Shakir, On left multipliers and the commutativity of
prime rings, Demonstratio Math. 41 (4) (2008), 764-771.

[2] M. Ashraf, A. Ali and A. Shakir, Some commutativity theorems for rings
with generalized derivations, Southeast Asian Bull. Math. 31 (2007), 415-
421.

[3] L. Oukhtite, Left multipliers and Lie ideals in rings with involution, Int.
J. Open Problems Compt. Math., 3 (3) (2010), 267-277.



60 L. Oukhtite and L. Taoufiq

[4] L. Oukhtite, S. Salhi, Centralizing automorphisms and Jordan left deriva-
tions on σ-prime rings , Advances in Algebra, 1 (1) (2008), 19-26.

[5] L. Oukhtite, S. Salhi, Lie ideals and derivations of σ-prime rings, Int. J.
Algebra 1 (1) (2007), 25-30.

[6] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957),
1093-1100.

[7] M. A. Quadr i, M. S. Khan and N. Rehman , Generalized derivations and
commutativity of prime rings, Indian J. Pure Appl. Math. 34 (9) (2003),
1393-1396.

[8] N. Rehman, On commutativity of rings with generalized derivations,
Math. J. Okayama Univ. 44 (2002), 43-49.


