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Abstract

In this paper, new integral inequalities of Hermite-Hadamard type involving
several differentiable log-convex functions are given.
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1 Introduction

The following inequality is well known in the literature as the Hermite-Hadamard
inequality (see [5, p.137]):
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b∫
a

f (x) dx ≤ f (a) + f (b)

2
,

where f : I → R is a convex function on the interval I of real numbers and
a, b ∈ I with a < b.

It is well known that the Hermite-Hadamard’s inequality plays an impor-
tant role in nonlinear analysis. Over the last decade, this classical inequality
has been improved and generalized in a number of ways; there have been a
large number of research papers written on this subject, see ( [1]-[8], [11], [12])
and the books [5],[9],[10] where further references are given.
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In [6], Dragomir has established the following interesting refinements of
Hadamard’s inequalities for log-convex functions:

Let f : I → (0,∞) be a differentiable log-convex function on the interval of
real numbers I0 (the interior of I) and a, b ∈ I0 with a < b. Then the following
inequalities hold:
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Recently in [11], Pachpatte has proved the general versions of the inequal-
ities (1) and (2) involving several differentiable log-convex functions.

In this paper , we prove another new integral inequalities Hermite-Hadamard
type involving several differentiable log-convex functions. The method em-
ployed in our analysis is based on the basic properties of logarithms and the
application of the well known Jensen’s integral inequality.

2 Main Results

Now, we start with the following our main theorem.

Let f, g : I → (0,∞) be differentiable log-convex functions on the interval
of real numbers I0 (the interior of I) and a, b ∈ I0 with a < b. Then, the
following inequalities holds:
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Let f, g be diffrerentiable log-convex functions. Then

log f (x)− log f (y) ≥ d

dy
(log f (y)) (x− y)

log g (x)− log g (y) ≥ d

dy
(log g (y)) (x− y)

for all x, y ∈ I0, which implies that
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That is
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]
. (5)

Multiplying both sides of (4) and (5) by g (x) and f (x) respectively and adding
the resultant, we obtain,
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Integrating (6) the above inequality with respect to y on [a, b].
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Now, for integrals in right hand side of (7), using Jensen’s integral inequality
for exp (.) functions, we have
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+g (x)

b∫
a

f (y) dy exp

1 +
(x− b) f (b)− (x− a) f (a)

b∫
a

f (y) dy


Integrating (10) the above inequality with respect to x on [a, b], we get the
required inequality in (3).

Under the asumptions of Theorem 2, we have
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If we take x = a+b
2

in Theorem 2, we get the required inequality in (11). By
using inequality (1) in (11), then we obtain the required inequality in (12).

Under the asumptions of Theorem 2 and with y = a+b
2

, we have
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The proof is obvious by the above theorem 2.
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3 Open Problem

It is well known that if f is a convex function on the interval I = [a, b] with
a < b, then the Hermite-Hadamard inequality holds for the convex functions.
It has already been proved a lot of this type inequalities for several convex
functions. So, there are two questions as follows:

1) How can be established the general versions of the inequalities (3), (11)
and (13) involving several differentiable log-convex functions.

2) How to obtain similar results without using Jensen’s inequality in the
proof of theorem 2.
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